// SPDX-License-Identifier: GPL-2.0-only
#include "cgroup-internal.h"
#include <linux/sched/cputime.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
static DEFINE_SPINLOCK(cgroup_rstat_lock);
static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
{
return per_cpu_ptr(cgrp->rstat_cpu, cpu);
}
/**
* cgroup_rstat_updated - keep track of updated rstat_cpu
* @cgrp: target cgroup
* @cpu: cpu on which rstat_cpu was updated
*
* @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching
* rstat_cpu->updated_children list. See the comment on top of
* cgroup_rstat_cpu definition for details.
*/
void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
{
raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
unsigned long flags;
/*
* Speculative already-on-list test. This may race leading to
* temporary inaccuracies, which is fine.
*
* Because @parent's updated_children is terminated with @parent
* instead of NULL, we can tell whether @cgrp is on the list by
* testing the next pointer for NULL.
*/
if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
return;
raw_spin_lock_irqsave(cpu_lock, flags);
/* put @cgrp and all ancestors on the corresponding updated lists */
while (true) {
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
struct cgroup *parent = cgroup_parent(cgrp);
struct cgroup_rstat_cpu *prstatc;
/*
* Both additions and removals are bottom-up. If a cgroup
* is already in the tree, all ancestors are.
*/
if (rstatc->updated_next)
break;
/* Root has no parent to link it to, but mark it busy */
if (!parent) {
rstatc->updated_next = cgrp;
break;
}
prstatc = cgroup_rstat_cpu(parent, cpu);
rstatc->updated_next = prstatc->updated_children;
prstatc->updated_children = cgrp;
cgrp = parent;
}
raw_spin_unlock_irqrestore(cpu_lock, flags);
}
/**
* cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree
* @pos: current position
* @root: root of the tree to traversal
* @cpu: target cpu
*
* Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts
* the traversal and %NULL return indicates the end. During traversal,
* each returned cgroup is unlinked from the tree. Must be called with the
* matching cgroup_rstat_cpu_lock held.
*
* The only ordering guarantee is that, for a parent and a child pair
* covered by a given traversal, if a child is visited, its parent is
* guaranteed to be visited afterwards.
*/
static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
struct cgroup *root, int cpu)
{
struct cgroup_rstat_cpu *rstatc;
struct cgroup *parent;
if (pos == root)
return NULL;
/*
* We're gonna walk down to the first leaf and visit/remove it. We
* can pick whatever unvisited node as the starting point.
*/
if (!pos) {
pos = root;
/* return NULL if this subtree is not on-list */
if (!cgroup_rstat_cpu(pos, cpu)->updated_next)
return NULL;
} else {
pos = cgroup_parent(pos);
}
/* walk down to the first leaf */
while (true) {
rstatc = cgroup_rstat_cpu(pos, cpu);
if (rstatc->updated_children == pos)
break;
pos = rstatc->updated_children;
}
/*
* Unlink @pos from the tree. As the updated_children list is
* singly linked, we have to walk it to find the removal point.
* However, due to the way we traverse, @pos will be the first
* child in most cases. The only exception is @root.
*/
parent = cgroup_parent(pos);
if (parent) {
struct cgroup_rstat_cpu *prstatc;
struct cgroup **nextp;
prstatc = cgroup_rstat_cpu(parent, cpu);
nextp = &prstatc->updated_children;
while (*nextp != pos) {
struct cgroup_rstat_cpu *nrstatc;
nrstatc = cgroup_rstat_cpu(*nextp, cpu);
WARN_ON_ONCE(*nextp == parent);
nextp = &nrstatc->updated_next;
}
*nextp = rstatc->updated_next;
}
rstatc->updated_next = NULL;
return pos;
}
/*
* A hook for bpf stat collectors to attach to and flush their stats.
* Together with providing bpf kfuncs for cgroup_rstat_updated() and
* cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
* collect cgroup stats can integrate with rstat for efficient flushing.
*
* A static noinline declaration here could cause the compiler to optimize away
* the function. A global noinline declaration will keep the definition, but may
* optimize away the callsite. Therefore, __weak is needed to ensure that the
* call is still emitted, by telling the compiler that we don't know what the
* function might eventually be.
*
* __diag_* below are needed to dismiss the missing prototype warning.
*/
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"kfuncs which will be used in BPF programs");
__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
struct cgroup *parent, int cpu)
{
}
__diag_pop();
/* see cgroup_rstat_flush() */
static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
{
int cpu;
lockdep_assert_held(&cgroup_rstat_lock);
for_each_possible_cpu(cpu) {
raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock,
cpu);
struct cgroup *pos = NULL;
unsigned long flags;
/*
* The _irqsave() is needed because cgroup_rstat_lock is
* spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
* this lock with the _irq() suffix only disables interrupts on
* a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
* interrupts on both configurations. The _irqsave() ensures
* that interrupts are always disabled and later restored.
*/
raw_spin_lock_irqsave(cpu_lock, flags);
while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) {
struct cgroup_subsys_state *css;
cgroup_base_stat_flush(pos, cpu);
bpf_rstat_flush(pos, cgroup_parent(pos), cpu);
rcu_read_lock();
list_for_each_entry_rcu(css, &pos->rstat_css_list,
rstat_css_node)
css->ss->css_rstat_flush(css, cpu);
rcu_read_unlock();
}
raw_spin_unlock_irqrestore(cpu_lock, flags);
/* if @may_sleep, play nice and yield if necessary */
if (may_sleep && (need_resched() ||
spin_needbreak(&cgroup_rstat_lock))) {
spin_unlock_irq(&cgroup_rstat_lock);
if (!cond_resched())
cpu_relax();
spin_lock_irq(&cgroup_rstat_lock);
}
}
}
/**
* cgroup_rstat_flush - flush stats in @cgrp's subtree
* @cgrp: target cgroup
*
* Collect all per-cpu stats in @cgrp's subtree into the global counters
* and propagate them upwards. After this function returns, all cgroups in
* the subtree have up-to-date ->stat.
*
* This also gets all cgroups in the subtree including @cgrp off the
* ->updated_children lists.
*
* This function may block.
*/
void cgroup_rstat_flush(struct cgroup *cgrp)
{
might_sleep();
spin_lock_irq(&cgroup_rstat_lock);
cgroup_rstat_flush_locked(cgrp, true);
spin_unlock_irq(&cgroup_rstat_lock);
}
/**
* cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush()
* @cgrp: target cgroup
*
* This function can be called from any context.
*/
void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp)
{
unsigned long flags;
spin_lock_irqsave(&cgroup_rstat_lock, flags);
cgroup_rstat_flush_locked(cgrp, false);
spin_unlock_irqrestore(&cgroup_rstat_lock, flags);
}
/**
* cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
* @cgrp: target cgroup
*
* Flush stats in @cgrp's subtree and prevent further flushes. Must be
* paired with cgroup_rstat_flush_release().
*
* This function may block.
*/
void cgroup_rstat_flush_hold(struct cgroup *cgrp)
__acquires(&cgroup_rstat_lock)
{
might_sleep();
spin_lock_irq(&cgroup_rstat_lock);
cgroup_rstat_flush_locked(cgrp, true);
}
/**
* cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
*/
void cgroup_rstat_flush_release(void)
__releases(&cgroup_rstat_lock)
{
spin_unlock_irq(&cgroup_rstat_lock);
}
int cgroup_rstat_init(struct cgroup *cgrp)
{
int cpu;
/* the root cgrp has rstat_cpu preallocated */
if (!cgrp->rstat_cpu) {
cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
if (!cgrp->rstat_cpu)
return -ENOMEM;
}
/* ->updated_children list is self terminated */
for_each_possible_cpu(cpu) {
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
rstatc->updated_children = cgrp;
u64_stats_init(&rstatc->bsync);
}
return 0;
}
void cgroup_rstat_exit(struct cgroup *cgrp)
{
int cpu;
cgroup_rstat_flush(cgrp);
/* sanity check */
for_each_possible_cpu(cpu) {
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
WARN_ON_ONCE(rstatc->updated_next))
return;
}
free_percpu(cgrp->rstat_cpu);
cgrp->rstat_cpu = NULL;
}
void __init cgroup_rstat_boot(void)
{
int cpu;
for_each_possible_cpu(cpu)
raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
}
/*
* Functions for cgroup basic resource statistics implemented on top of
* rstat.
*/
static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
struct cgroup_base_stat *src_bstat)
{
dst_bstat->cputime.utime += src_bstat->cputime.utime;
dst_bstat->cputime.stime += src_bstat->cputime.stime;
dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
#ifdef CONFIG_SCHED_CORE
dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
#endif
}
static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
struct cgroup_base_stat *src_bstat)
{
dst_bstat->cputime.utime -= src_bstat->cputime.utime;
dst_bstat->cputime.stime -= src_bstat->cputime.stime;
dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
#ifdef CONFIG_SCHED_CORE
dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
#endif
}
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
{
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
struct cgroup *parent = cgroup_parent(cgrp);
struct cgroup_base_stat delta;
unsigned seq;
/* Root-level stats are sourced from system-wide CPU stats */
if (!parent)
return;
/* fetch the current per-cpu values */
do {
seq = __u64_stats_fetch_begin(&rstatc->bsync);
delta = rstatc->bstat;
} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
/* propagate percpu delta to global */
cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
cgroup_base_stat_add(&cgrp->bstat, &delta);
cgroup_base_stat_add(&rstatc->last_bstat, &delta);
/* propagate global delta to parent (unless that's root) */
if (cgroup_parent(parent)) {
delta = cgrp->bstat;
cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
cgroup_base_stat_add(&parent->bstat, &delta);
cgroup_base_stat_add(&cgrp->last_bstat, &delta);
}
}
static struct cgroup_rstat_cpu *
cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
{
struct cgroup_rstat_cpu *rstatc;
rstatc = get_cpu_ptr(cgrp->rstat_cpu);
*flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
return rstatc;
}
static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
struct cgroup_rstat_cpu *rstatc,
unsigned long flags)
{
u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
cgroup_rstat_updated(cgrp, smp_processor_id());
put_cpu_ptr(rstatc);
}
void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
{
struct cgroup_rstat_cpu *rstatc;
unsigned long flags;
rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
}
void __cgroup_account_cputime_field(struct cgroup *cgrp,
enum cpu_usage_stat index, u64 delta_exec)
{
struct cgroup_rstat_cpu *rstatc;
unsigned long flags;
rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
switch (index) {
case CPUTIME_USER:
case CPUTIME_NICE:
rstatc->bstat.cputime.utime += delta_exec;
break;
case CPUTIME_SYSTEM:
case CPUTIME_IRQ:
case CPUTIME_SOFTIRQ:
rstatc->bstat.cputime.stime += delta_exec;
break;
#ifdef CONFIG_SCHED_CORE
case CPUTIME_FORCEIDLE:
rstatc->bstat.forceidle_sum += delta_exec;
break;
#endif
default:
break;
}
cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
}
/*
* compute the cputime for the root cgroup by getting the per cpu data
* at a global level, then categorizing the fields in a manner consistent
* with how it is done by __cgroup_account_cputime_field for each bit of
* cpu time attributed to a cgroup.
*/
static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
{
struct task_cputime *cputime = &bstat->cputime;
int i;
cputime->stime = 0;
cputime->utime = 0;
cputime->sum_exec_runtime = 0;
for_each_possible_cpu(i) {
struct kernel_cpustat kcpustat;
u64 *cpustat = kcpustat.cpustat;
u64 user = 0;
u64 sys = 0;
kcpustat_cpu_fetch(&kcpustat, i);
user += cpustat[CPUTIME_USER];
user += cpustat[CPUTIME_NICE];
cputime->utime += user;
sys += cpustat[CPUTIME_SYSTEM];
sys += cpustat[CPUTIME_IRQ];
sys += cpustat[CPUTIME_SOFTIRQ];
cputime->stime += sys;
cputime->sum_exec_runtime += user;
cputime->sum_exec_runtime += sys;
cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
#ifdef CONFIG_SCHED_CORE
bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
#endif
}
}
void cgroup_base_stat_cputime_show(struct seq_file *seq)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
u64 usage, utime, stime;
struct cgroup_base_stat bstat;
#ifdef CONFIG_SCHED_CORE
u64 forceidle_time;
#endif
if (cgroup_parent(cgrp)) {
cgroup_rstat_flush_hold(cgrp);
usage = cgrp->bstat.cputime.sum_exec_runtime;
cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
&utime, &stime);
#ifdef CONFIG_SCHED_CORE
forceidle_time = cgrp->bstat.forceidle_sum;
#endif
cgroup_rstat_flush_release();
} else {
root_cgroup_cputime(&bstat);
usage = bstat.cputime.sum_exec_runtime;
utime = bstat.cputime.utime;
stime = bstat.cputime.stime;
#ifdef CONFIG_SCHED_CORE
forceidle_time = bstat.forceidle_sum;
#endif
}
do_div(usage, NSEC_PER_USEC);
do_div(utime, NSEC_PER_USEC);
do_div(stime, NSEC_PER_USEC);
#ifdef CONFIG_SCHED_CORE
do_div(forceidle_time, NSEC_PER_USEC);
#endif
seq_printf(seq, "usage_usec %llu\n"
"user_usec %llu\n"
"system_usec %llu\n",
usage, utime, stime);
#ifdef CONFIG_SCHED_CORE
seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
#endif
}
/* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
BTF_SET8_START(bpf_rstat_kfunc_ids)
BTF_ID_FLAGS(func, cgroup_rstat_updated)
BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
BTF_SET8_END(bpf_rstat_kfunc_ids)
static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
.owner = THIS_MODULE,
.set = &bpf_rstat_kfunc_ids,
};
static int __init bpf_rstat_kfunc_init(void)
{
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
&bpf_rstat_kfunc_set);
}
late_initcall(bpf_rstat_kfunc_init);