/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/* A BPF sock_map is used to store sock objects. This is primarly used
* for doing socket redirect with BPF helper routines.
*
* A sock map may have two BPF programs attached to it, a program used
* to parse packets and a program to provide a verdict and redirect
* decision on the packet. If no BPF parse program is provided it is
* assumed that every skb is a "message" (skb->len). Otherwise the
* parse program is attached to strparser and used to build messages
* that may span multiple skbs. The verdict program will either select
* a socket to send/receive the skb on or provide the drop code indicating
* the skb should be dropped. More actions may be added later as needed.
* The default program will drop packets.
*
* For reference this program is similar to devmap used in XDP context
* reviewing these together may be useful. For an example please review
* ./samples/bpf/sockmap/.
*/
#include <linux/bpf.h>
#include <net/sock.h>
#include <linux/filter.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
#include <linux/list.h>
#include <net/strparser.h>
struct bpf_stab {
struct bpf_map map;
struct sock **sock_map;
struct bpf_prog *bpf_parse;
struct bpf_prog *bpf_verdict;
refcount_t refcnt;
};
enum smap_psock_state {
SMAP_TX_RUNNING,
};
struct smap_psock {
struct rcu_head rcu;
/* datapath variables */
struct sk_buff_head rxqueue;
bool strp_enabled;
/* datapath error path cache across tx work invocations */
int save_rem;
int save_off;
struct sk_buff *save_skb;
struct strparser strp;
struct bpf_prog *bpf_parse;
struct bpf_prog *bpf_verdict;
struct bpf_stab *stab;
/* Back reference used when sock callback trigger sockmap operations */
int key;
struct sock *sock;
unsigned long state;
struct work_struct tx_work;
struct work_struct gc_work;
void (*save_data_ready)(struct sock *sk);
void (*save_write_space)(struct sock *sk);
void (*save_state_change)(struct sock *sk);
};
static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
{
return (struct smap_psock *)rcu_dereference_sk_user_data(sk);
}
static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
{
struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
int rc;
if (unlikely(!prog))
return SK_DROP;
skb_orphan(skb);
skb->sk = psock->sock;
bpf_compute_data_end(skb);
rc = (*prog->bpf_func)(skb, prog->insnsi);
skb->sk = NULL;
return rc;
}
static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
{
struct sock *sock;
int rc;
/* Because we use per cpu values to feed input from sock redirect
* in BPF program to do_sk_redirect_map() call we need to ensure we
* are not preempted. RCU read lock is not sufficient in this case
* with CONFIG_PREEMPT_RCU enabled so we must be explicit here.
*/
preempt_disable();
rc = smap_verdict_func(psock, skb);
switch (rc) {
case SK_REDIRECT:
sock = do_sk_redirect_map();
preempt_enable();
if (likely(sock)) {
struct smap_psock *peer = smap_psock_sk(sock);
if (likely(peer &&
test_bit(SMAP_TX_RUNNING, &peer->state) &&
sk_stream_memory_free(peer->sock))) {
peer->sock->sk_wmem_queued += skb->truesize;
sk_mem_charge(peer->sock, skb->truesize);
skb_queue_tail(&peer->rxqueue, skb);
schedule_work(&peer->tx_work);
break;
}
}
/* Fall through and free skb otherwise */
case SK_DROP:
default:
if (rc != SK_REDIRECT)
preempt_enable();
kfree_skb(skb);
}
}
static void smap_report_sk_error(struct smap_psock *psock, int err)
{
struct sock *sk = psock->sock;
sk->sk_err = err;
sk->sk_error_report(sk);
}
static void smap_release_sock(struct sock *sock);
/* Called with lock_sock(sk) held */
static void smap_state_change(struct sock *sk)
{
struct smap_psock *psock;
struct sock *osk;
rcu_read_lock();
/* Allowing transitions into an established syn_recv states allows
* for early binding sockets to a smap object before the connection
* is established.
*/
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_ESTABLISHED:
break;
case TCP_CLOSE_WAIT:
case TCP_CLOSING:
case TCP_LAST_ACK:
case TCP_FIN_WAIT1:
case TCP_FIN_WAIT2:
case TCP_LISTEN:
break;
case TCP_CLOSE:
/* Only release if the map entry is in fact the sock in
* question. There is a case where the operator deletes
* the sock from the map, but the TCP sock is closed before
* the psock is detached. Use cmpxchg to verify correct
* sock is removed.
*/
psock = smap_psock_sk(sk);
if (unlikely(!psock))
break;
osk = cmpxchg(&psock->stab->sock_map[psock->key], sk, NULL);
if (osk == sk)
smap_release_sock(sk);
break;
default:
psock = smap_psock_sk(sk);
if (unlikely(!psock))
break;
smap_report_sk_error(psock, EPIPE);
break;
}
rcu_read_unlock();
}
static void smap_read_sock_strparser(struct strparser *strp,
struct sk_buff *skb)
{
struct smap_psock *psock;
rcu_read_lock();
psock = container_of(strp, struct smap_psock, strp);
smap_do_verdict(psock, skb);
rcu_read_unlock();
}
/* Called with lock held on socket */
static void smap_data_ready(struct sock *sk)
{
struct smap_psock *psock;
write_lock_bh(&sk->sk_callback_lock);
psock = smap_psock_sk(sk);
if (likely(psock))
strp_data_ready(&psock->strp);
write_unlock_bh(&sk->sk_callback_lock);
}
static void smap_tx_work(struct work_struct *w)
{
struct smap_psock *psock;
struct sk_buff *skb;
int rem, off, n;
psock = container_of(w, struct smap_psock, tx_work);
/* lock sock to avoid losing sk_socket at some point during loop */
lock_sock(psock->sock);
if (psock->save_skb) {
skb = psock->save_skb;
rem = psock->save_rem;
off = psock->save_off;
psock->save_skb = NULL;
goto start;
}
while ((skb = skb_dequeue(&psock->rxqueue))) {
rem = skb->len;
off = 0;
start:
do {
if (likely(psock->sock->sk_socket))
n = skb_send_sock_locked(psock->sock,
skb, off, rem);
else
n = -EINVAL;
if (n <= 0) {
if (n == -EAGAIN) {
/* Retry when space is available */
psock->save_skb = skb;
psock->save_rem = rem;
psock->save_off = off;
goto out;
}
/* Hard errors break pipe and stop xmit */
smap_report_sk_error(psock, n ? -n : EPIPE);
clear_bit(SMAP_TX_RUNNING, &psock->state);
sk_mem_uncharge(psock->sock, skb->truesize);
psock->sock->sk_wmem_queued -= skb->truesize;
kfree_skb(skb);
goto out;
}
rem -= n;
off += n;
} while (rem);
sk_mem_uncharge(psock->sock, skb->truesize);
psock->sock->sk_wmem_queued -= skb->truesize;
kfree_skb(skb);
}
out:
release_sock(psock->sock);
}
static void smap_write_space(struct sock *sk)
{
struct smap_psock *psock;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
schedule_work(&psock->tx_work);
rcu_read_unlock();
}
static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
{
write_lock_bh(&sk->sk_callback_lock);
if (!psock->strp_enabled)
goto out;
sk->sk_data_ready = psock->save_data_ready;
sk->sk_write_space = psock->save_write_space;
sk->sk_state_change = psock->save_state_change;
psock->save_data_ready = NULL;
psock->save_write_space = NULL;
psock->save_state_change = NULL;
strp_stop(&psock->strp);
psock->strp_enabled = false;
out:
write_unlock_bh(&sk->sk_callback_lock);
}
static void smap_destroy_psock(struct rcu_head *rcu)
{
struct smap_psock *psock = container_of(rcu,
struct smap_psock, rcu);
/* Now that a grace period has passed there is no longer
* any reference to this sock in the sockmap so we can
* destroy the psock, strparser, and bpf programs. But,
* because we use workqueue sync operations we can not
* do it in rcu context
*/
schedule_work(&psock->gc_work);
}
static void smap_release_sock(struct sock *sock)
{
struct smap_psock *psock = smap_psock_sk(sock);
smap_stop_sock(psock, sock);
clear_bit(SMAP_TX_RUNNING, &psock->state);
rcu_assign_sk_user_data(sock, NULL);
call_rcu_sched(&psock->rcu, smap_destroy_psock);
}
static int smap_parse_func_strparser(struct strparser *strp,
struct sk_buff *skb)
{
struct smap_psock *psock;
struct bpf_prog *prog;
int rc;
rcu_read_lock();
psock = container_of(strp, struct smap_psock, strp);
prog = READ_ONCE(psock->bpf_parse);
if (unlikely(!prog)) {
rcu_read_unlock();
return skb->len;
}
/* Attach socket for bpf program to use if needed we can do this
* because strparser clones the skb before handing it to a upper
* layer, meaning skb_orphan has been called. We NULL sk on the
* way out to ensure we don't trigger a BUG_ON in skb/sk operations
* later and because we are not charging the memory of this skb to
* any socket yet.
*/
skb->sk = psock->sock;
bpf_compute_data_end(skb);
rc = (*prog->bpf_func)(skb, prog->insnsi);
skb->sk = NULL;
rcu_read_unlock();
return rc;
}
static int smap_read_sock_done(struct strparser *strp, int err)
{
return err;
}
static int smap_init_sock(struct smap_psock *psock,
struct sock *sk)
{
struct strp_callbacks cb;
memset(&cb, 0, sizeof(cb));
cb.rcv_msg = smap_read_sock_strparser;
cb.parse_msg = smap_parse_func_strparser;
cb.read_sock_done = smap_read_sock_done;
return strp_init(&psock->strp, sk, &cb);
}
static void smap_init_progs(struct smap_psock *psock,
struct bpf_stab *stab,
struct bpf_prog *verdict,
struct bpf_prog *parse)
{
struct bpf_prog *orig_parse, *orig_verdict;
orig_parse = xchg(&psock->bpf_parse, parse);
orig_verdict = xchg(&psock->bpf_verdict, verdict);
if (orig_verdict)
bpf_prog_put(orig_verdict);
if (orig_parse)
bpf_prog_put(orig_parse);
}
static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
{
if (sk->sk_data_ready == smap_data_ready)
return;
psock->save_data_ready = sk->sk_data_ready;
psock->save_write_space = sk->sk_write_space;
psock->save_state_change = sk->sk_state_change;
sk->sk_data_ready = smap_data_ready;
sk->sk_write_space = smap_write_space;
sk->sk_state_change = smap_state_change;
psock->strp_enabled = true;
}
static void sock_map_remove_complete(struct bpf_stab *stab)
{
bpf_map_area_free(stab->sock_map);
kfree(stab);
}
static void smap_gc_work(struct work_struct *w)
{
struct smap_psock *psock;
psock = container_of(w, struct smap_psock, gc_work);
/* no callback lock needed because we already detached sockmap ops */
if (psock->strp_enabled)
strp_done(&psock->strp);
cancel_work_sync(&psock->tx_work);
__skb_queue_purge(&psock->rxqueue);
/* At this point all strparser and xmit work must be complete */
if (psock->bpf_parse)
bpf_prog_put(psock->bpf_parse);
if (psock->bpf_verdict)
bpf_prog_put(psock->bpf_verdict);
if (refcount_dec_and_test(&psock->stab->refcnt))
sock_map_remove_complete(psock->stab);
sock_put(psock->sock);
kfree(psock);
}
static struct smap_psock *smap_init_psock(struct sock *sock,
struct bpf_stab *stab)
{
struct smap_psock *psock;
psock = kzalloc(sizeof(struct smap_psock), GFP_ATOMIC | __GFP_NOWARN);
if (!psock)
return ERR_PTR(-ENOMEM);
psock->sock = sock;
skb_queue_head_init(&psock->rxqueue);
INIT_WORK(&psock->tx_work, smap_tx_work);
INIT_WORK(&psock->gc_work, smap_gc_work);
rcu_assign_sk_user_data(sock, psock);
sock_hold(sock);
return psock;
}
static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
{
struct bpf_stab *stab;
int err = -EINVAL;
u64 cost;
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 || attr->map_flags)
return ERR_PTR(-EINVAL);
if (attr->value_size > KMALLOC_MAX_SIZE)
return ERR_PTR(-E2BIG);
stab = kzalloc(sizeof(*stab), GFP_USER);
if (!stab)
return ERR_PTR(-ENOMEM);
/* mandatory map attributes */
stab->map.map_type = attr->map_type;
stab->map.key_size = attr->key_size;
stab->map.value_size = attr->value_size;
stab->map.max_entries = attr->max_entries;
stab->map.map_flags = attr->map_flags;
/* make sure page count doesn't overflow */
cost = (u64) stab->map.max_entries * sizeof(struct sock *);
if (cost >= U32_MAX - PAGE_SIZE)
goto free_stab;
stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
/* if map size is larger than memlock limit, reject it early */
err = bpf_map_precharge_memlock(stab->map.pages);
if (err)
goto free_stab;
stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
sizeof(struct sock *));
if (!stab->sock_map)
goto free_stab;
refcount_set(&stab->refcnt, 1);
return &stab->map;
free_stab:
kfree(stab);
return ERR_PTR(err);
}
static void sock_map_free(struct bpf_map *map)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
int i;
synchronize_rcu();
/* At this point no update, lookup or delete operations can happen.
* However, be aware we can still get a socket state event updates,
* and data ready callabacks that reference the psock from sk_user_data
* Also psock worker threads are still in-flight. So smap_release_sock
* will only free the psock after cancel_sync on the worker threads
* and a grace period expire to ensure psock is really safe to remove.
*/
rcu_read_lock();
for (i = 0; i < stab->map.max_entries; i++) {
struct sock *sock;
sock = xchg(&stab->sock_map[i], NULL);
if (!sock)
continue;
smap_release_sock(sock);
}
rcu_read_unlock();
if (stab->bpf_verdict)
bpf_prog_put(stab->bpf_verdict);
if (stab->bpf_parse)
bpf_prog_put(stab->bpf_parse);
if (refcount_dec_and_test(&stab->refcnt))
sock_map_remove_complete(stab);
}
static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
u32 i = key ? *(u32 *)key : U32_MAX;
u32 *next = (u32 *)next_key;
if (i >= stab->map.max_entries) {
*next = 0;
return 0;
}
if (i == stab->map.max_entries - 1)
return -ENOENT;
*next = i + 1;
return 0;
}
struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
if (key >= map->max_entries)
return NULL;
return READ_ONCE(stab->sock_map[key]);
}
static int sock_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
int k = *(u32 *)key;
struct sock *sock;
if (k >= map->max_entries)
return -EINVAL;
sock = xchg(&stab->sock_map[k], NULL);
if (!sock)
return -EINVAL;
smap_release_sock(sock);
return 0;
}
/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
* done inside rcu critical sections. This ensures on updates that the psock
* will not be released via smap_release_sock() until concurrent updates/deletes
* complete. All operations operate on sock_map using cmpxchg and xchg
* operations to ensure we do not get stale references. Any reads into the
* map must be done with READ_ONCE() because of this.
*
* A psock is destroyed via call_rcu and after any worker threads are cancelled
* and syncd so we are certain all references from the update/lookup/delete
* operations as well as references in the data path are no longer in use.
*
* A psock object holds a refcnt on the sockmap it is attached to and this is
* not decremented until after a RCU grace period and garbage collection occurs.
* This ensures the map is not free'd until psocks linked to it are removed. The
* map link is used when the independent sock events trigger map deletion.
*
* Psocks may only participate in one sockmap at a time. Users that try to
* join a single sock to multiple maps will get an error.
*
* Last, but not least, it is possible the socket is closed while running
* an update on an existing psock. This will release the psock, but again
* not until the update has completed due to rcu grace period rules.
*/
static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
struct bpf_map *map,
void *key, u64 flags, u64 map_flags)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct bpf_prog *verdict, *parse;
struct smap_psock *psock = NULL;
struct sock *old_sock, *sock;
u32 i = *(u32 *)key;
bool update = false;
int err = 0;
if (unlikely(flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= stab->map.max_entries))
return -E2BIG;
if (unlikely(map_flags > BPF_SOCKMAP_STRPARSER))
return -EINVAL;
verdict = parse = NULL;
sock = READ_ONCE(stab->sock_map[i]);
if (flags == BPF_EXIST || flags == BPF_ANY) {
if (!sock && flags == BPF_EXIST) {
return -ENOENT;
} else if (sock && sock != skops->sk) {
return -EINVAL;
} else if (sock) {
psock = smap_psock_sk(sock);
if (unlikely(!psock))
return -EBUSY;
update = true;
}
} else if (sock && BPF_NOEXIST) {
return -EEXIST;
}
/* reserve BPF programs early so can abort easily on failures */
if (map_flags & BPF_SOCKMAP_STRPARSER) {
verdict = READ_ONCE(stab->bpf_verdict);
parse = READ_ONCE(stab->bpf_parse);
if (!verdict || !parse)
return -ENOENT;
/* bpf prog refcnt may be zero if a concurrent attach operation
* removes the program after the above READ_ONCE() but before
* we increment the refcnt. If this is the case abort with an
* error.
*/
verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
if (IS_ERR(verdict))
return PTR_ERR(verdict);
parse = bpf_prog_inc_not_zero(stab->bpf_parse);
if (IS_ERR(parse)) {
bpf_prog_put(verdict);
return PTR_ERR(parse);
}
}
if (!psock) {
sock = skops->sk;
if (rcu_dereference_sk_user_data(sock))
return -EEXIST;
psock = smap_init_psock(sock, stab);
if (IS_ERR(psock)) {
if (verdict)
bpf_prog_put(verdict);
if (parse)
bpf_prog_put(parse);
return PTR_ERR(psock);
}
psock->key = i;
psock->stab = stab;
refcount_inc(&stab->refcnt);
set_bit(SMAP_TX_RUNNING, &psock->state);
}
if (map_flags & BPF_SOCKMAP_STRPARSER) {
write_lock_bh(&sock->sk_callback_lock);
if (psock->strp_enabled)
goto start_done;
err = smap_init_sock(psock, sock);
if (err)
goto out;
smap_init_progs(psock, stab, verdict, parse);
smap_start_sock(psock, sock);
start_done:
write_unlock_bh(&sock->sk_callback_lock);
} else if (update) {
smap_stop_sock(psock, sock);
}
if (!update) {
old_sock = xchg(&stab->sock_map[i], skops->sk);
if (old_sock)
smap_release_sock(old_sock);
}
return 0;
out:
write_unlock_bh(&sock->sk_callback_lock);
if (!update)
smap_release_sock(sock);
return err;
}
static int sock_map_attach_prog(struct bpf_map *map,
struct bpf_prog *parse,
struct bpf_prog *verdict)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct bpf_prog *_parse, *_verdict;
_parse = xchg(&stab->bpf_parse, parse);
_verdict = xchg(&stab->bpf_verdict, verdict);
if (_parse)
bpf_prog_put(_parse);
if (_verdict)
bpf_prog_put(_verdict);
return 0;
}
static void *sock_map_lookup(struct bpf_map *map, void *key)
{
return NULL;
}
static int sock_map_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags)
{
struct bpf_sock_ops_kern skops;
u32 fd = *(u32 *)value;
struct socket *socket;
int err;
socket = sockfd_lookup(fd, &err);
if (!socket)
return err;
skops.sk = socket->sk;
if (!skops.sk) {
fput(socket->file);
return -EINVAL;
}
err = sock_map_ctx_update_elem(&skops, map, key,
flags, BPF_SOCKMAP_STRPARSER);
fput(socket->file);
return err;
}
const struct bpf_map_ops sock_map_ops = {
.map_alloc = sock_map_alloc,
.map_free = sock_map_free,
.map_lookup_elem = sock_map_lookup,
.map_get_next_key = sock_map_get_next_key,
.map_update_elem = sock_map_update_elem,
.map_delete_elem = sock_map_delete_elem,
.map_attach = sock_map_attach_prog,
};
BPF_CALL_5(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
struct bpf_map *, map, void *, key, u64, flags, u64, map_flags)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return sock_map_ctx_update_elem(bpf_sock, map, key, flags, map_flags);
}
const struct bpf_func_proto bpf_sock_map_update_proto = {
.func = bpf_sock_map_update,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_PTR_TO_MAP_KEY,
.arg4_type = ARG_ANYTHING,
.arg5_type = ARG_ANYTHING,
};