summaryrefslogblamecommitdiff
path: root/kernel/audit_tree.c
blob: 9ef5e0aacc3cd5461d203b2a998f40186f02dd8a (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551






































































































































































































































































































































































































































































































































































                                                                                                 
                                                                       
                                   































                                                                      
                                  


                                                   
                                                            




                                              
                                                  














































                                                                     
                                                          
                           

























































                                                              
                                                             
                           







                                              

                                      
                           





























                                                                          
                                           




                                                        
                                   





















































































































































                                                                                    
#include "audit.h"
#include <linux/inotify.h>
#include <linux/namei.h>
#include <linux/mount.h>

struct audit_tree;
struct audit_chunk;

struct audit_tree {
	atomic_t count;
	int goner;
	struct audit_chunk *root;
	struct list_head chunks;
	struct list_head rules;
	struct list_head list;
	struct list_head same_root;
	struct rcu_head head;
	char pathname[];
};

struct audit_chunk {
	struct list_head hash;
	struct inotify_watch watch;
	struct list_head trees;		/* with root here */
	int dead;
	int count;
	struct rcu_head head;
	struct node {
		struct list_head list;
		struct audit_tree *owner;
		unsigned index;		/* index; upper bit indicates 'will prune' */
	} owners[];
};

static LIST_HEAD(tree_list);
static LIST_HEAD(prune_list);

/*
 * One struct chunk is attached to each inode of interest.
 * We replace struct chunk on tagging/untagging.
 * Rules have pointer to struct audit_tree.
 * Rules have struct list_head rlist forming a list of rules over
 * the same tree.
 * References to struct chunk are collected at audit_inode{,_child}()
 * time and used in AUDIT_TREE rule matching.
 * These references are dropped at the same time we are calling
 * audit_free_names(), etc.
 *
 * Cyclic lists galore:
 * tree.chunks anchors chunk.owners[].list			hash_lock
 * tree.rules anchors rule.rlist				audit_filter_mutex
 * chunk.trees anchors tree.same_root				hash_lock
 * chunk.hash is a hash with middle bits of watch.inode as
 * a hash function.						RCU, hash_lock
 *
 * tree is refcounted; one reference for "some rules on rules_list refer to
 * it", one for each chunk with pointer to it.
 *
 * chunk is refcounted by embedded inotify_watch.
 *
 * node.index allows to get from node.list to containing chunk.
 * MSB of that sucker is stolen to mark taggings that we might have to
 * revert - several operations have very unpleasant cleanup logics and
 * that makes a difference.  Some.
 */

static struct inotify_handle *rtree_ih;

static struct audit_tree *alloc_tree(const char *s)
{
	struct audit_tree *tree;

	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
	if (tree) {
		atomic_set(&tree->count, 1);
		tree->goner = 0;
		INIT_LIST_HEAD(&tree->chunks);
		INIT_LIST_HEAD(&tree->rules);
		INIT_LIST_HEAD(&tree->list);
		INIT_LIST_HEAD(&tree->same_root);
		tree->root = NULL;
		strcpy(tree->pathname, s);
	}
	return tree;
}

static inline void get_tree(struct audit_tree *tree)
{
	atomic_inc(&tree->count);
}

static void __put_tree(struct rcu_head *rcu)
{
	struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
	kfree(tree);
}

static inline void put_tree(struct audit_tree *tree)
{
	if (atomic_dec_and_test(&tree->count))
		call_rcu(&tree->head, __put_tree);
}

/* to avoid bringing the entire thing in audit.h */
const char *audit_tree_path(struct audit_tree *tree)
{
	return tree->pathname;
}

static struct audit_chunk *alloc_chunk(int count)
{
	struct audit_chunk *chunk;
	size_t size;
	int i;

	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
	chunk = kzalloc(size, GFP_KERNEL);
	if (!chunk)
		return NULL;

	INIT_LIST_HEAD(&chunk->hash);
	INIT_LIST_HEAD(&chunk->trees);
	chunk->count = count;
	for (i = 0; i < count; i++) {
		INIT_LIST_HEAD(&chunk->owners[i].list);
		chunk->owners[i].index = i;
	}
	inotify_init_watch(&chunk->watch);
	return chunk;
}

static void __free_chunk(struct rcu_head *rcu)
{
	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
	int i;

	for (i = 0; i < chunk->count; i++) {
		if (chunk->owners[i].owner)
			put_tree(chunk->owners[i].owner);
	}
	kfree(chunk);
}

static inline void free_chunk(struct audit_chunk *chunk)
{
	call_rcu(&chunk->head, __free_chunk);
}

void audit_put_chunk(struct audit_chunk *chunk)
{
	put_inotify_watch(&chunk->watch);
}

enum {HASH_SIZE = 128};
static struct list_head chunk_hash_heads[HASH_SIZE];
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);

static inline struct list_head *chunk_hash(const struct inode *inode)
{
	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
	return chunk_hash_heads + n % HASH_SIZE;
}

/* hash_lock is held by caller */
static void insert_hash(struct audit_chunk *chunk)
{
	struct list_head *list = chunk_hash(chunk->watch.inode);
	list_add_rcu(&chunk->hash, list);
}

/* called under rcu_read_lock */
struct audit_chunk *audit_tree_lookup(const struct inode *inode)
{
	struct list_head *list = chunk_hash(inode);
	struct list_head *pos;

	list_for_each_rcu(pos, list) {
		struct audit_chunk *p = container_of(pos, struct audit_chunk, hash);
		if (p->watch.inode == inode) {
			get_inotify_watch(&p->watch);
			return p;
		}
	}
	return NULL;
}

int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
{
	int n;
	for (n = 0; n < chunk->count; n++)
		if (chunk->owners[n].owner == tree)
			return 1;
	return 0;
}

/* tagging and untagging inodes with trees */

static void untag_chunk(struct audit_chunk *chunk, struct node *p)
{
	struct audit_chunk *new;
	struct audit_tree *owner;
	int size = chunk->count - 1;
	int i, j;

	mutex_lock(&chunk->watch.inode->inotify_mutex);
	if (chunk->dead) {
		mutex_unlock(&chunk->watch.inode->inotify_mutex);
		return;
	}

	owner = p->owner;

	if (!size) {
		chunk->dead = 1;
		spin_lock(&hash_lock);
		list_del_init(&chunk->trees);
		if (owner->root == chunk)
			owner->root = NULL;
		list_del_init(&p->list);
		list_del_rcu(&chunk->hash);
		spin_unlock(&hash_lock);
		inotify_evict_watch(&chunk->watch);
		mutex_unlock(&chunk->watch.inode->inotify_mutex);
		put_inotify_watch(&chunk->watch);
		return;
	}

	new = alloc_chunk(size);
	if (!new)
		goto Fallback;
	if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
		free_chunk(new);
		goto Fallback;
	}

	chunk->dead = 1;
	spin_lock(&hash_lock);
	list_replace_init(&chunk->trees, &new->trees);
	if (owner->root == chunk) {
		list_del_init(&owner->same_root);
		owner->root = NULL;
	}

	for (i = j = 0; i < size; i++, j++) {
		struct audit_tree *s;
		if (&chunk->owners[j] == p) {
			list_del_init(&p->list);
			i--;
			continue;
		}
		s = chunk->owners[j].owner;
		new->owners[i].owner = s;
		new->owners[i].index = chunk->owners[j].index - j + i;
		if (!s) /* result of earlier fallback */
			continue;
		get_tree(s);
		list_replace_init(&chunk->owners[i].list, &new->owners[j].list);
	}

	list_replace_rcu(&chunk->hash, &new->hash);
	list_for_each_entry(owner, &new->trees, same_root)
		owner->root = new;
	spin_unlock(&hash_lock);
	inotify_evict_watch(&chunk->watch);
	mutex_unlock(&chunk->watch.inode->inotify_mutex);
	put_inotify_watch(&chunk->watch);
	return;

Fallback:
	// do the best we can
	spin_lock(&hash_lock);
	if (owner->root == chunk) {
		list_del_init(&owner->same_root);
		owner->root = NULL;
	}
	list_del_init(&p->list);
	p->owner = NULL;
	put_tree(owner);
	spin_unlock(&hash_lock);
	mutex_unlock(&chunk->watch.inode->inotify_mutex);
}

static int create_chunk(struct inode *inode, struct audit_tree *tree)
{
	struct audit_chunk *chunk = alloc_chunk(1);
	if (!chunk)
		return -ENOMEM;

	if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
		free_chunk(chunk);
		return -ENOSPC;
	}

	mutex_lock(&inode->inotify_mutex);
	spin_lock(&hash_lock);
	if (tree->goner) {
		spin_unlock(&hash_lock);
		chunk->dead = 1;
		inotify_evict_watch(&chunk->watch);
		mutex_unlock(&inode->inotify_mutex);
		put_inotify_watch(&chunk->watch);
		return 0;
	}
	chunk->owners[0].index = (1U << 31);
	chunk->owners[0].owner = tree;
	get_tree(tree);
	list_add(&chunk->owners[0].list, &tree->chunks);
	if (!tree->root) {
		tree->root = chunk;
		list_add(&tree->same_root, &chunk->trees);
	}
	insert_hash(chunk);
	spin_unlock(&hash_lock);
	mutex_unlock(&inode->inotify_mutex);
	return 0;
}

/* the first tagged inode becomes root of tree */
static int tag_chunk(struct inode *inode, struct audit_tree *tree)
{
	struct inotify_watch *watch;
	struct audit_tree *owner;
	struct audit_chunk *chunk, *old;
	struct node *p;
	int n;

	if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
		return create_chunk(inode, tree);

	old = container_of(watch, struct audit_chunk, watch);

	/* are we already there? */
	spin_lock(&hash_lock);
	for (n = 0; n < old->count; n++) {
		if (old->owners[n].owner == tree) {
			spin_unlock(&hash_lock);
			put_inotify_watch(watch);
			return 0;
		}
	}
	spin_unlock(&hash_lock);

	chunk = alloc_chunk(old->count + 1);
	if (!chunk)
		return -ENOMEM;

	mutex_lock(&inode->inotify_mutex);
	if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
		mutex_unlock(&inode->inotify_mutex);
		free_chunk(chunk);
		return -ENOSPC;
	}
	spin_lock(&hash_lock);
	if (tree->goner) {
		spin_unlock(&hash_lock);
		chunk->dead = 1;
		inotify_evict_watch(&chunk->watch);
		mutex_unlock(&inode->inotify_mutex);
		put_inotify_watch(&chunk->watch);
		return 0;
	}
	list_replace_init(&old->trees, &chunk->trees);
	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
		struct audit_tree *s = old->owners[n].owner;
		p->owner = s;
		p->index = old->owners[n].index;
		if (!s) /* result of fallback in untag */
			continue;
		get_tree(s);
		list_replace_init(&old->owners[n].list, &p->list);
	}
	p->index = (chunk->count - 1) | (1U<<31);
	p->owner = tree;
	get_tree(tree);
	list_add(&p->list, &tree->chunks);
	list_replace_rcu(&old->hash, &chunk->hash);
	list_for_each_entry(owner, &chunk->trees, same_root)
		owner->root = chunk;
	old->dead = 1;
	if (!tree->root) {
		tree->root = chunk;
		list_add(&tree->same_root, &chunk->trees);
	}
	spin_unlock(&hash_lock);
	inotify_evict_watch(&old->watch);
	mutex_unlock(&inode->inotify_mutex);
	put_inotify_watch(&old->watch);
	return 0;
}

static struct audit_chunk *find_chunk(struct node *p)
{
	int index = p->index & ~(1U<<31);
	p -= index;
	return container_of(p, struct audit_chunk, owners[0]);
}

static void kill_rules(struct audit_tree *tree)
{
	struct audit_krule *rule, *next;
	struct audit_entry *entry;
	struct audit_buffer *ab;

	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
		entry = container_of(rule, struct audit_entry, rule);

		list_del_init(&rule->rlist);
		if (rule->tree) {
			/* not a half-baked one */
			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
			audit_log_format(ab, "op=remove rule dir=");
			audit_log_untrustedstring(ab, rule->tree->pathname);
			if (rule->filterkey) {
				audit_log_format(ab, " key=");
				audit_log_untrustedstring(ab, rule->filterkey);
			} else
				audit_log_format(ab, " key=(null)");
			audit_log_format(ab, " list=%d res=1", rule->listnr);
			audit_log_end(ab);
			rule->tree = NULL;
			list_del_rcu(&entry->list);
			call_rcu(&entry->rcu, audit_free_rule_rcu);
		}
	}
}

/*
 * finish killing struct audit_tree
 */
static void prune_one(struct audit_tree *victim)
{
	spin_lock(&hash_lock);
	while (!list_empty(&victim->chunks)) {
		struct node *p;
		struct audit_chunk *chunk;

		p = list_entry(victim->chunks.next, struct node, list);
		chunk = find_chunk(p);
		get_inotify_watch(&chunk->watch);
		spin_unlock(&hash_lock);

		untag_chunk(chunk, p);

		put_inotify_watch(&chunk->watch);
		spin_lock(&hash_lock);
	}
	spin_unlock(&hash_lock);
	put_tree(victim);
}

/* trim the uncommitted chunks from tree */

static void trim_marked(struct audit_tree *tree)
{
	struct list_head *p, *q;
	spin_lock(&hash_lock);
	if (tree->goner) {
		spin_unlock(&hash_lock);
		return;
	}
	/* reorder */
	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
		struct node *node = list_entry(p, struct node, list);
		q = p->next;
		if (node->index & (1U<<31)) {
			list_del_init(p);
			list_add(p, &tree->chunks);
		}
	}

	while (!list_empty(&tree->chunks)) {
		struct node *node;
		struct audit_chunk *chunk;

		node = list_entry(tree->chunks.next, struct node, list);

		/* have we run out of marked? */
		if (!(node->index & (1U<<31)))
			break;

		chunk = find_chunk(node);
		get_inotify_watch(&chunk->watch);
		spin_unlock(&hash_lock);

		untag_chunk(chunk, node);

		put_inotify_watch(&chunk->watch);
		spin_lock(&hash_lock);
	}
	if (!tree->root && !tree->goner) {
		tree->goner = 1;
		spin_unlock(&hash_lock);
		mutex_lock(&audit_filter_mutex);
		kill_rules(tree);
		list_del_init(&tree->list);
		mutex_unlock(&audit_filter_mutex);
		prune_one(tree);
	} else {
		spin_unlock(&hash_lock);
	}
}

/* called with audit_filter_mutex */
int audit_remove_tree_rule(struct audit_krule *rule)
{
	struct audit_tree *tree;
	tree = rule->tree;
	if (tree) {
		spin_lock(&hash_lock);
		list_del_init(&rule->rlist);
		if (list_empty(&tree->rules) && !tree->goner) {
			tree->root = NULL;
			list_del_init(&tree->same_root);
			tree->goner = 1;
			list_move(&tree->list, &prune_list);
			rule->tree = NULL;
			spin_unlock(&hash_lock);
			audit_schedule_prune();
			return 1;
		}
		rule->tree = NULL;
		spin_unlock(&hash_lock);
		return 1;
	}
	return 0;
}

void audit_trim_trees(void)
{
	struct list_head cursor;

	mutex_lock(&audit_filter_mutex);
	list_add(&cursor, &tree_list);
	while (cursor.next != &tree_list) {
		struct audit_tree *tree;
		struct nameidata nd;
		struct vfsmount *root_mnt;
		struct node *node;
		struct list_head list;
		int err;

		tree = container_of(cursor.next, struct audit_tree, list);
		get_tree(tree);
		list_del(&cursor);
		list_add(&cursor, &tree->list);
		mutex_unlock(&audit_filter_mutex);

		err = path_lookup(tree->pathname, 0, &nd);
		if (err)
			goto skip_it;

		root_mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
		path_put(&nd.path);
		if (!root_mnt)
			goto skip_it;

		list_add_tail(&list, &root_mnt->mnt_list);
		spin_lock(&hash_lock);
		list_for_each_entry(node, &tree->chunks, list) {
			struct audit_chunk *chunk = find_chunk(node);
			struct inode *inode = chunk->watch.inode;
			struct vfsmount *mnt;
			node->index |= 1U<<31;
			list_for_each_entry(mnt, &list, mnt_list) {
				if (mnt->mnt_root->d_inode == inode) {
					node->index &= ~(1U<<31);
					break;
				}
			}
		}
		spin_unlock(&hash_lock);
		trim_marked(tree);
		put_tree(tree);
		list_del_init(&list);
		drop_collected_mounts(root_mnt);
skip_it:
		mutex_lock(&audit_filter_mutex);
	}
	list_del(&cursor);
	mutex_unlock(&audit_filter_mutex);
}

static int is_under(struct vfsmount *mnt, struct dentry *dentry,
		    struct nameidata *nd)
{
	if (mnt != nd->path.mnt) {
		for (;;) {
			if (mnt->mnt_parent == mnt)
				return 0;
			if (mnt->mnt_parent == nd->path.mnt)
					break;
			mnt = mnt->mnt_parent;
		}
		dentry = mnt->mnt_mountpoint;
	}
	return is_subdir(dentry, nd->path.dentry);
}

int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
{

	if (pathname[0] != '/' ||
	    rule->listnr != AUDIT_FILTER_EXIT ||
	    op & ~AUDIT_EQUAL ||
	    rule->inode_f || rule->watch || rule->tree)
		return -EINVAL;
	rule->tree = alloc_tree(pathname);
	if (!rule->tree)
		return -ENOMEM;
	return 0;
}

void audit_put_tree(struct audit_tree *tree)
{
	put_tree(tree);
}

/* called with audit_filter_mutex */
int audit_add_tree_rule(struct audit_krule *rule)
{
	struct audit_tree *seed = rule->tree, *tree;
	struct nameidata nd;
	struct vfsmount *mnt, *p;
	struct list_head list;
	int err;

	list_for_each_entry(tree, &tree_list, list) {
		if (!strcmp(seed->pathname, tree->pathname)) {
			put_tree(seed);
			rule->tree = tree;
			list_add(&rule->rlist, &tree->rules);
			return 0;
		}
	}
	tree = seed;
	list_add(&tree->list, &tree_list);
	list_add(&rule->rlist, &tree->rules);
	/* do not set rule->tree yet */
	mutex_unlock(&audit_filter_mutex);

	err = path_lookup(tree->pathname, 0, &nd);
	if (err)
		goto Err;
	mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
	path_put(&nd.path);
	if (!mnt) {
		err = -ENOMEM;
		goto Err;
	}
	list_add_tail(&list, &mnt->mnt_list);

	get_tree(tree);
	list_for_each_entry(p, &list, mnt_list) {
		err = tag_chunk(p->mnt_root->d_inode, tree);
		if (err)
			break;
	}

	list_del(&list);
	drop_collected_mounts(mnt);

	if (!err) {
		struct node *node;
		spin_lock(&hash_lock);
		list_for_each_entry(node, &tree->chunks, list)
			node->index &= ~(1U<<31);
		spin_unlock(&hash_lock);
	} else {
		trim_marked(tree);
		goto Err;
	}

	mutex_lock(&audit_filter_mutex);
	if (list_empty(&rule->rlist)) {
		put_tree(tree);
		return -ENOENT;
	}
	rule->tree = tree;
	put_tree(tree);

	return 0;
Err:
	mutex_lock(&audit_filter_mutex);
	list_del_init(&tree->list);
	list_del_init(&tree->rules);
	put_tree(tree);
	return err;
}

int audit_tag_tree(char *old, char *new)
{
	struct list_head cursor, barrier;
	int failed = 0;
	struct nameidata nd;
	struct vfsmount *tagged;
	struct list_head list;
	struct vfsmount *mnt;
	struct dentry *dentry;
	int err;

	err = path_lookup(new, 0, &nd);
	if (err)
		return err;
	tagged = collect_mounts(nd.path.mnt, nd.path.dentry);
	path_put(&nd.path);
	if (!tagged)
		return -ENOMEM;

	err = path_lookup(old, 0, &nd);
	if (err) {
		drop_collected_mounts(tagged);
		return err;
	}
	mnt = mntget(nd.path.mnt);
	dentry = dget(nd.path.dentry);
	path_put(&nd.path);

	if (dentry == tagged->mnt_root && dentry == mnt->mnt_root)
		follow_up(&mnt, &dentry);

	list_add_tail(&list, &tagged->mnt_list);

	mutex_lock(&audit_filter_mutex);
	list_add(&barrier, &tree_list);
	list_add(&cursor, &barrier);

	while (cursor.next != &tree_list) {
		struct audit_tree *tree;
		struct vfsmount *p;

		tree = container_of(cursor.next, struct audit_tree, list);
		get_tree(tree);
		list_del(&cursor);
		list_add(&cursor, &tree->list);
		mutex_unlock(&audit_filter_mutex);

		err = path_lookup(tree->pathname, 0, &nd);
		if (err) {
			put_tree(tree);
			mutex_lock(&audit_filter_mutex);
			continue;
		}

		spin_lock(&vfsmount_lock);
		if (!is_under(mnt, dentry, &nd)) {
			spin_unlock(&vfsmount_lock);
			path_put(&nd.path);
			put_tree(tree);
			mutex_lock(&audit_filter_mutex);
			continue;
		}
		spin_unlock(&vfsmount_lock);
		path_put(&nd.path);

		list_for_each_entry(p, &list, mnt_list) {
			failed = tag_chunk(p->mnt_root->d_inode, tree);
			if (failed)
				break;
		}

		if (failed) {
			put_tree(tree);
			mutex_lock(&audit_filter_mutex);
			break;
		}

		mutex_lock(&audit_filter_mutex);
		spin_lock(&hash_lock);
		if (!tree->goner) {
			list_del(&tree->list);
			list_add(&tree->list, &tree_list);
		}
		spin_unlock(&hash_lock);
		put_tree(tree);
	}

	while (barrier.prev != &tree_list) {
		struct audit_tree *tree;

		tree = container_of(barrier.prev, struct audit_tree, list);
		get_tree(tree);
		list_del(&tree->list);
		list_add(&tree->list, &barrier);
		mutex_unlock(&audit_filter_mutex);

		if (!failed) {
			struct node *node;
			spin_lock(&hash_lock);
			list_for_each_entry(node, &tree->chunks, list)
				node->index &= ~(1U<<31);
			spin_unlock(&hash_lock);
		} else {
			trim_marked(tree);
		}

		put_tree(tree);
		mutex_lock(&audit_filter_mutex);
	}
	list_del(&barrier);
	list_del(&cursor);
	list_del(&list);
	mutex_unlock(&audit_filter_mutex);
	dput(dentry);
	mntput(mnt);
	drop_collected_mounts(tagged);
	return failed;
}

/*
 * That gets run when evict_chunk() ends up needing to kill audit_tree.
 * Runs from a separate thread, with audit_cmd_mutex held.
 */
void audit_prune_trees(void)
{
	mutex_lock(&audit_filter_mutex);

	while (!list_empty(&prune_list)) {
		struct audit_tree *victim;

		victim = list_entry(prune_list.next, struct audit_tree, list);
		list_del_init(&victim->list);

		mutex_unlock(&audit_filter_mutex);

		prune_one(victim);

		mutex_lock(&audit_filter_mutex);
	}

	mutex_unlock(&audit_filter_mutex);
}

/*
 *  Here comes the stuff asynchronous to auditctl operations
 */

/* inode->inotify_mutex is locked */
static void evict_chunk(struct audit_chunk *chunk)
{
	struct audit_tree *owner;
	int n;

	if (chunk->dead)
		return;

	chunk->dead = 1;
	mutex_lock(&audit_filter_mutex);
	spin_lock(&hash_lock);
	while (!list_empty(&chunk->trees)) {
		owner = list_entry(chunk->trees.next,
				   struct audit_tree, same_root);
		owner->goner = 1;
		owner->root = NULL;
		list_del_init(&owner->same_root);
		spin_unlock(&hash_lock);
		kill_rules(owner);
		list_move(&owner->list, &prune_list);
		audit_schedule_prune();
		spin_lock(&hash_lock);
	}
	list_del_rcu(&chunk->hash);
	for (n = 0; n < chunk->count; n++)
		list_del_init(&chunk->owners[n].list);
	spin_unlock(&hash_lock);
	mutex_unlock(&audit_filter_mutex);
}

static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
                         u32 cookie, const char *dname, struct inode *inode)
{
	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);

	if (mask & IN_IGNORED) {
		evict_chunk(chunk);
		put_inotify_watch(watch);
	}
}

static void destroy_watch(struct inotify_watch *watch)
{
	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
	free_chunk(chunk);
}

static const struct inotify_operations rtree_inotify_ops = {
	.handle_event	= handle_event,
	.destroy_watch	= destroy_watch,
};

static int __init audit_tree_init(void)
{
	int i;

	rtree_ih = inotify_init(&rtree_inotify_ops);
	if (IS_ERR(rtree_ih))
		audit_panic("cannot initialize inotify handle for rectree watches");

	for (i = 0; i < HASH_SIZE; i++)
		INIT_LIST_HEAD(&chunk_hash_heads[i]);

	return 0;
}
__initcall(audit_tree_init);