/*
* Linux Security plug
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
* Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
* Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Due to this file being licensed under the GPL there is controversy over
* whether this permits you to write a module that #includes this file
* without placing your module under the GPL. Please consult a lawyer for
* advice before doing this.
*
*/
#ifndef __LINUX_SECURITY_H
#define __LINUX_SECURITY_H
#include <linux/key.h>
#include <linux/capability.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
struct linux_binprm;
struct cred;
struct rlimit;
struct siginfo;
struct sem_array;
struct sembuf;
struct kern_ipc_perm;
struct audit_context;
struct super_block;
struct inode;
struct dentry;
struct file;
struct vfsmount;
struct path;
struct qstr;
struct nameidata;
struct iattr;
struct fown_struct;
struct file_operations;
struct shmid_kernel;
struct msg_msg;
struct msg_queue;
struct xattr;
struct xfrm_sec_ctx;
struct mm_struct;
/* Maximum number of letters for an LSM name string */
#define SECURITY_NAME_MAX 10
/* If capable should audit the security request */
#define SECURITY_CAP_NOAUDIT 0
#define SECURITY_CAP_AUDIT 1
struct ctl_table;
struct audit_krule;
struct user_namespace;
struct timezone;
/*
* These functions are in security/capability.c and are used
* as the default capabilities functions
*/
extern int cap_capable(const struct cred *cred, struct user_namespace *ns,
int cap, int audit);
extern int cap_settime(const struct timespec *ts, const struct timezone *tz);
extern int cap_ptrace_access_check(struct task_struct *child, unsigned int mode);
extern int cap_ptrace_traceme(struct task_struct *parent);
extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern int cap_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted);
extern int cap_bprm_set_creds(struct linux_binprm *bprm);
extern int cap_bprm_secureexec(struct linux_binprm *bprm);
extern int cap_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
extern int cap_inode_removexattr(struct dentry *dentry, const char *name);
extern int cap_inode_need_killpriv(struct dentry *dentry);
extern int cap_inode_killpriv(struct dentry *dentry);
extern int cap_mmap_addr(unsigned long addr);
extern int cap_mmap_file(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags);
extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags);
extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5);
extern int cap_task_setscheduler(struct task_struct *p);
extern int cap_task_setioprio(struct task_struct *p, int ioprio);
extern int cap_task_setnice(struct task_struct *p, int nice);
extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);
struct msghdr;
struct sk_buff;
struct sock;
struct sockaddr;
struct socket;
struct flowi;
struct dst_entry;
struct xfrm_selector;
struct xfrm_policy;
struct xfrm_state;
struct xfrm_user_sec_ctx;
struct seq_file;
extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
void reset_security_ops(void);
#ifdef CONFIG_MMU
extern unsigned long mmap_min_addr;
extern unsigned long dac_mmap_min_addr;
#else
#define mmap_min_addr 0UL
#define dac_mmap_min_addr 0UL
#endif
/*
* Values used in the task_security_ops calls
*/
/* setuid or setgid, id0 == uid or gid */
#define LSM_SETID_ID 1
/* setreuid or setregid, id0 == real, id1 == eff */
#define LSM_SETID_RE 2
/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
#define LSM_SETID_RES 4
/* setfsuid or setfsgid, id0 == fsuid or fsgid */
#define LSM_SETID_FS 8
/* forward declares to avoid warnings */
struct sched_param;
struct request_sock;
/* bprm->unsafe reasons */
#define LSM_UNSAFE_SHARE 1
#define LSM_UNSAFE_PTRACE 2
#define LSM_UNSAFE_PTRACE_CAP 4
#define LSM_UNSAFE_NO_NEW_PRIVS 8
#ifdef CONFIG_MMU
extern int mmap_min_addr_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos);
#endif
/* security_inode_init_security callback function to write xattrs */
typedef int (*initxattrs) (struct inode *inode,
const struct xattr *xattr_array, void *fs_data);
#ifdef CONFIG_SECURITY
struct security_mnt_opts {
char **mnt_opts;
int *mnt_opts_flags;
int num_mnt_opts;
};
static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
{
opts->mnt_opts = NULL;
opts->mnt_opts_flags = NULL;
opts->num_mnt_opts = 0;
}
static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
{
int i;
if (opts->mnt_opts)
for (i = 0; i < opts->num_mnt_opts; i++)
kfree(opts->mnt_opts[i]);
kfree(opts->mnt_opts);
opts->mnt_opts = NULL;
kfree(opts->mnt_opts_flags);
opts->mnt_opts_flags = NULL;
opts->num_mnt_opts = 0;
}
/**
* struct security_operations - main security structure
*
* Security module identifier.
*
* @name:
* A string that acts as a unique identifier for the LSM with max number
* of characters = SECURITY_NAME_MAX.
*
* Security hooks for program execution operations.
*
* @bprm_set_creds:
* Save security information in the bprm->security field, typically based
* on information about the bprm->file, for later use by the apply_creds
* hook. This hook may also optionally check permissions (e.g. for
* transitions between security domains).
* This hook may be called multiple times during a single execve, e.g. for
* interpreters. The hook can tell whether it has already been called by
* checking to see if @bprm->security is non-NULL. If so, then the hook
* may decide either to retain the security information saved earlier or
* to replace it.
* @bprm contains the linux_binprm structure.
* Return 0 if the hook is successful and permission is granted.
* @bprm_check_security:
* This hook mediates the point when a search for a binary handler will
* begin. It allows a check the @bprm->security value which is set in the
* preceding set_creds call. The primary difference from set_creds is
* that the argv list and envp list are reliably available in @bprm. This
* hook may be called multiple times during a single execve; and in each
* pass set_creds is called first.
* @bprm contains the linux_binprm structure.
* Return 0 if the hook is successful and permission is granted.
* @bprm_committing_creds:
* Prepare to install the new security attributes of a process being
* transformed by an execve operation, based on the old credentials
* pointed to by @current->cred and the information set in @bprm->cred by
* the bprm_set_creds hook. @bprm points to the linux_binprm structure.
* This hook is a good place to perform state changes on the process such
* as closing open file descriptors to which access will no longer be
* granted when the attributes are changed. This is called immediately
* before commit_creds().
* @bprm_committed_creds:
* Tidy up after the installation of the new security attributes of a
* process being transformed by an execve operation. The new credentials
* have, by this point, been set to @current->cred. @bprm points to the
* linux_binprm structure. This hook is a good place to perform state
* changes on the process such as clearing out non-inheritable signal
* state. This is called immediately after commit_creds().
* @bprm_secureexec:
* Return a boolean value (0 or 1) indicating whether a "secure exec"
* is required. The flag is passed in the auxiliary table
* on the initial stack to the ELF interpreter to indicate whether libc
* should enable secure mode.
* @bprm contains the linux_binprm structure.
*
* Security hooks for filesystem operations.
*
* @sb_alloc_security:
* Allocate and attach a security structure to the sb->s_security field.
* The s_security field is initialized to NULL when the structure is
* allocated.
* @sb contains the super_block structure to be modified.
* Return 0 if operation was successful.
* @sb_free_security:
* Deallocate and clear the sb->s_security field.
* @sb contains the super_block structure to be modified.
* @sb_statfs:
* Check permission before obtaining filesystem statistics for the @mnt
* mountpoint.
* @dentry is a handle on the superblock for the filesystem.
* Return 0 if permission is granted.
* @sb_mount:
* Check permission before an object specified by @dev_name is mounted on
* the mount point named by @nd. For an ordinary mount, @dev_name
* identifies a device if the file system type requires a device. For a
* remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
* loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
* pathname of the object being mounted.
* @dev_name contains the name for object being mounted.
* @path contains the path for mount point object.
* @type contains the filesystem type.
* @flags contains the mount flags.
* @data contains the filesystem-specific data.
* Return 0 if permission is granted.
* @sb_copy_data:
* Allow mount option data to be copied prior to parsing by the filesystem,
* so that the security module can extract security-specific mount
* options cleanly (a filesystem may modify the data e.g. with strsep()).
* This also allows the original mount data to be stripped of security-
* specific options to avoid having to make filesystems aware of them.
* @type the type of filesystem being mounted.
* @orig the original mount data copied from userspace.
* @copy copied data which will be passed to the security module.
* Returns 0 if the copy was successful.
* @sb_remount:
* Extracts security system specific mount options and verifies no changes
* are being made to those options.
* @sb superblock being remounted
* @data contains the filesystem-specific data.
* Return 0 if permission is granted.
* @sb_umount:
* Check permission before the @mnt file system is unmounted.
* @mnt contains the mounted file system.
* @flags contains the unmount flags, e.g. MNT_FORCE.
* Return 0 if permission is granted.
* @sb_pivotroot:
* Check permission before pivoting the root filesystem.
* @old_path contains the path for the new location of the current root (put_old).
* @new_path contains the path for the new root (new_root).
* Return 0 if permission is granted.
* @sb_set_mnt_opts:
* Set the security relevant mount options used for a superblock
* @sb the superblock to set security mount options for
* @opts binary data structure containing all lsm mount data
* @sb_clone_mnt_opts:
* Copy all security options from a given superblock to another
* @oldsb old superblock which contain information to clone
* @newsb new superblock which needs filled in
* @sb_parse_opts_str:
* Parse a string of security data filling in the opts structure
* @options string containing all mount options known by the LSM
* @opts binary data structure usable by the LSM
* @dentry_init_security:
* Compute a context for a dentry as the inode is not yet available
* since NFSv4 has no label backed by an EA anyway.
* @dentry dentry to use in calculating the context.
* @mode mode used to determine resource type.
* @name name of the last path component used to create file
* @ctx pointer to place the pointer to the resulting context in.
* @ctxlen point to place the length of the resulting context.
*
*
* Security hooks for inode operations.
*
* @inode_alloc_security:
* Allocate and attach a security structure to @inode->i_security. The
* i_security field is initialized to NULL when the inode structure is
* allocated.
* @inode contains the inode structure.
* Return 0 if operation was successful.
* @inode_free_security:
* @inode contains the inode structure.
* Deallocate the inode security structure and set @inode->i_security to
* NULL.
* @inode_init_security:
* Obtain the security attribute name suffix and value to set on a newly
* created inode and set up the incore security field for the new inode.
* This hook is called by the fs code as part of the inode creation
* transaction and provides for atomic labeling of the inode, unlike
* the post_create/mkdir/... hooks called by the VFS. The hook function
* is expected to allocate the name and value via kmalloc, with the caller
* being responsible for calling kfree after using them.
* If the security module does not use security attributes or does
* not wish to put a security attribute on this particular inode,
* then it should return -EOPNOTSUPP to skip this processing.
* @inode contains the inode structure of the newly created inode.
* @dir contains the inode structure of the parent directory.
* @qstr contains the last path component of the new object
* @name will be set to the allocated name suffix (e.g. selinux).
* @value will be set to the allocated attribute value.
* @len will be set to the length of the value.
* Returns 0 if @name and @value have been successfully set,
* -EOPNOTSUPP if no security attribute is needed, or
* -ENOMEM on memory allocation failure.
* @inode_create:
* Check permission to create a regular file.
* @dir contains inode structure of the parent of the new file.
* @dentry contains the dentry structure for the file to be created.
* @mode contains the file mode of the file to be created.
* Return 0 if permission is granted.
* @inode_link:
* Check permission before creating a new hard link to a file.
* @old_dentry contains the dentry structure for an existing link to the file.
* @dir contains the inode structure of the parent directory of the new link.
* @new_dentry contains the dentry structure for the new link.
* Return 0 if permission is granted.
* @path_link:
* Check permission before creating a new hard link to a file.
* @old_dentry contains the dentry structure for an existing link
* to the file.
* @new_dir contains the path structure of the parent directory of
* the new link.
* @new_dentry contains the dentry structure for the new link.
* Return 0 if permission is granted.
* @inode_unlink:
* Check the permission to remove a hard link to a file.
* @dir contains the inode structure of parent directory of the file.
* @dentry contains the dentry structure for file to be unlinked.
* Return 0 if permission is granted.
* @path_unlink:
* Check the permission to remove a hard link to a file.
* @dir contains the path structure of parent directory of the file.
* @dentry contains the dentry structure for file to be unlinked.
* Return 0 if permission is granted.
* @inode_symlink:
* Check the permission to create a symbolic link to a file.
* @dir contains the inode structure of parent directory of the symbolic link.
* @dentry contains the dentry structure of the symbolic link.
* @old_name contains the pathname of file.
* Return 0 if permission is granted.
* @path_symlink:
* Check the permission to create a symbolic link to a file.
* @dir contains the path structure of parent directory of
* the symbolic link.
* @dentry contains the dentry structure of the symbolic link.
* @old_name contains the pathname of file.
* Return 0 if permission is granted.
* @inode_mkdir:
* Check permissions to create a new directory in the existing directory
* associated with inode structure @dir.
* @dir contains the inode structure of parent of the directory to be created.
* @dentry contains the dentry structure of new directory.
* @mode contains the mode of new directory.
* Return 0 if permission is granted.
* @path_mkdir:
* Check permissions to create a new directory in the existing directory
* associated with path structure @path.
* @dir contains the path structure of parent of the directory
* to be created.
* @dentry contains the dentry structure of new directory.
* @mode contains the mode of new directory.
* Return 0 if permission is granted.
* @inode_rmdir:
* Check the permission to remove a directory.
* @dir contains the inode structure of parent of the directory to be removed.
* @dentry contains the dentry structure of directory to be removed.
* Return 0 if permission is granted.
* @path_rmdir:
* Check the permission to remove a directory.
* @dir contains the path structure of parent of the directory to be
* removed.
* @dentry contains the dentry structure of directory to be removed.
* Return 0 if permission is granted.
* @inode_mknod:
* Check permissions when creating a special file (or a socket or a fifo
* file created via the mknod system call). Note that if mknod operation
* is being done for a regular file, then the create hook will be called
* and not this hook.
* @dir contains the inode structure of parent of the new file.
* @dentry contains the dentry structure of the new file.
* @mode contains the mode of the new file.
* @dev contains the device number.
* Return 0 if permission is granted.
* @path_mknod:
* Check permissions when creating a file. Note that this hook is called
* even if mknod operation is being done for a regular file.
* @dir contains the path structure of parent of the new file.
* @dentry contains the dentry structure of the new file.
* @mode contains the mode of the new file.
* @dev contains the undecoded device number. Use new_decode_dev() to get
* the decoded device number.
* Return 0 if permission is granted.
* @inode_rename:
* Check for permission to rename a file or directory.
* @old_dir contains the inode structure for parent of the old link.
* @old_dentry contains the dentry structure of the old link.
* @new_dir contains the inode structure for parent of the new link.
* @new_dentry contains the dentry structure of the new link.
* Return 0 if permission is granted.
* @path_rename:
* Check for permission to rename a file or directory.
* @old_dir contains the path structure for parent of the old link.
* @old_dentry contains the dentry structure of the old link.
* @new_dir contains the path structure for parent of the new link.
* @new_dentry contains the dentry structure of the new link.
* Return 0 if permission is granted.
* @path_chmod:
* Check for permission to change DAC's permission of a file or directory.
* @dentry contains the dentry structure.
* @mnt contains the vfsmnt structure.
* @mode contains DAC's mode.
* Return 0 if permission is granted.
* @path_chown:
* Check for permission to change owner/group of a file or directory.
* @path contains the path structure.
* @uid contains new owner's ID.
* @gid contains new group's ID.
* Return 0 if permission is granted.
* @path_chroot:
* Check for permission to change root directory.
* @path contains the path structure.
* Return 0 if permission is granted.
* @inode_readlink:
* Check the permission to read the symbolic link.
* @dentry contains the dentry structure for the file link.
* Return 0 if permission is granted.
* @inode_follow_link:
* Check permission to follow a symbolic link when looking up a pathname.
* @dentry contains the dentry structure for the link.
* @nd contains the nameidata structure for the parent directory.
* Return 0 if permission is granted.
* @inode_permission:
* Check permission before accessing an inode. This hook is called by the
* existing Linux permission function, so a security module can use it to
* provide additional checking for existing Linux permission checks.
* Notice that this hook is called when a file is opened (as well as many
* other operations), whereas the file_security_ops permission hook is
* called when the actual read/write operations are performed.
* @inode contains the inode structure to check.
* @mask contains the permission mask.
* Return 0 if permission is granted.
* @inode_setattr:
* Check permission before setting file attributes. Note that the kernel
* call to notify_change is performed from several locations, whenever
* file attributes change (such as when a file is truncated, chown/chmod
* operations, transferring disk quotas, etc).
* @dentry contains the dentry structure for the file.
* @attr is the iattr structure containing the new file attributes.
* Return 0 if permission is granted.
* @path_truncate:
* Check permission before truncating a file.
* @path contains the path structure for the file.
* Return 0 if permission is granted.
* @inode_getattr:
* Check permission before obtaining file attributes.
* @mnt is the vfsmount where the dentry was looked up
* @dentry contains the dentry structure for the file.
* Return 0 if permission is granted.
* @inode_setxattr:
* Check permission before setting the extended attributes
* @value identified by @name for @dentry.
* Return 0 if permission is granted.
* @inode_post_setxattr:
* Update inode security field after successful setxattr operation.
* @value identified by @name for @dentry.
* @inode_getxattr:
* Check permission before obtaining the extended attributes
* identified by @name for @dentry.
* Return 0 if permission is granted.
* @inode_listxattr:
* Check permission before obtaining the list of extended attribute
* names for @dentry.
* Return 0 if permission is granted.
* @inode_removexattr:
* Check permission before removing the extended attribute
* identified by @name for @dentry.
* Return 0 if permission is granted.
* @inode_getsecurity:
* Retrieve a copy of the extended attribute representation of the
* security label associated with @name for @inode via @buffer. Note that
* @name is the remainder of the attribute name after the security prefix
* has been removed. @alloc is used to specify of the call should return a
* value via the buffer or just the value length Return size of buffer on
* success.
* @inode_setsecurity:
* Set the security label associated with @name for @inode from the
* extended attribute value @value. @size indicates the size of the
* @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
* Note that @name is the remainder of the attribute name after the
* security. prefix has been removed.
* Return 0 on success.
* @inode_listsecurity:
* Copy the extended attribute names for the security labels
* associated with @inode into @buffer. The maximum size of @buffer
* is specified by @buffer_size. @buffer may be NULL to request
* the size of the buffer required.
* Returns number of bytes used/required on success.
* @inode_need_killpriv:
* Called when an inode has been changed.
* @dentry is the dentry being changed.
* Return <0 on error to abort the inode change operation.
* Return 0 if inode_killpriv does not need to be called.
* Return >0 if inode_killpriv does need to be called.
* @inode_killpriv:
* The setuid bit is being removed. Remove similar security labels.
* Called with the dentry->d_inode->i_mutex held.
* @dentry is the dentry being changed.
* Return 0 on success. If error is returned, then the operation
* causing setuid bit removal is failed.
* @inode_getsecid:
* Get the secid associated with the node.
* @inode contains a pointer to the inode.
* @secid contains a pointer to the location where result will be saved.
* In case of failure, @secid will be set to zero.
*
* Security hooks for file operations
*
* @file_permission:
* Check file permissions before accessing an open file. This hook is
* called by various operations that read or write files. A security
* module can use this hook to perform additional checking on these
* operations, e.g. to revalidate permissions on use to support privilege
* bracketing or policy changes. Notice that this hook is used when the
* actual read/write operations are performed, whereas the
* inode_security_ops hook is called when a file is opened (as well as
* many other operations).
* Caveat: Although this hook can be used to revalidate permissions for
* various system call operations that read or write files, it does not
* address the revalidation of permissions for memory-mapped files.
* Security modules must handle this separately if they need such
* revalidation.
* @file contains the file structure being accessed.
* @mask contains the requested permissions.
* Return 0 if permission is granted.
* @file_alloc_security:
* Allocate and attach a security structure to the file->f_security field.
* The security field is initialized to NULL when the structure is first
* created.
* @file contains the file structure to secure.
* Return 0 if the hook is successful and permission is granted.
* @file_free_security:
* Deallocate and free any security structures stored in file->f_security.
* @file contains the file structure being modified.
* @file_ioctl:
* @file contains the file structure.
* @cmd contains the operation to perform.
* @arg contains the operational arguments.
* Check permission for an ioctl operation on @file. Note that @arg
* sometimes represents a user space pointer; in other cases, it may be a
* simple integer value. When @arg represents a user space pointer, it
* should never be used by the security module.
* Return 0 if permission is granted.
* @mmap_addr :
* Check permissions for a mmap operation at @addr.
* @addr contains virtual address that will be used for the operation.
* Return 0 if permission is granted.
* @mmap_file :
* Check permissions for a mmap operation. The @file may be NULL, e.g.
* if mapping anonymous memory.
* @file contains the file structure for file to map (may be NULL).
* @reqprot contains the protection requested by the application.
* @prot contains the protection that will be applied by the kernel.
* @flags contains the operational flags.
* Return 0 if permission is granted.
* @file_mprotect:
* Check permissions before changing memory access permissions.
* @vma contains the memory region to modify.
* @reqprot contains the protection requested by the application.
* @prot contains the protection that will be applied by the kernel.
* Return 0 if permission is granted.
* @file_lock:
* Check permission before performing file locking operations.
* Note: this hook mediates both flock and fcntl style locks.
* @file contains the file structure.
* @cmd contains the posix-translated lock operation to perform
* (e.g. F_RDLCK, F_WRLCK).
* Return 0 if permission is granted.
* @file_fcntl:
* Check permission before allowing the file operation specified by @cmd
* from being performed on the file @file. Note that @arg sometimes
* represents a user space pointer; in other cases, it may be a simple
* integer value. When @arg represents a user space pointer, it should
* never be used by the security module.
* @file contains the file structure.
* @cmd contains the operation to be performed.
* @arg contains the operational arguments.
* Return 0 if permission is granted.
* @file_set_fowner:
* Save owner security information (typically from current->security) in
* file->f_security for later use by the send_sigiotask hook.
* @file contains the file structure to update.
* Return 0 on success.
* @file_send_sigiotask:
* Check permission for the file owner @fown to send SIGIO or SIGURG to the
* process @tsk. Note that this hook is sometimes called from interrupt.
* Note that the fown_struct, @fown, is never outside the context of a
* struct file, so the file structure (and associated security information)
* can always be obtained:
* container_of(fown, struct file, f_owner)
* @tsk contains the structure of task receiving signal.
* @fown contains the file owner information.
* @sig is the signal that will be sent. When 0, kernel sends SIGIO.
* Return 0 if permission is granted.
* @file_receive:
* This hook allows security modules to control the ability of a process
* to receive an open file descriptor via socket IPC.
* @file contains the file structure being received.
* Return 0 if permission is granted.
* @file_open
* Save open-time permission checking state for later use upon
* file_permission, and recheck access if anything has changed
* since inode_permission.
*
* Security hooks for task operations.
*
* @task_create:
* Check permission before creating a child process. See the clone(2)
* manual page for definitions of the @clone_flags.
* @clone_flags contains the flags indicating what should be shared.
* Return 0 if permission is granted.
* @task_free:
* @task task being freed
* Handle release of task-related resources. (Note that this can be called
* from interrupt context.)
* @cred_alloc_blank:
* @cred points to the credentials.
* @gfp indicates the atomicity of any memory allocations.
* Only allocate sufficient memory and attach to @cred such that
* cred_transfer() will not get ENOMEM.
* @cred_free:
* @cred points to the credentials.
* Deallocate and clear the cred->security field in a set of credentials.
* @cred_prepare:
* @new points to the new credentials.
* @old points to the original credentials.
* @gfp indicates the atomicity of any memory allocations.
* Prepare a new set of credentials by copying the data from the old set.
* @cred_transfer:
* @new points to the new credentials.
* @old points to the original credentials.
* Transfer data from original creds to new creds
* @kernel_act_as:
* Set the credentials for a kernel service to act as (subjective context).
* @new points to the credentials to be modified.
* @secid specifies the security ID to be set
* The current task must be the one that nominated @secid.
* Return 0 if successful.
* @kernel_create_files_as:
* Set the file creation context in a set of credentials to be the same as
* the objective context of the specified inode.
* @new points to the credentials to be modified.
* @inode points to the inode to use as a reference.
* The current task must be the one that nominated @inode.
* Return 0 if successful.
* @kernel_module_request:
* Ability to trigger the kernel to automatically upcall to userspace for
* userspace to load a kernel module with the given name.
* @kmod_name name of the module requested by the kernel
* Return 0 if successful.
* @kernel_module_from_file:
* Load a kernel module from userspace.
* @file contains the file structure pointing to the file containing
* the kernel module to load. If the module is being loaded from a blob,
* this argument will be NULL.
* Return 0 if permission is granted.
* @task_fix_setuid:
* Update the module's state after setting one or more of the user
* identity attributes of the current process. The @flags parameter
* indicates which of the set*uid system calls invoked this hook. If
* @new is the set of credentials that will be installed. Modifications
* should be made to this rather than to @current->cred.
* @old is the set of credentials that are being replaces
* @flags contains one of the LSM_SETID_* values.
* Return 0 on success.
* @task_setpgid:
* Check permission before setting the process group identifier of the
* process @p to @pgid.
* @p contains the task_struct for process being modified.
* @pgid contains the new pgid.
* Return 0 if permission is granted.
* @task_getpgid:
* Check permission before getting the process group identifier of the
* process @p.
* @p contains the task_struct for the process.
* Return 0 if permission is granted.
* @task_getsid:
* Check permission before getting the session identifier of the process
* @p.
* @p contains the task_struct for the process.
* Return 0 if permission is granted.
* @task_getsecid:
* Retrieve the security identifier of the process @p.
* @p contains the task_struct for the process and place is into @secid.
* In case of failure, @secid will be set to zero.
*
* @task_setnice:
* Check permission before setting the nice value of @p to @nice.
* @p contains the task_struct of process.
* @nice contains the new nice value.
* Return 0 if permission is granted.
* @task_setioprio
* Check permission before setting the ioprio value of @p to @ioprio.
* @p contains the task_struct of process.
* @ioprio contains the new ioprio value
* Return 0 if permission is granted.
* @task_getioprio
* Check permission before getting the ioprio value of @p.
* @p contains the task_struct of process.
* Return 0 if permission is granted.
* @task_setrlimit:
* Check permission before setting the resource limits of the current
* process for @resource to @new_rlim. The old resource limit values can
* be examined by dereferencing (current->signal->rlim + resource).
* @resource contains the resource whose limit is being set.
* @new_rlim contains the new limits for @resource.
* Return 0 if permission is granted.
* @task_setscheduler:
* Check permission before setting scheduling policy and/or parameters of
* process @p based on @policy and @lp.
* @p contains the task_struct for process.
* @policy contains the scheduling policy.
* @lp contains the scheduling parameters.
* Return 0 if permission is granted.
* @task_getscheduler:
* Check permission before obtaining scheduling information for process
* @p.
* @p contains the task_struct for process.
* Return 0 if permission is granted.
* @task_movememory
* Check permission before moving memory owned by process @p.
* @p contains the task_struct for process.
* Return 0 if permission is granted.
* @task_kill:
* Check permission before sending signal @sig to @p. @info can be NULL,
* the constant 1, or a pointer to a siginfo structure. If @info is 1 or
* SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
* from the kernel and should typically be permitted.
* SIGIO signals are handled separately by the send_sigiotask hook in
* file_security_ops.
* @p contains the task_struct for process.
* @info contains the signal information.
* @sig contains the signal value.
* @secid contains the sid of the process where the signal originated
* Return 0 if permission is granted.
* @task_wait:
* Check permission before allowing a process to reap a child process @p
* and collect its status information.
* @p contains the task_struct for process.
* Return 0 if permission is granted.
* @task_prctl:
* Check permission before performing a process control operation on the
* current process.
* @option contains the operation.
* @arg2 contains a argument.
* @arg3 contains a argument.
* @arg4 contains a argument.
* @arg5 contains a argument.
* Return -ENOSYS if no-one wanted to handle this op, any other value to
* cause prctl() to return immediately with that value.
* @task_to_inode:
* Set the security attributes for an inode based on an associated task's
* security attributes, e.g. for /proc/pid inodes.
* @p contains the task_struct for the task.
* @inode contains the inode structure for the inode.
*
* Security hooks for Netlink messaging.
*
* @netlink_send:
* Save security information for a netlink message so that permission
* checking can be performed when the message is processed. The security
* information can be saved using the eff_cap field of the
* netlink_skb_parms structure. Also may be used to provide fine
* grained control over message transmission.
* @sk associated sock of task sending the message.
* @skb contains the sk_buff structure for the netlink message.
* Return 0 if the information was successfully saved and message
* is allowed to be transmitted.
*
* Security hooks for Unix domain networking.
*
* @unix_stream_connect:
* Check permissions before establishing a Unix domain stream connection
* between @sock and @other.
* @sock contains the sock structure.
* @other contains the peer sock structure.
* @newsk contains the new sock structure.
* Return 0 if permission is granted.
* @unix_may_send:
* Check permissions before connecting or sending datagrams from @sock to
* @other.
* @sock contains the socket structure.
* @other contains the peer socket structure.
* Return 0 if permission is granted.
*
* The @unix_stream_connect and @unix_may_send hooks were necessary because
* Linux provides an alternative to the conventional file name space for Unix
* domain sockets. Whereas binding and connecting to sockets in the file name
* space is mediated by the typical file permissions (and caught by the mknod
* and permission hooks in inode_security_ops), binding and connecting to
* sockets in the abstract name space is completely unmediated. Sufficient
* control of Unix domain sockets in the abstract name space isn't possible
* using only the socket layer hooks, since we need to know the actual target
* socket, which is not looked up until we are inside the af_unix code.
*
* Security hooks for socket operations.
*
* @socket_create:
* Check permissions prior to creating a new socket.
* @family contains the requested protocol family.
* @type contains the requested communications type.
* @protocol contains the requested protocol.
* @kern set to 1 if a kernel socket.
* Return 0 if permission is granted.
* @socket_post_create:
* This hook allows a module to update or allocate a per-socket security
* structure. Note that the security field was not added directly to the
* socket structure, but rather, the socket security information is stored
* in the associated inode. Typically, the inode alloc_security hook will
* allocate and and attach security information to
* sock->inode->i_security. This hook may be used to update the
* sock->inode->i_security field with additional information that wasn't
* available when the inode was allocated.
* @sock contains the newly created socket structure.
* @family contains the requested protocol family.
* @type contains the requested communications type.
* @protocol contains the requested protocol.
* @kern set to 1 if a kernel socket.
* @socket_bind:
* Check permission before socket protocol layer bind operation is
* performed and the socket @sock is bound to the address specified in the
* @address parameter.
* @sock contains the socket structure.
* @address contains the address to bind to.
* @addrlen contains the length of address.
* Return 0 if permission is granted.
* @socket_connect:
* Check permission before socket protocol layer connect operation
* attempts to connect socket @sock to a remote address, @address.
* @sock contains the socket structure.
* @address contains the address of remote endpoint.
* @addrlen contains the length of address.
* Return 0 if permission is granted.
* @socket_listen:
* Check permission before socket protocol layer listen operation.
* @sock contains the socket structure.
* @backlog contains the maximum length for the pending connection queue.
* Return 0 if permission is granted.
* @socket_accept:
* Check permission before accepting a new connection. Note that the new
* socket, @newsock, has been created and some information copied to it,
* but the accept operation has not actually been performed.
* @sock contains the listening socket structure.
* @newsock contains the newly created server socket for connection.
* Return 0 if permission is granted.
* @socket_sendmsg:
* Check permission before transmitting a message to another socket.
* @sock contains the socket structure.
* @msg contains the message to be transmitted.
* @size contains the size of message.
* Return 0 if permission is granted.
* @socket_recvmsg:
* Check permission before receiving a message from a socket.
* @sock contains the socket structure.
* @msg contains the message structure.
* @size contains the size of message structure.
* @flags contains the operational flags.
* Return 0 if permission is granted.
* @socket_getsockname:
* Check permission before the local address (name) of the socket object
* @sock is retrieved.
* @sock contains the socket structure.
* Return 0 if permission is granted.
* @socket_getpeername:
* Check permission before the remote address (name) of a socket object
* @sock is retrieved.
* @sock contains the socket structure.
* Return 0 if permission is granted.
* @socket_getsockopt:
* Check permissions before retrieving the options associated with socket
* @sock.
* @sock contains the socket structure.
* @level contains the protocol level to retrieve option from.
* @optname contains the name of option to retrieve.
* Return 0 if permission is granted.
* @socket_setsockopt:
* Check permissions before setting the options associated with socket
* @sock.
* @sock contains the socket structure.
* @level contains the protocol level to set options for.
* @optname contains the name of the option to set.
* Return 0 if permission is granted.
* @socket_shutdown:
* Checks permission before all or part of a connection on the socket
* @sock is shut down.
* @sock contains the socket structure.
* @how contains the flag indicating how future sends and receives are handled.
* Return 0 if permission is granted.
* @socket_sock_rcv_skb:
* Check permissions on incoming network packets. This hook is distinct
* from Netfilter's IP input hooks since it is the first time that the
* incoming sk_buff @skb has been associated with a particular socket, @sk.
* Must not sleep inside this hook because some callers hold spinlocks.
* @sk contains the sock (not socket) associated with the incoming sk_buff.
* @skb contains the incoming network data.
* @socket_getpeersec_stream:
* This hook allows the security module to provide peer socket security
* state for unix or connected tcp sockets to userspace via getsockopt
* SO_GETPEERSEC. For tcp sockets this can be meaningful if the
* socket is associated with an ipsec SA.
* @sock is the local socket.
* @optval userspace memory where the security state is to be copied.
* @optlen userspace int where the module should copy the actual length
* of the security state.
* @len as input is the maximum length to copy to userspace provided
* by the caller.
* Return 0 if all is well, otherwise, typical getsockopt return
* values.
* @socket_getpeersec_dgram:
* This hook allows the security module to provide peer socket security
* state for udp sockets on a per-packet basis to userspace via
* getsockopt SO_GETPEERSEC. The application must first have indicated
* the IP_PASSSEC option via getsockopt. It can then retrieve the
* security state returned by this hook for a packet via the SCM_SECURITY
* ancillary message type.
* @skb is the skbuff for the packet being queried
* @secdata is a pointer to a buffer in which to copy the security data
* @seclen is the maximum length for @secdata
* Return 0 on success, error on failure.
* @sk_alloc_security:
* Allocate and attach a security structure to the sk->sk_security field,
* which is used to copy security attributes between local stream sockets.
* @sk_free_security:
* Deallocate security structure.
* @sk_clone_security:
* Clone/copy security structure.
* @sk_getsecid:
* Retrieve the LSM-specific secid for the sock to enable caching of network
* authorizations.
* @sock_graft:
* Sets the socket's isec sid to the sock's sid.
* @inet_conn_request:
* Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
* @inet_csk_clone:
* Sets the new child socket's sid to the openreq sid.
* @inet_conn_established:
* Sets the connection's peersid to the secmark on skb.
* @secmark_relabel_packet:
* check if the process should be allowed to relabel packets to the given secid
* @security_secmark_refcount_inc
* tells the LSM to increment the number of secmark labeling rules loaded
* @security_secmark_refcount_dec
* tells the LSM to decrement the number of secmark labeling rules loaded
* @req_classify_flow:
* Sets the flow's sid to the openreq sid.
* @tun_dev_alloc_security:
* This hook allows a module to allocate a security structure for a TUN
* device.
* @security pointer to a security structure pointer.
* Returns a zero on success, negative values on failure.
* @tun_dev_free_security:
* This hook allows a module to free the security structure for a TUN
* device.
* @security pointer to the TUN device's security structure
* @tun_dev_create:
* Check permissions prior to creating a new TUN device.
* @tun_dev_attach_queue:
* Check permissions prior to attaching to a TUN device queue.
* @security pointer to the TUN device's security structure.
* @tun_dev_attach:
* This hook can be used by the module to update any security state
* associated with the TUN device's sock structure.
* @sk contains the existing sock structure.
* @security pointer to the TUN device's security structure.
* @tun_dev_open:
* This hook can be used by the module to update any security state
* associated with the TUN device's security structure.
* @security pointer to the TUN devices's security structure.
* @skb_owned_by:
* This hook sets the packet's owning sock.
* @skb is the packet.
* @sk the sock which owns the packet.
*
* Security hooks for XFRM operations.
*
* @xfrm_policy_alloc_security:
* @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
* Database used by the XFRM system.
* @sec_ctx contains the security context information being provided by
* the user-level policy update program (e.g., setkey).
* Allocate a security structure to the xp->security field; the security
* field is initialized to NULL when the xfrm_policy is allocated.
* Return 0 if operation was successful (memory to allocate, legal context)
* @xfrm_policy_clone_security:
* @old_ctx contains an existing xfrm_sec_ctx.
* @new_ctxp contains a new xfrm_sec_ctx being cloned from old.
* Allocate a security structure in new_ctxp that contains the
* information from the old_ctx structure.
* Return 0 if operation was successful (memory to allocate).
* @xfrm_policy_free_security:
* @ctx contains the xfrm_sec_ctx
* Deallocate xp->security.
* @xfrm_policy_delete_security:
* @ctx contains the xfrm_sec_ctx.
* Authorize deletion of xp->security.
* @xfrm_state_alloc_security:
* @x contains the xfrm_state being added to the Security Association
* Database by the XFRM system.
* @sec_ctx contains the security context information being provided by
* the user-level SA generation program (e.g., setkey or racoon).
* @secid contains the secid from which to take the mls portion of the context.
* Allocate a security structure to the x->security field; the security
* field is initialized to NULL when the xfrm_state is allocated. Set the
* context to correspond to either sec_ctx or polsec, with the mls portion
* taken from secid in the latter case.
* Return 0 if operation was successful (memory to allocate, legal context).
* @xfrm_state_free_security:
* @x contains the xfrm_state.
* Deallocate x->security.
* @xfrm_state_delete_security:
* @x contains the xfrm_state.
* Authorize deletion of x->security.
* @xfrm_policy_lookup:
* @ctx contains the xfrm_sec_ctx for which the access control is being
* checked.
* @fl_secid contains the flow security label that is used to authorize
* access to the policy xp.
* @dir contains the direction of the flow (input or output).
* Check permission when a flow selects a xfrm_policy for processing
* XFRMs on a packet. The hook is called when selecting either a
* per-socket policy or a generic xfrm policy.
* Return 0 if permission is granted, -ESRCH otherwise, or -errno
* on other errors.
* @xfrm_state_pol_flow_match:
* @x contains the state to match.
* @xp contains the policy to check for a match.
* @fl contains the flow to check for a match.
* Return 1 if there is a match.
* @xfrm_decode_session:
* @skb points to skb to decode.
* @secid points to the flow key secid to set.
* @ckall says if all xfrms used should be checked for same secid.
* Return 0 if ckall is zero or all xfrms used have the same secid.
*
* Security hooks affecting all Key Management operations
*
* @key_alloc:
* Permit allocation of a key and assign security data. Note that key does
* not have a serial number assigned at this point.
* @key points to the key.
* @flags is the allocation flags
* Return 0 if permission is granted, -ve error otherwise.
* @key_free:
* Notification of destruction; free security data.
* @key points to the key.
* No return value.
* @key_permission:
* See whether a specific operational right is granted to a process on a
* key.
* @key_ref refers to the key (key pointer + possession attribute bit).
* @cred points to the credentials to provide the context against which to
* evaluate the security data on the key.
* @perm describes the combination of permissions required of this key.
* Return 0 if permission is granted, -ve error otherwise.
* @key_getsecurity:
* Get a textual representation of the security context attached to a key
* for the purposes of honouring KEYCTL_GETSECURITY. This function
* allocates the storage for the NUL-terminated string and the caller
* should free it.
* @key points to the key to be queried.
* @_buffer points to a pointer that should be set to point to the
* resulting string (if no label or an error occurs).
* Return the length of the string (including terminating NUL) or -ve if
* an error.
* May also return 0 (and a NULL buffer pointer) if there is no label.
*
* Security hooks affecting all System V IPC operations.
*
* @ipc_permission:
* Check permissions for access to IPC
* @ipcp contains the kernel IPC permission structure
* @flag contains the desired (requested) permission set
* Return 0 if permission is granted.
* @ipc_getsecid:
* Get the secid associated with the ipc object.
* @ipcp contains the kernel IPC permission structure.
* @secid contains a pointer to the location where result will be saved.
* In case of failure, @secid will be set to zero.
*
* Security hooks for individual messages held in System V IPC message queues
* @msg_msg_alloc_security:
* Allocate and attach a security structure to the msg->security field.
* The security field is initialized to NULL when the structure is first
* created.
* @msg contains the message structure to be modified.
* Return 0 if operation was successful and permission is granted.
* @msg_msg_free_security:
* Deallocate the security structure for this message.
* @msg contains the message structure to be modified.
*
* Security hooks for System V IPC Message Queues
*
* @msg_queue_alloc_security:
* Allocate and attach a security structure to the
* msq->q_perm.security field. The security field is initialized to
* NULL when the structure is first created.
* @msq contains the message queue structure to be modified.
* Return 0 if operation was successful and permission is granted.
* @msg_queue_free_security:
* Deallocate security structure for this message queue.
* @msq contains the message queue structure to be modified.
* @msg_queue_associate:
* Check permission when a message queue is requested through the
* msgget system call. This hook is only called when returning the
* message queue identifier for an existing message queue, not when a
* new message queue is created.
* @msq contains the message queue to act upon.
* @msqflg contains the operation control flags.
* Return 0 if permission is granted.
* @msg_queue_msgctl:
* Check permission when a message control operation specified by @cmd
* is to be performed on the message queue @msq.
* The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
* @msq contains the message queue to act upon. May be NULL.
* @cmd contains the operation to be performed.
* Return 0 if permission is granted.
* @msg_queue_msgsnd:
* Check permission before a message, @msg, is enqueued on the message
* queue, @msq.
* @msq contains the message queue to send message to.
* @msg contains the message to be enqueued.
* @msqflg contains operational flags.
* Return 0 if permission is granted.
* @msg_queue_msgrcv:
* Check permission before a message, @msg, is removed from the message
* queue, @msq. The @target task structure contains a pointer to the
* process that will be receiving the message (not equal to the current
* process when inline receives are being performed).
* @msq contains the message queue to retrieve message from.
* @msg contains the message destination.
* @target contains the task structure for recipient process.
* @type contains the type of message requested.
* @mode contains the operational flags.
* Return 0 if permission is granted.
*
* Security hooks for System V Shared Memory Segments
*
* @shm_alloc_security:
* Allocate and attach a security structure to the shp->shm_perm.security
* field. The security field is initialized to NULL when the structure is
* first created.
* @shp contains the shared memory structure to be modified.
* Return 0 if operation was successful and permission is granted.
* @shm_free_security:
* Deallocate the security struct for this memory segment.
* @shp contains the shared memory structure to be modified.
* @shm_associate:
* Check permission when a shared memory region is requested through the
* shmget system call. This hook is only called when returning the shared
* memory region identifier for an existing region, not when a new shared
* memory region is created.
* @shp contains the shared memory structure to be modified.
* @shmflg contains the operation control flags.
* Return 0 if permission is granted.
* @shm_shmctl:
* Check permission when a shared memory control operation specified by
* @cmd is to be performed on the shared memory region @shp.
* The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
* @shp contains shared memory structure to be modified.
* @cmd contains the operation to be performed.
* Return 0 if permission is granted.
* @shm_shmat:
* Check permissions prior to allowing the shmat system call to attach the
* shared memory segment @shp to the data segment of the calling process.
* The attaching address is specified by @shmaddr.
* @shp contains the shared memory structure to be modified.
* @shmaddr contains the address to attach memory region to.
* @shmflg contains the operational flags.
* Return 0 if permission is granted.
*
* Security hooks for System V Semaphores
*
* @sem_alloc_security:
* Allocate and attach a security structure to the sma->sem_perm.security
* field. The security field is initialized to NULL when the structure is
* first created.
* @sma contains the semaphore structure
* Return 0 if operation was successful and permission is granted.
* @sem_free_security:
* deallocate security struct for this semaphore
* @sma contains the semaphore structure.
* @sem_associate:
* Check permission when a semaphore is requested through the semget
* system call. This hook is only called when returning the semaphore
* identifier for an existing semaphore, not when a new one must be
* created.
* @sma contains the semaphore structure.
* @semflg contains the operation control flags.
* Return 0 if permission is granted.
* @sem_semctl:
* Check permission when a semaphore operation specified by @cmd is to be
* performed on the semaphore @sma. The @sma may be NULL, e.g. for
* IPC_INFO or SEM_INFO.
* @sma contains the semaphore structure. May be NULL.
* @cmd contains the operation to be performed.
* Return 0 if permission is granted.
* @sem_semop
* Check permissions before performing operations on members of the
* semaphore set @sma. If the @alter flag is nonzero, the semaphore set
* may be modified.
* @sma contains the semaphore structure.
* @sops contains the operations to perform.
* @nsops contains the number of operations to perform.
* @alter contains the flag indicating whether changes are to be made.
* Return 0 if permission is granted.
*
* @ptrace_access_check:
* Check permission before allowing the current process to trace the
* @child process.
* Security modules may also want to perform a process tracing check
* during an execve in the set_security or apply_creds hooks of
* tracing check during an execve in the bprm_set_creds hook of
* binprm_security_ops if the process is being traced and its security
* attributes would be changed by the execve.
* @child contains the task_struct structure for the target process.
* @mode contains the PTRACE_MODE flags indicating the form of access.
* Return 0 if permission is granted.
* @ptrace_traceme:
* Check that the @parent process has sufficient permission to trace the
* current process before allowing the current process to present itself
* to the @parent process for tracing.
* @parent contains the task_struct structure for debugger process.
* Return 0 if permission is granted.
* @capget:
* Get the @effective, @inheritable, and @permitted capability sets for
* the @target process. The hook may also perform permission checking to
* determine if the current process is allowed to see the capability sets
* of the @target process.
* @target contains the task_struct structure for target process.
* @effective contains the effective capability set.
* @inheritable contains the inheritable capability set.
* @permitted contains the permitted capability set.
* Return 0 if the capability sets were successfully obtained.
* @capset:
* Set the @effective, @inheritable, and @permitted capability sets for
* the current process.
* @new contains the new credentials structure for target process.
* @old contains the current credentials structure for target process.
* @effective contains the effective capability set.
* @inheritable contains the inheritable capability set.
* @permitted contains the permitted capability set.
* Return 0 and update @new if permission is granted.
* @capable:
* Check whether the @tsk process has the @cap capability in the indicated
* credentials.
* @cred contains the credentials to use.
* @ns contains the user namespace we want the capability in
* @cap contains the capability <include/linux/capability.h>.
* @audit: Whether to write an audit message or not
* Return 0 if the capability is granted for @tsk.
* @syslog:
* Check permission before accessing the kernel message ring or changing
* logging to the console.
* See the syslog(2) manual page for an explanation of the @type values.
* @type contains the type of action.
* @from_file indicates the context of action (if it came from /proc).
* Return 0 if permission is granted.
* @settime:
* Check permission to change the system time.
* struct timespec and timezone are defined in include/linux/time.h
* @ts contains new time
* @tz contains new timezone
* Return 0 if permission is granted.
* @vm_enough_memory:
* Check permissions for allocating a new virtual mapping.
* @mm contains the mm struct it is being added to.
* @pages contains the number of pages.
* Return 0 if permission is granted.
*
* @secid_to_secctx:
* Convert secid to security context. If secdata is NULL the length of
* the result will be returned in seclen, but no secdata will be returned.
* This does mean that the length could change between calls to check the
* length and the next call which actually allocates and returns the secdata.
* @secid contains the security ID.
* @secdata contains the pointer that stores the converted security context.
* @seclen pointer which contains the length of the data
* @secctx_to_secid:
* Convert security context to secid.
* @secid contains the pointer to the generated security ID.
* @secdata contains the security context.
*
* @release_secctx:
* Release the security context.
* @secdata contains the security context.
* @seclen contains the length of the security context.
*
* Security hooks for Audit
*
* @audit_rule_init:
* Allocate and initialize an LSM audit rule structure.
* @field contains the required Audit action. Fields flags are defined in include/linux/audit.h
* @op contains the operator the rule uses.
* @rulestr contains the context where the rule will be applied to.
* @lsmrule contains a pointer to receive the result.
* Return 0 if @lsmrule has been successfully set,
* -EINVAL in case of an invalid rule.
*
* @audit_rule_known:
* Specifies whether given @rule contains any fields related to current LSM.
* @rule contains the audit rule of interest.
* Return 1 in case of relation found, 0 otherwise.
*
* @audit_rule_match:
* Determine if given @secid matches a rule previously approved
* by @audit_rule_known.
* @secid contains the security id in question.
* @field contains the field which relates to current LSM.
* @op contains the operator that will be used for matching.
* @rule points to the audit rule that will be checked against.
* @actx points to the audit context associated with the check.
* Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
*
* @audit_rule_free:
* Deallocate the LSM audit rule structure previously allocated by
* audit_rule_init.
* @rule contains the allocated rule
*
* @inode_notifysecctx:
* Notify the security module of what the security context of an inode
* should be. Initializes the incore security context managed by the
* security module for this inode. Example usage: NFS client invokes
* this hook to initialize the security context in its incore inode to the
* value provided by the server for the file when the server returned the
* file's attributes to the client.
*
* Must be called with inode->i_mutex locked.
*
* @inode we wish to set the security context of.
* @ctx contains the string which we wish to set in the inode.
* @ctxlen contains the length of @ctx.
*
* @inode_setsecctx:
* Change the security context of an inode. Updates the
* incore security context managed by the security module and invokes the
* fs code as needed (via __vfs_setxattr_noperm) to update any backing
* xattrs that represent the context. Example usage: NFS server invokes
* this hook to change the security context in its incore inode and on the
* backing filesystem to a value provided by the client on a SETATTR
* operation.
*
* Must be called with inode->i_mutex locked.
*
* @dentry contains the inode we wish to set the security context of.
* @ctx contains the string which we wish to set in the inode.
* @ctxlen contains the length of @ctx.
*
* @inode_getsecctx:
* Returns a string containing all relevant security context information
*
* @inode we wish to get the security context of.
* @ctx is a pointer in which to place the allocated security context.
* @ctxlen points to the place to put the length of @ctx.
* This is the main security structure.
*/
struct security_operations {
char name[SECURITY_NAME_MAX + 1];
int (*ptrace_access_check) (struct task_struct *child, unsigned int mode);
int (*ptrace_traceme) (struct task_struct *parent);
int (*capget) (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted);
int (*capset) (struct cred *new,
const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted);
int (*capable) (const struct cred *cred, struct user_namespace *ns,
int cap, int audit);
int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
int (*quota_on) (struct dentry *dentry);
int (*syslog) (int type);
int (*settime) (const struct timespec *ts, const struct timezone *tz);
int (*vm_enough_memory) (struct mm_struct *mm, long pages);
int (*bprm_set_creds) (struct linux_binprm *bprm);
int (*bprm_check_security) (struct linux_binprm *bprm);
int (*bprm_secureexec) (struct linux_binprm *bprm);
void (*bprm_committing_creds) (struct linux_binprm *bprm);
void (*bprm_committed_creds) (struct linux_binprm *bprm);
int (*sb_alloc_security) (struct super_block *sb);
void (*sb_free_security) (struct super_block *sb);
int (*sb_copy_data) (char *orig, char *copy);
int (*sb_remount) (struct super_block *sb, void *data);
int (*sb_kern_mount) (struct super_block *sb, int flags, void *data);
int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
int (*sb_statfs) (struct dentry *dentry);
int (*sb_mount) (const char *dev_name, struct path *path,
const char *type, unsigned long flags, void *data);
int (*sb_umount) (struct vfsmount *mnt, int flags);
int (*sb_pivotroot) (struct path *old_path,
struct path *new_path);
int (*sb_set_mnt_opts) (struct super_block *sb,
struct security_mnt_opts *opts);
int (*sb_clone_mnt_opts) (const struct super_block *oldsb,
struct super_block *newsb);
int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts);
int (*dentry_init_security) (struct dentry *dentry, int mode,
struct qstr *name, void **ctx,
u32 *ctxlen);
#ifdef CONFIG_SECURITY_PATH
int (*path_unlink) (struct path *dir, struct dentry *dentry);
int (*path_mkdir) (struct path *dir, struct dentry *dentry, umode_t mode);
int (*path_rmdir) (struct path *dir, struct dentry *dentry);
int (*path_mknod) (struct path *dir, struct dentry *dentry, umode_t mode,
unsigned int dev);
int (*path_truncate) (struct path *path);
int (*path_symlink) (struct path *dir, struct dentry *dentry,
const char *old_name);
int (*path_link) (struct dentry *old_dentry, struct path *new_dir,
struct dentry *new_dentry);
int (*path_rename) (struct path *old_dir, struct dentry *old_dentry,
struct path *new_dir, struct dentry *new_dentry);
int (*path_chmod) (struct path *path, umode_t mode);
int (*path_chown) (struct path *path, kuid_t uid, kgid_t gid);
int (*path_chroot) (struct path *path);
#endif
int (*inode_alloc_security) (struct inode *inode);
void (*inode_free_security) (struct inode *inode);
int (*inode_init_security) (struct inode *inode, struct inode *dir,
const struct qstr *qstr, char **name,
void **value, size_t *len);
int (*inode_create) (struct inode *dir,
struct dentry *dentry, umode_t mode);
int (*inode_link) (struct dentry *old_dentry,
struct inode *dir, struct dentry *new_dentry);
int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
int (*inode_symlink) (struct inode *dir,
struct dentry *dentry, const char *old_name);
int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, umode_t mode);
int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t dev);
int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry);
int (*inode_readlink) (struct dentry *dentry);
int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
int (*inode_permission) (struct inode *inode, int mask);
int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
int (*inode_setxattr) (struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
void (*inode_post_setxattr) (struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
int (*inode_getxattr) (struct dentry *dentry, const char *name);
int (*inode_listxattr) (struct dentry *dentry);
int (*inode_removexattr) (struct dentry *dentry, const char *name);
int (*inode_need_killpriv) (struct dentry *dentry);
int (*inode_killpriv) (struct dentry *dentry);
int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc);
int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags);
int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size);
void (*inode_getsecid) (const struct inode *inode, u32 *secid);
int (*file_permission) (struct file *file, int mask);
int (*file_alloc_security) (struct file *file);
void (*file_free_security) (struct file *file);
int (*file_ioctl) (struct file *file, unsigned int cmd,
unsigned long arg);
int (*mmap_addr) (unsigned long addr);
int (*mmap_file) (struct file *file,
unsigned long reqprot, unsigned long prot,
unsigned long flags);
int (*file_mprotect) (struct vm_area_struct *vma,
unsigned long reqprot,
unsigned long prot);
int (*file_lock) (struct file *file, unsigned int cmd);
int (*file_fcntl) (struct file *file, unsigned int cmd,
unsigned long arg);
int (*file_set_fowner) (struct file *file);
int (*file_send_sigiotask) (struct task_struct *tsk,
struct fown_struct *fown, int sig);
int (*file_receive) (struct file *file);
int (*file_open) (struct file *file, const struct cred *cred);
int (*task_create) (unsigned long clone_flags);
void (*task_free) (struct task_struct *task);
int (*cred_alloc_blank) (struct cred *cred, gfp_t gfp);
void (*cred_free) (struct cred *cred);
int (*cred_prepare)(struct cred *new, const struct cred *old,
gfp_t gfp);
void (*cred_transfer)(struct cred *new, const struct cred *old);
int (*kernel_act_as)(struct cred *new, u32 secid);
int (*kernel_create_files_as)(struct cred *new, struct inode *inode);
int (*kernel_module_request)(char *kmod_name);
int (*kernel_module_from_file)(struct file *file);
int (*task_fix_setuid) (struct cred *new, const struct cred *old,
int flags);
int (*task_setpgid) (struct task_struct *p, pid_t pgid);
int (*task_getpgid) (struct task_struct *p);
int (*task_getsid) (struct task_struct *p);
void (*task_getsecid) (struct task_struct *p, u32 *secid);
int (*task_setnice) (struct task_struct *p, int nice);
int (*task_setioprio) (struct task_struct *p, int ioprio);
int (*task_getioprio) (struct task_struct *p);
int (*task_setrlimit) (struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim);
int (*task_setscheduler) (struct task_struct *p);
int (*task_getscheduler) (struct task_struct *p);
int (*task_movememory) (struct task_struct *p);
int (*task_kill) (struct task_struct *p,
struct siginfo *info, int sig, u32 secid);
int (*task_wait) (struct task_struct *p);
int (*task_prctl) (int option, unsigned long arg2,
unsigned long arg3, unsigned long arg4,
unsigned long arg5);
void (*task_to_inode) (struct task_struct *p, struct inode *inode);
int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);
int (*msg_msg_alloc_security) (struct msg_msg *msg);
void (*msg_msg_free_security) (struct msg_msg *msg);
int (*msg_queue_alloc_security) (struct msg_queue *msq);
void (*msg_queue_free_security) (struct msg_queue *msq);
int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
int (*msg_queue_msgsnd) (struct msg_queue *msq,
struct msg_msg *msg, int msqflg);
int (*msg_queue_msgrcv) (struct msg_queue *msq,
struct msg_msg *msg,
struct task_struct *target,
long type, int mode);
int (*shm_alloc_security) (struct shmid_kernel *shp);
void (*shm_free_security) (struct shmid_kernel *shp);
int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
int (*shm_shmat) (struct shmid_kernel *shp,
char __user *shmaddr, int shmflg);
int (*sem_alloc_security) (struct sem_array *sma);
void (*sem_free_security) (struct sem_array *sma);
int (*sem_associate) (struct sem_array *sma, int semflg);
int (*sem_semctl) (struct sem_array *sma, int cmd);
int (*sem_semop) (struct sem_array *sma,
struct sembuf *sops, unsigned nsops, int alter);
int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
int (*getprocattr) (struct task_struct *p, char *name, char **value);
int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size);
int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
void (*release_secctx) (char *secdata, u32 seclen);
int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen);
int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen);
int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen);
#ifdef CONFIG_SECURITY_NETWORK
int (*unix_stream_connect) (struct sock *sock, struct sock *other, struct sock *newsk);
int (*unix_may_send) (struct socket *sock, struct socket *other);
int (*socket_create) (int family, int type, int protocol, int kern);
int (*socket_post_create) (struct socket *sock, int family,
int type, int protocol, int kern);
int (*socket_bind) (struct socket *sock,
struct sockaddr *address, int addrlen);
int (*socket_connect) (struct socket *sock,
struct sockaddr *address, int addrlen);
int (*socket_listen) (struct socket *sock, int backlog);
int (*socket_accept) (struct socket *sock, struct socket *newsock);
int (*socket_sendmsg) (struct socket *sock,
struct msghdr *msg, int size);
int (*socket_recvmsg) (struct socket *sock,
struct msghdr *msg, int size, int flags);
int (*socket_getsockname) (struct socket *sock);
int (*socket_getpeername) (struct socket *sock);
int (*socket_getsockopt) (struct socket *sock, int level, int optname);
int (*socket_setsockopt) (struct socket *sock, int level, int optname);
int (*socket_shutdown) (struct socket *sock, int how);
int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
void (*sk_free_security) (struct sock *sk);
void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
void (*sk_getsecid) (struct sock *sk, u32 *secid);
void (*sock_graft) (struct sock *sk, struct socket *parent);
int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
struct request_sock *req);
void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req);
void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
int (*secmark_relabel_packet) (u32 secid);
void (*secmark_refcount_inc) (void);
void (*secmark_refcount_dec) (void);
void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl);
int (*tun_dev_alloc_security) (void **security);
void (*tun_dev_free_security) (void *security);
int (*tun_dev_create) (void);
int (*tun_dev_attach_queue) (void *security);
int (*tun_dev_attach) (struct sock *sk, void *security);
int (*tun_dev_open) (void *security);
void (*skb_owned_by) (struct sk_buff *skb, struct sock *sk);
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
struct xfrm_user_sec_ctx *sec_ctx);
int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx);
void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
int (*xfrm_state_alloc_security) (struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx,
u32 secid);
void (*xfrm_state_free_security) (struct xfrm_state *x);
int (*xfrm_state_delete_security) (struct xfrm_state *x);
int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
struct xfrm_policy *xp,
const struct flowi *fl);
int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
/* key management security hooks */
#ifdef CONFIG_KEYS
int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags);
void (*key_free) (struct key *key);
int (*key_permission) (key_ref_t key_ref,
const struct cred *cred,
key_perm_t perm);
int (*key_getsecurity)(struct key *key, char **_buffer);
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule);
int (*audit_rule_known) (struct audit_krule *krule);
int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
struct audit_context *actx);
void (*audit_rule_free) (void *lsmrule);
#endif /* CONFIG_AUDIT */
};
/* prototypes */
extern int security_init(void);
extern int security_module_enable(struct security_operations *ops);
extern int register_security(struct security_operations *ops);
extern void __init security_fixup_ops(struct security_operations *ops);
/* Security operations */
int security_ptrace_access_check(struct task_struct *child, unsigned int mode);
int security_ptrace_traceme(struct task_struct *parent);
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted);
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted);
int security_capable(const struct cred *cred, struct user_namespace *ns,
int cap);
int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
int cap);
int security_quotactl(int cmds, int type, int id, struct super_block *sb);
int security_quota_on(struct dentry *dentry);
int security_syslog(int type);
int security_settime(const struct timespec *ts, const struct timezone *tz);
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
int security_bprm_set_creds(struct linux_binprm *bprm);
int security_bprm_check(struct linux_binprm *bprm);
void security_bprm_committing_creds(struct linux_binprm *bprm);
void security_bprm_committed_creds(struct linux_binprm *bprm);
int security_bprm_secureexec(struct linux_binprm *bprm);
int security_sb_alloc(struct super_block *sb);
void security_sb_free(struct super_block *sb);
int security_sb_copy_data(char *orig, char *copy);
int security_sb_remount(struct super_block *sb, void *data);
int security_sb_kern_mount(struct super_block *sb, int flags, void *data);
int security_sb_show_options(struct seq_file *m, struct super_block *sb);
int security_sb_statfs(struct dentry *dentry);
int security_sb_mount(const char *dev_name, struct path *path,
const char *type, unsigned long flags, void *data);
int security_sb_umount(struct vfsmount *mnt, int flags);
int security_sb_pivotroot(struct path *old_path, struct path *new_path);
int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts);
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts);
int security_dentry_init_security(struct dentry *dentry, int mode,
struct qstr *name, void **ctx,
u32 *ctxlen);
int security_inode_alloc(struct inode *inode);
void security_inode_free(struct inode *inode);
int security_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr,
initxattrs initxattrs, void *fs_data);
int security_old_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr, char **name,
void **value, size_t *len);
int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode);
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry);
int security_inode_unlink(struct inode *dir, struct dentry *dentry);
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name);
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry);
int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev);
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry);
int security_inode_readlink(struct dentry *dentry);
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
int security_inode_permission(struct inode *inode, int mask);
int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry);
int security_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
int security_inode_getxattr(struct dentry *dentry, const char *name);
int security_inode_listxattr(struct dentry *dentry);
int security_inode_removexattr(struct dentry *dentry, const char *name);
int security_inode_need_killpriv(struct dentry *dentry);
int security_inode_killpriv(struct dentry *dentry);
int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc);
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags);
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size);
void security_inode_getsecid(const struct inode *inode, u32 *secid);
int security_file_permission(struct file *file, int mask);
int security_file_alloc(struct file *file);
void security_file_free(struct file *file);
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int security_mmap_file(struct file *file, unsigned long prot,
unsigned long flags);
int security_mmap_addr(unsigned long addr);
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot);
int security_file_lock(struct file *file, unsigned int cmd);
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
int security_file_set_fowner(struct file *file);
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig);
int security_file_receive(struct file *file);
int security_file_open(struct file *file, const struct cred *cred);
int security_task_create(unsigned long clone_flags);
void security_task_free(struct task_struct *task);
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp);
void security_cred_free(struct cred *cred);
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp);
void security_transfer_creds(struct cred *new, const struct cred *old);
int security_kernel_act_as(struct cred *new, u32 secid);
int security_kernel_create_files_as(struct cred *new, struct inode *inode);
int security_kernel_module_request(char *kmod_name);
int security_kernel_module_from_file(struct file *file);
int security_task_fix_setuid(struct cred *new, const struct cred *old,
int flags);
int security_task_setpgid(struct task_struct *p, pid_t pgid);
int security_task_getpgid(struct task_struct *p);
int security_task_getsid(struct task_struct *p);
void security_task_getsecid(struct task_struct *p, u32 *secid);
int security_task_setnice(struct task_struct *p, int nice);
int security_task_setioprio(struct task_struct *p, int ioprio);
int security_task_getioprio(struct task_struct *p);
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim);
int security_task_setscheduler(struct task_struct *p);
int security_task_getscheduler(struct task_struct *p);
int security_task_movememory(struct task_struct *p);
int security_task_kill(struct task_struct *p, struct siginfo *info,
int sig, u32 secid);
int security_task_wait(struct task_struct *p);
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5);
void security_task_to_inode(struct task_struct *p, struct inode *inode);
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
int security_msg_msg_alloc(struct msg_msg *msg);
void security_msg_msg_free(struct msg_msg *msg);
int security_msg_queue_alloc(struct msg_queue *msq);
void security_msg_queue_free(struct msg_queue *msq);
int security_msg_queue_associate(struct msg_queue *msq, int msqflg);
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd);
int security_msg_queue_msgsnd(struct msg_queue *msq,
struct msg_msg *msg, int msqflg);
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode);
int security_shm_alloc(struct shmid_kernel *shp);
void security_shm_free(struct shmid_kernel *shp);
int security_shm_associate(struct shmid_kernel *shp, int shmflg);
int security_shm_shmctl(struct shmid_kernel *shp, int cmd);
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg);
int security_sem_alloc(struct sem_array *sma);
void security_sem_free(struct sem_array *sma);
int security_sem_associate(struct sem_array *sma, int semflg);
int security_sem_semctl(struct sem_array *sma, int cmd);
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
unsigned nsops, int alter);
void security_d_instantiate(struct dentry *dentry, struct inode *inode);
int security_getprocattr(struct task_struct *p, char *name, char **value);
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size);
int security_netlink_send(struct sock *sk, struct sk_buff *skb);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
void security_release_secctx(char *secdata, u32 seclen);
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen);
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen);
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen);
#else /* CONFIG_SECURITY */
struct security_mnt_opts {
};
static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
{
}
static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
{
}
/*
* This is the default capabilities functionality. Most of these functions
* are just stubbed out, but a few must call the proper capable code.
*/
static inline int security_init(void)
{
return 0;
}
static inline int security_ptrace_access_check(struct task_struct *child,
unsigned int mode)
{
return cap_ptrace_access_check(child, mode);
}
static inline int security_ptrace_traceme(struct task_struct *parent)
{
return cap_ptrace_traceme(parent);
}
static inline int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return cap_capget(target, effective, inheritable, permitted);
}
static inline int security_capset(struct cred *new,
const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return cap_capset(new, old, effective, inheritable, permitted);
}
static inline int security_capable(const struct cred *cred,
struct user_namespace *ns, int cap)
{
return cap_capable(cred, ns, cap, SECURITY_CAP_AUDIT);
}
static inline int security_capable_noaudit(const struct cred *cred,
struct user_namespace *ns, int cap) {
return cap_capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
}
static inline int security_quotactl(int cmds, int type, int id,
struct super_block *sb)
{
return 0;
}
static inline int security_quota_on(struct dentry *dentry)
{
return 0;
}
static inline int security_syslog(int type)
{
return 0;
}
static inline int security_settime(const struct timespec *ts,
const struct timezone *tz)
{
return cap_settime(ts, tz);
}
static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
return cap_vm_enough_memory(mm, pages);
}
static inline int security_bprm_set_creds(struct linux_binprm *bprm)
{
return cap_bprm_set_creds(bprm);
}
static inline int security_bprm_check(struct linux_binprm *bprm)
{
return 0;
}
static inline void security_bprm_committing_creds(struct linux_binprm *bprm)
{
}
static inline void security_bprm_committed_creds(struct linux_binprm *bprm)
{
}
static inline int security_bprm_secureexec(struct linux_binprm *bprm)
{
return cap_bprm_secureexec(bprm);
}
static inline int security_sb_alloc(struct super_block *sb)
{
return 0;
}
static inline void security_sb_free(struct super_block *sb)
{ }
static inline int security_sb_copy_data(char *orig, char *copy)
{
return 0;
}
static inline int security_sb_remount(struct super_block *sb, void *data)
{
return 0;
}
static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
return 0;
}
static inline int security_sb_show_options(struct seq_file *m,
struct super_block *sb)
{
return 0;
}
static inline int security_sb_statfs(struct dentry *dentry)
{
return 0;
}
static inline int security_sb_mount(const char *dev_name, struct path *path,
const char *type, unsigned long flags,
void *data)
{
return 0;
}
static inline int security_sb_umount(struct vfsmount *mnt, int flags)
{
return 0;
}
static inline int security_sb_pivotroot(struct path *old_path,
struct path *new_path)
{
return 0;
}
static inline int security_sb_set_mnt_opts(struct super_block *sb,
struct security_mnt_opts *opts)
{
return 0;
}
static inline int security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb)
{
return 0;
}
static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
{
return 0;
}
static inline int security_inode_alloc(struct inode *inode)
{
return 0;
}
static inline void security_inode_free(struct inode *inode)
{ }
static inline int security_dentry_init_security(struct dentry *dentry,
int mode,
struct qstr *name,
void **ctx,
u32 *ctxlen)
{
return -EOPNOTSUPP;
}
static inline int security_inode_init_security(struct inode *inode,
struct inode *dir,
const struct qstr *qstr,
const initxattrs initxattrs,
void *fs_data)
{
return 0;
}
static inline int security_old_inode_init_security(struct inode *inode,
struct inode *dir,
const struct qstr *qstr,
char **name, void **value,
size_t *len)
{
return -EOPNOTSUPP;
}
static inline int security_inode_create(struct inode *dir,
struct dentry *dentry,
umode_t mode)
{
return 0;
}
static inline int security_inode_link(struct dentry *old_dentry,
struct inode *dir,
struct dentry *new_dentry)
{
return 0;
}
static inline int security_inode_unlink(struct inode *dir,
struct dentry *dentry)
{
return 0;
}
static inline int security_inode_symlink(struct inode *dir,
struct dentry *dentry,
const char *old_name)
{
return 0;
}
static inline int security_inode_mkdir(struct inode *dir,
struct dentry *dentry,
int mode)
{
return 0;
}
static inline int security_inode_rmdir(struct inode *dir,
struct dentry *dentry)
{
return 0;
}
static inline int security_inode_mknod(struct inode *dir,
struct dentry *dentry,
int mode, dev_t dev)
{
return 0;
}
static inline int security_inode_rename(struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry)
{
return 0;
}
static inline int security_inode_readlink(struct dentry *dentry)
{
return 0;
}
static inline int security_inode_follow_link(struct dentry *dentry,
struct nameidata *nd)
{
return 0;
}
static inline int security_inode_permission(struct inode *inode, int mask)
{
return 0;
}
static inline int security_inode_setattr(struct dentry *dentry,
struct iattr *attr)
{
return 0;
}
static inline int security_inode_getattr(struct vfsmount *mnt,
struct dentry *dentry)
{
return 0;
}
static inline int security_inode_setxattr(struct dentry *dentry,
const char *name, const void *value, size_t size, int flags)
{
return cap_inode_setxattr(dentry, name, value, size, flags);
}
static inline void security_inode_post_setxattr(struct dentry *dentry,
const char *name, const void *value, size_t size, int flags)
{ }
static inline int security_inode_getxattr(struct dentry *dentry,
const char *name)
{
return 0;
}
static inline int security_inode_listxattr(struct dentry *dentry)
{
return 0;
}
static inline int security_inode_removexattr(struct dentry *dentry,
const char *name)
{
return cap_inode_removexattr(dentry, name);
}
static inline int security_inode_need_killpriv(struct dentry *dentry)
{
return cap_inode_need_killpriv(dentry);
}
static inline int security_inode_killpriv(struct dentry *dentry)
{
return cap_inode_killpriv(dentry);
}
static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
{
return -EOPNOTSUPP;
}
static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
return -EOPNOTSUPP;
}
static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
return 0;
}
static inline void security_inode_getsecid(const struct inode *inode, u32 *secid)
{
*secid = 0;
}
static inline int security_file_permission(struct file *file, int mask)
{
return 0;
}
static inline int security_file_alloc(struct file *file)
{
return 0;
}
static inline void security_file_free(struct file *file)
{ }
static inline int security_file_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
return 0;
}
static inline int security_mmap_file(struct file *file, unsigned long prot,
unsigned long flags)
{
return 0;
}
static inline int security_mmap_addr(unsigned long addr)
{
return cap_mmap_addr(addr);
}
static inline int security_file_mprotect(struct vm_area_struct *vma,
unsigned long reqprot,
unsigned long prot)
{
return 0;
}
static inline int security_file_lock(struct file *file, unsigned int cmd)
{
return 0;
}
static inline int security_file_fcntl(struct file *file, unsigned int cmd,
unsigned long arg)
{
return 0;
}
static inline int security_file_set_fowner(struct file *file)
{
return 0;
}
static inline int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown,
int sig)
{
return 0;
}
static inline int security_file_receive(struct file *file)
{
return 0;
}
static inline int security_file_open(struct file *file,
const struct cred *cred)
{
return 0;
}
static inline int security_task_create(unsigned long clone_flags)
{
return 0;
}
static inline void security_task_free(struct task_struct *task)
{ }
static inline int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
return 0;
}
static inline void security_cred_free(struct cred *cred)
{ }
static inline int security_prepare_creds(struct cred *new,
const struct cred *old,
gfp_t gfp)
{
return 0;
}
static inline void security_transfer_creds(struct cred *new,
const struct cred *old)
{
}
static inline int security_kernel_act_as(struct cred *cred, u32 secid)
{
return 0;
}
static inline int security_kernel_create_files_as(struct cred *cred,
struct inode *inode)
{
return 0;
}
static inline int security_kernel_module_request(char *kmod_name)
{
return 0;
}
static inline int security_kernel_module_from_file(struct file *file)
{
return 0;
}
static inline int security_task_fix_setuid(struct cred *new,
const struct cred *old,
int flags)
{
return cap_task_fix_setuid(new, old, flags);
}
static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return 0;
}
static inline int security_task_getpgid(struct task_struct *p)
{
return 0;
}
static inline int security_task_getsid(struct task_struct *p)
{
return 0;
}
static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
{
*secid = 0;
}
static inline int security_task_setnice(struct task_struct *p, int nice)
{
return cap_task_setnice(p, nice);
}
static inline int security_task_setioprio(struct task_struct *p, int ioprio)
{
return cap_task_setioprio(p, ioprio);
}
static inline int security_task_getioprio(struct task_struct *p)
{
return 0;
}
static inline int security_task_setrlimit(struct task_struct *p,
unsigned int resource,
struct rlimit *new_rlim)
{
return 0;
}
static inline int security_task_setscheduler(struct task_struct *p)
{
return cap_task_setscheduler(p);
}
static inline int security_task_getscheduler(struct task_struct *p)
{
return 0;
}
static inline int security_task_movememory(struct task_struct *p)
{
return 0;
}
static inline int security_task_kill(struct task_struct *p,
struct siginfo *info, int sig,
u32 secid)
{
return 0;
}
static inline int security_task_wait(struct task_struct *p)
{
return 0;
}
static inline int security_task_prctl(int option, unsigned long arg2,
unsigned long arg3,
unsigned long arg4,
unsigned long arg5)
{
return cap_task_prctl(option, arg2, arg3, arg3, arg5);
}
static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
{ }
static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
short flag)
{
return 0;
}
static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
*secid = 0;
}
static inline int security_msg_msg_alloc(struct msg_msg *msg)
{
return 0;
}
static inline void security_msg_msg_free(struct msg_msg *msg)
{ }
static inline int security_msg_queue_alloc(struct msg_queue *msq)
{
return 0;
}
static inline void security_msg_queue_free(struct msg_queue *msq)
{ }
static inline int security_msg_queue_associate(struct msg_queue *msq,
int msqflg)
{
return 0;
}
static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
{
return 0;
}
static inline int security_msg_queue_msgsnd(struct msg_queue *msq,
struct msg_msg *msg, int msqflg)
{
return 0;
}
static inline int security_msg_queue_msgrcv(struct msg_queue *msq,
struct msg_msg *msg,
struct task_struct *target,
long type, int mode)
{
return 0;
}
static inline int security_shm_alloc(struct shmid_kernel *shp)
{
return 0;
}
static inline void security_shm_free(struct shmid_kernel *shp)
{ }
static inline int security_shm_associate(struct shmid_kernel *shp,
int shmflg)
{
return 0;
}
static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
{
return 0;
}
static inline int security_shm_shmat(struct shmid_kernel *shp,
char __user *shmaddr, int shmflg)
{
return 0;
}
static inline int security_sem_alloc(struct sem_array *sma)
{
return 0;
}
static inline void security_sem_free(struct sem_array *sma)
{ }
static inline int security_sem_associate(struct sem_array *sma, int semflg)
{
return 0;
}
static inline int security_sem_semctl(struct sem_array *sma, int cmd)
{
return 0;
}
static inline int security_sem_semop(struct sem_array *sma,
struct sembuf *sops, unsigned nsops,
int alter)
{
return 0;
}
static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{ }
static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
{
return -EINVAL;
}
static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return -EINVAL;
}
static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return cap_netlink_send(sk, skb);
}
static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return -EOPNOTSUPP;
}
static inline int security_secctx_to_secid(const char *secdata,
u32 seclen,
u32 *secid)
{
return -EOPNOTSUPP;
}
static inline void security_release_secctx(char *secdata, u32 seclen)
{
}
static inline int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
return -EOPNOTSUPP;
}
static inline int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return -EOPNOTSUPP;
}
static inline int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_SECURITY */
#ifdef CONFIG_SECURITY_NETWORK
int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk);
int security_unix_may_send(struct socket *sock, struct socket *other);
int security_socket_create(int family, int type, int protocol, int kern);
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern);
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen);
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen);
int security_socket_listen(struct socket *sock, int backlog);
int security_socket_accept(struct socket *sock, struct socket *newsock);
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags);
int security_socket_getsockname(struct socket *sock);
int security_socket_getpeername(struct socket *sock);
int security_socket_getsockopt(struct socket *sock, int level, int optname);
int security_socket_setsockopt(struct socket *sock, int level, int optname);
int security_socket_shutdown(struct socket *sock, int how);
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len);
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
void security_sk_free(struct sock *sk);
void security_sk_clone(const struct sock *sk, struct sock *newsk);
void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl);
void security_sock_graft(struct sock*sk, struct socket *parent);
int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req);
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req);
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb);
int security_secmark_relabel_packet(u32 secid);
void security_secmark_refcount_inc(void);
void security_secmark_refcount_dec(void);
int security_tun_dev_alloc_security(void **security);
void security_tun_dev_free_security(void *security);
int security_tun_dev_create(void);
int security_tun_dev_attach_queue(void *security);
int security_tun_dev_attach(struct sock *sk, void *security);
int security_tun_dev_open(void *security);
void security_skb_owned_by(struct sk_buff *skb, struct sock *sk);
#else /* CONFIG_SECURITY_NETWORK */
static inline int security_unix_stream_connect(struct sock *sock,
struct sock *other,
struct sock *newsk)
{
return 0;
}
static inline int security_unix_may_send(struct socket *sock,
struct socket *other)
{
return 0;
}
static inline int security_socket_create(int family, int type,
int protocol, int kern)
{
return 0;
}
static inline int security_socket_post_create(struct socket *sock,
int family,
int type,
int protocol, int kern)
{
return 0;
}
static inline int security_socket_bind(struct socket *sock,
struct sockaddr *address,
int addrlen)
{
return 0;
}
static inline int security_socket_connect(struct socket *sock,
struct sockaddr *address,
int addrlen)
{
return 0;
}
static inline int security_socket_listen(struct socket *sock, int backlog)
{
return 0;
}
static inline int security_socket_accept(struct socket *sock,
struct socket *newsock)
{
return 0;
}
static inline int security_socket_sendmsg(struct socket *sock,
struct msghdr *msg, int size)
{
return 0;
}
static inline int security_socket_recvmsg(struct socket *sock,
struct msghdr *msg, int size,
int flags)
{
return 0;
}
static inline int security_socket_getsockname(struct socket *sock)
{
return 0;
}
static inline int security_socket_getpeername(struct socket *sock)
{
return 0;
}
static inline int security_socket_getsockopt(struct socket *sock,
int level, int optname)
{
return 0;
}
static inline int security_socket_setsockopt(struct socket *sock,
int level, int optname)
{
return 0;
}
static inline int security_socket_shutdown(struct socket *sock, int how)
{
return 0;
}
static inline int security_sock_rcv_skb(struct sock *sk,
struct sk_buff *skb)
{
return 0;
}
static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return -ENOPROTOOPT;
}
static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return -ENOPROTOOPT;
}
static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return 0;
}
static inline void security_sk_free(struct sock *sk)
{
}
static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
}
static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
}
static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
}
static inline void security_sock_graft(struct sock *sk, struct socket *parent)
{
}
static inline int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return 0;
}
static inline void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
}
static inline void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
}
static inline int security_secmark_relabel_packet(u32 secid)
{
return 0;
}
static inline void security_secmark_refcount_inc(void)
{
}
static inline void security_secmark_refcount_dec(void)
{
}
static inline int security_tun_dev_alloc_security(void **security)
{
return 0;
}
static inline void security_tun_dev_free_security(void *security)
{
}
static inline int security_tun_dev_create(void)
{
return 0;
}
static inline int security_tun_dev_attach_queue(void *security)
{
return 0;
}
static inline int security_tun_dev_attach(struct sock *sk, void *security)
{
return 0;
}
static inline int security_tun_dev_open(void *security)
{
return 0;
}
static inline void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
{
}
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp);
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid);
int security_xfrm_state_delete(struct xfrm_state *x);
void security_xfrm_state_free(struct xfrm_state *x);
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp,
const struct flowi *fl);
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);
#else /* CONFIG_SECURITY_NETWORK_XFRM */
static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
{
return 0;
}
static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp)
{
return 0;
}
static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
}
static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
return 0;
}
static inline int security_xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx)
{
return 0;
}
static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
return 0;
}
static inline void security_xfrm_state_free(struct xfrm_state *x)
{
}
static inline int security_xfrm_state_delete(struct xfrm_state *x)
{
return 0;
}
static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
{
return 0;
}
static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, const struct flowi *fl)
{
return 1;
}
static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return 0;
}
static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
}
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_SECURITY_PATH
int security_path_unlink(struct path *dir, struct dentry *dentry);
int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode);
int security_path_rmdir(struct path *dir, struct dentry *dentry);
int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
unsigned int dev);
int security_path_truncate(struct path *path);
int security_path_symlink(struct path *dir, struct dentry *dentry,
const char *old_name);
int security_path_link(struct dentry *old_dentry, struct path *new_dir,
struct dentry *new_dentry);
int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
struct path *new_dir, struct dentry *new_dentry);
int security_path_chmod(struct path *path, umode_t mode);
int security_path_chown(struct path *path, kuid_t uid, kgid_t gid);
int security_path_chroot(struct path *path);
#else /* CONFIG_SECURITY_PATH */
static inline int security_path_unlink(struct path *dir, struct dentry *dentry)
{
return 0;
}
static inline int security_path_mkdir(struct path *dir, struct dentry *dentry,
umode_t mode)
{
return 0;
}
static inline int security_path_rmdir(struct path *dir, struct dentry *dentry)
{
return 0;
}
static inline int security_path_mknod(struct path *dir, struct dentry *dentry,
umode_t mode, unsigned int dev)
{
return 0;
}
static inline int security_path_truncate(struct path *path)
{
return 0;
}
static inline int security_path_symlink(struct path *dir, struct dentry *dentry,
const char *old_name)
{
return 0;
}
static inline int security_path_link(struct dentry *old_dentry,
struct path *new_dir,
struct dentry *new_dentry)
{
return 0;
}
static inline int security_path_rename(struct path *old_dir,
struct dentry *old_dentry,
struct path *new_dir,
struct dentry *new_dentry)
{
return 0;
}
static inline int security_path_chmod(struct path *path, umode_t mode)
{
return 0;
}
static inline int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
{
return 0;
}
static inline int security_path_chroot(struct path *path)
{
return 0;
}
#endif /* CONFIG_SECURITY_PATH */
#ifdef CONFIG_KEYS
#ifdef CONFIG_SECURITY
int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags);
void security_key_free(struct key *key);
int security_key_permission(key_ref_t key_ref,
const struct cred *cred, key_perm_t perm);
int security_key_getsecurity(struct key *key, char **_buffer);
#else
static inline int security_key_alloc(struct key *key,
const struct cred *cred,
unsigned long flags)
{
return 0;
}
static inline void security_key_free(struct key *key)
{
}
static inline int security_key_permission(key_ref_t key_ref,
const struct cred *cred,
key_perm_t perm)
{
return 0;
}
static inline int security_key_getsecurity(struct key *key, char **_buffer)
{
*_buffer = NULL;
return 0;
}
#endif
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
#ifdef CONFIG_SECURITY
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
int security_audit_rule_known(struct audit_krule *krule);
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
struct audit_context *actx);
void security_audit_rule_free(void *lsmrule);
#else
static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
void **lsmrule)
{
return 0;
}
static inline int security_audit_rule_known(struct audit_krule *krule)
{
return 0;
}
static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
void *lsmrule, struct audit_context *actx)
{
return 0;
}
static inline void security_audit_rule_free(void *lsmrule)
{ }
#endif /* CONFIG_SECURITY */
#endif /* CONFIG_AUDIT */
#ifdef CONFIG_SECURITYFS
extern struct dentry *securityfs_create_file(const char *name, umode_t mode,
struct dentry *parent, void *data,
const struct file_operations *fops);
extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
extern void securityfs_remove(struct dentry *dentry);
#else /* CONFIG_SECURITYFS */
static inline struct dentry *securityfs_create_dir(const char *name,
struct dentry *parent)
{
return ERR_PTR(-ENODEV);
}
static inline struct dentry *securityfs_create_file(const char *name,
umode_t mode,
struct dentry *parent,
void *data,
const struct file_operations *fops)
{
return ERR_PTR(-ENODEV);
}
static inline void securityfs_remove(struct dentry *dentry)
{}
#endif
#ifdef CONFIG_SECURITY
static inline char *alloc_secdata(void)
{
return (char *)get_zeroed_page(GFP_KERNEL);
}
static inline void free_secdata(void *secdata)
{
free_page((unsigned long)secdata);
}
#else
static inline char *alloc_secdata(void)
{
return (char *)1;
}
static inline void free_secdata(void *secdata)
{ }
#endif /* CONFIG_SECURITY */
#ifdef CONFIG_SECURITY_YAMA
extern int yama_ptrace_access_check(struct task_struct *child,
unsigned int mode);
extern int yama_ptrace_traceme(struct task_struct *parent);
extern void yama_task_free(struct task_struct *task);
extern int yama_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5);
#else
static inline int yama_ptrace_access_check(struct task_struct *child,
unsigned int mode)
{
return 0;
}
static inline int yama_ptrace_traceme(struct task_struct *parent)
{
return 0;
}
static inline void yama_task_free(struct task_struct *task)
{
}
static inline int yama_task_prctl(int option, unsigned long arg2,
unsigned long arg3, unsigned long arg4,
unsigned long arg5)
{
return -ENOSYS;
}
#endif /* CONFIG_SECURITY_YAMA */
#endif /* ! __LINUX_SECURITY_H */