/*
* Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef __MTD_MTD_H__
#define __MTD_MTD_H__
#include <linux/types.h>
#include <linux/uio.h>
#include <linux/notifier.h>
#include <linux/device.h>
#include <mtd/mtd-abi.h>
#include <asm/div64.h>
#define MTD_CHAR_MAJOR 90
#define MTD_BLOCK_MAJOR 31
#define MTD_ERASE_PENDING 0x01
#define MTD_ERASING 0x02
#define MTD_ERASE_SUSPEND 0x04
#define MTD_ERASE_DONE 0x08
#define MTD_ERASE_FAILED 0x10
#define MTD_FAIL_ADDR_UNKNOWN -1LL
/*
* If the erase fails, fail_addr might indicate exactly which block failed. If
* fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
* or was not specific to any particular block.
*/
struct erase_info {
struct mtd_info *mtd;
uint64_t addr;
uint64_t len;
uint64_t fail_addr;
u_long time;
u_long retries;
unsigned dev;
unsigned cell;
void (*callback) (struct erase_info *self);
u_long priv;
u_char state;
struct erase_info *next;
};
struct mtd_erase_region_info {
uint64_t offset; /* At which this region starts, from the beginning of the MTD */
uint32_t erasesize; /* For this region */
uint32_t numblocks; /* Number of blocks of erasesize in this region */
unsigned long *lockmap; /* If keeping bitmap of locks */
};
/**
* struct mtd_oob_ops - oob operation operands
* @mode: operation mode
*
* @len: number of data bytes to write/read
*
* @retlen: number of data bytes written/read
*
* @ooblen: number of oob bytes to write/read
* @oobretlen: number of oob bytes written/read
* @ooboffs: offset of oob data in the oob area (only relevant when
* mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
* @datbuf: data buffer - if NULL only oob data are read/written
* @oobbuf: oob data buffer
*
* Note, it is allowed to read more than one OOB area at one go, but not write.
* The interface assumes that the OOB write requests program only one page's
* OOB area.
*/
struct mtd_oob_ops {
unsigned int mode;
size_t len;
size_t retlen;
size_t ooblen;
size_t oobretlen;
uint32_t ooboffs;
uint8_t *datbuf;
uint8_t *oobbuf;
};
#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
#define MTD_MAX_ECCPOS_ENTRIES_LARGE 448
/*
* Internal ECC layout control structure. For historical reasons, there is a
* similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
* for export to user-space via the ECCGETLAYOUT ioctl.
* nand_ecclayout should be expandable in the future simply by the above macros.
*/
struct nand_ecclayout {
__u32 eccbytes;
__u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE];
__u32 oobavail;
struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE];
};
struct module; /* only needed for owner field in mtd_info */
struct mtd_info {
u_char type;
uint32_t flags;
uint64_t size; // Total size of the MTD
/* "Major" erase size for the device. Naïve users may take this
* to be the only erase size available, or may use the more detailed
* information below if they desire
*/
uint32_t erasesize;
/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
* though individual bits can be cleared), in case of NAND flash it is
* one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
* it is of ECC block size, etc. It is illegal to have writesize = 0.
* Any driver registering a struct mtd_info must ensure a writesize of
* 1 or larger.
*/
uint32_t writesize;
/*
* Size of the write buffer used by the MTD. MTD devices having a write
* buffer can write multiple writesize chunks at a time. E.g. while
* writing 4 * writesize bytes to a device with 2 * writesize bytes
* buffer the MTD driver can (but doesn't have to) do 2 writesize
* operations, but not 4. Currently, all NANDs have writebufsize
* equivalent to writesize (NAND page size). Some NOR flashes do have
* writebufsize greater than writesize.
*/
uint32_t writebufsize;
uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
uint32_t oobavail; // Available OOB bytes per block
/*
* If erasesize is a power of 2 then the shift is stored in
* erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
*/
unsigned int erasesize_shift;
unsigned int writesize_shift;
/* Masks based on erasesize_shift and writesize_shift */
unsigned int erasesize_mask;
unsigned int writesize_mask;
// Kernel-only stuff starts here.
const char *name;
int index;
/* ECC layout structure pointer - read only! */
struct nand_ecclayout *ecclayout;
/* Data for variable erase regions. If numeraseregions is zero,
* it means that the whole device has erasesize as given above.
*/
int numeraseregions;
struct mtd_erase_region_info *eraseregions;
/*
* Do not call via these pointers, use corresponding mtd_*()
* wrappers instead.
*/
int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
int (*point) (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys);
void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
unsigned long len,
unsigned long offset,
unsigned long flags);
int (*read) (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);
int (*write) (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
int (*read_oob) (struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops);
int (*write_oob) (struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
size_t len);
int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf);
int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
size_t len);
int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf);
int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, u_char *buf);
int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
size_t len);
int (*writev) (struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen);
void (*sync) (struct mtd_info *mtd);
int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
int (*suspend) (struct mtd_info *mtd);
void (*resume) (struct mtd_info *mtd);
/*
* If the driver is something smart, like UBI, it may need to maintain
* its own reference counting. The below functions are only for driver.
*/
int (*get_device) (struct mtd_info *mtd);
void (*put_device) (struct mtd_info *mtd);
/* Backing device capabilities for this device
* - provides mmap capabilities
*/
struct backing_dev_info *backing_dev_info;
struct notifier_block reboot_notifier; /* default mode before reboot */
/* ECC status information */
struct mtd_ecc_stats ecc_stats;
/* Subpage shift (NAND) */
int subpage_sft;
void *priv;
struct module *owner;
struct device dev;
int usecount;
};
/*
* Erase is an asynchronous operation. Device drivers are supposed
* to call instr->callback() whenever the operation completes, even
* if it completes with a failure.
* Callers are supposed to pass a callback function and wait for it
* to be called before writing to the block.
*/
static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return mtd->erase(mtd, instr);
}
/*
* This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
*/
static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys)
{
*retlen = 0;
return mtd->point(mtd, from, len, retlen, virt, phys);
}
/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
return mtd->unpoint(mtd, from, len);
}
/*
* Allow NOMMU mmap() to directly map the device (if not NULL)
* - return the address to which the offset maps
* - return -ENOSYS to indicate refusal to do the mapping
*/
static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd,
unsigned long len,
unsigned long offset,
unsigned long flags)
{
return mtd->get_unmapped_area(mtd, len, offset, flags);
}
static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
return mtd->read(mtd, from, len, retlen, buf);
}
static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
*retlen = 0;
if (!mtd->write)
return -EROFS;
return mtd->write(mtd, to, len, retlen, buf);
}
/*
* In blackbox flight recorder like scenarios we want to make successful writes
* in interrupt context. panic_write() is only intended to be called when its
* known the kernel is about to panic and we need the write to succeed. Since
* the kernel is not going to be running for much longer, this function can
* break locks and delay to ensure the write succeeds (but not sleep).
*/
static inline int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
*retlen = 0;
return mtd->panic_write(mtd, to, len, retlen, buf);
}
static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
ops->retlen = ops->oobretlen = 0;
return mtd->read_oob(mtd, from, ops);
}
static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
ops->retlen = ops->oobretlen = 0;
return mtd->write_oob(mtd, to, ops);
}
/*
* Method to access the protection register area, present in some flash
* devices. The user data is one time programmable but the factory data is read
* only.
*/
static inline int mtd_get_fact_prot_info(struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
return mtd->get_fact_prot_info(mtd, buf, len);
}
static inline int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
*retlen = 0;
return mtd->read_fact_prot_reg(mtd, from, len, retlen, buf);
}
static inline int mtd_get_user_prot_info(struct mtd_info *mtd,
struct otp_info *buf,
size_t len)
{
return mtd->get_user_prot_info(mtd, buf, len);
}
static inline int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
*retlen = 0;
return mtd->read_user_prot_reg(mtd, from, len, retlen, buf);
}
static inline int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to,
size_t len, size_t *retlen,
u_char *buf)
{
*retlen = 0;
return mtd->write_user_prot_reg(mtd, to, len, retlen, buf);
}
static inline int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
return mtd->lock_user_prot_reg(mtd, from, len);
}
/*
* kvec-based read/write method. NB: The 'count' parameter is the number of
* _vectors_, each of which contains an (ofs, len) tuple.
*/
static inline int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
*retlen = 0;
return mtd->writev(mtd, vecs, count, to, retlen);
}
static inline void mtd_sync(struct mtd_info *mtd)
{
mtd->sync(mtd);
}
/* Chip-supported device locking */
static inline int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->lock(mtd, ofs, len);
}
static inline int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->unlock(mtd, ofs, len);
}
static inline int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->is_locked(mtd, ofs, len);
}
static inline int mtd_suspend(struct mtd_info *mtd)
{
return mtd->suspend(mtd);
}
static inline void mtd_resume(struct mtd_info *mtd)
{
mtd->resume(mtd);
}
static inline int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
return mtd->block_isbad(mtd, ofs);
}
static inline int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
return mtd->block_markbad(mtd, ofs);
}
static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
{
if (mtd->erasesize_shift)
return sz >> mtd->erasesize_shift;
do_div(sz, mtd->erasesize);
return sz;
}
static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
{
if (mtd->erasesize_shift)
return sz & mtd->erasesize_mask;
return do_div(sz, mtd->erasesize);
}
static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
{
if (mtd->writesize_shift)
return sz >> mtd->writesize_shift;
do_div(sz, mtd->writesize);
return sz;
}
static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
{
if (mtd->writesize_shift)
return sz & mtd->writesize_mask;
return do_div(sz, mtd->writesize);
}
/* Kernel-side ioctl definitions */
struct mtd_partition;
struct mtd_part_parser_data;
extern int mtd_device_parse_register(struct mtd_info *mtd,
const char **part_probe_types,
struct mtd_part_parser_data *parser_data,
const struct mtd_partition *defparts,
int defnr_parts);
#define mtd_device_register(master, parts, nr_parts) \
mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
extern int mtd_device_unregister(struct mtd_info *master);
extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
extern int __get_mtd_device(struct mtd_info *mtd);
extern void __put_mtd_device(struct mtd_info *mtd);
extern struct mtd_info *get_mtd_device_nm(const char *name);
extern void put_mtd_device(struct mtd_info *mtd);
struct mtd_notifier {
void (*add)(struct mtd_info *mtd);
void (*remove)(struct mtd_info *mtd);
struct list_head list;
};
extern void register_mtd_user (struct mtd_notifier *new);
extern int unregister_mtd_user (struct mtd_notifier *old);
int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen);
void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
void mtd_erase_callback(struct erase_info *instr);
static inline int mtd_is_bitflip(int err) {
return err == -EUCLEAN;
}
static inline int mtd_is_eccerr(int err) {
return err == -EBADMSG;
}
static inline int mtd_is_bitflip_or_eccerr(int err) {
return mtd_is_bitflip(err) || mtd_is_eccerr(err);
}
#endif /* __MTD_MTD_H__ */