/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MMU_NOTIFIER_H
#define _LINUX_MMU_NOTIFIER_H
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/mm_types.h>
#include <linux/srcu.h>
struct mmu_notifier;
struct mmu_notifier_ops;
#ifdef CONFIG_MMU_NOTIFIER
/*
* The mmu notifier_mm structure is allocated and installed in
* mm->mmu_notifier_mm inside the mm_take_all_locks() protected
* critical section and it's released only when mm_count reaches zero
* in mmdrop().
*/
struct mmu_notifier_mm {
/* all mmu notifiers registerd in this mm are queued in this list */
struct hlist_head list;
/* to serialize the list modifications and hlist_unhashed */
spinlock_t lock;
};
struct mmu_notifier_range {
struct mm_struct *mm;
unsigned long start;
unsigned long end;
bool blockable;
};
struct mmu_notifier_ops {
/*
* Called either by mmu_notifier_unregister or when the mm is
* being destroyed by exit_mmap, always before all pages are
* freed. This can run concurrently with other mmu notifier
* methods (the ones invoked outside the mm context) and it
* should tear down all secondary mmu mappings and freeze the
* secondary mmu. If this method isn't implemented you've to
* be sure that nothing could possibly write to the pages
* through the secondary mmu by the time the last thread with
* tsk->mm == mm exits.
*
* As side note: the pages freed after ->release returns could
* be immediately reallocated by the gart at an alias physical
* address with a different cache model, so if ->release isn't
* implemented because all _software_ driven memory accesses
* through the secondary mmu are terminated by the time the
* last thread of this mm quits, you've also to be sure that
* speculative _hardware_ operations can't allocate dirty
* cachelines in the cpu that could not be snooped and made
* coherent with the other read and write operations happening
* through the gart alias address, so leading to memory
* corruption.
*/
void (*release)(struct mmu_notifier *mn,
struct mm_struct *mm);
/*
* clear_flush_young is called after the VM is
* test-and-clearing the young/accessed bitflag in the
* pte. This way the VM will provide proper aging to the
* accesses to the page through the secondary MMUs and not
* only to the ones through the Linux pte.
* Start-end is necessary in case the secondary MMU is mapping the page
* at a smaller granularity than the primary MMU.
*/
int (*clear_flush_young)(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end);
/*
* clear_young is a lightweight version of clear_flush_young. Like the
* latter, it is supposed to test-and-clear the young/accessed bitflag
* in the secondary pte, but it may omit flushing the secondary tlb.
*/
int (*clear_young)(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end);
/*
* test_young is called to check the young/accessed bitflag in
* the secondary pte. This is used to know if the page is
* frequently used without actually clearing the flag or tearing
* down the secondary mapping on the page.
*/
int (*test_young)(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address);
/*
* change_pte is called in cases that pte mapping to page is changed:
* for example, when ksm remaps pte to point to a new shared page.
*/
void (*change_pte)(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address,
pte_t pte);
/*
* invalidate_range_start() and invalidate_range_end() must be
* paired and are called only when the mmap_sem and/or the
* locks protecting the reverse maps are held. If the subsystem
* can't guarantee that no additional references are taken to
* the pages in the range, it has to implement the
* invalidate_range() notifier to remove any references taken
* after invalidate_range_start().
*
* Invalidation of multiple concurrent ranges may be
* optionally permitted by the driver. Either way the
* establishment of sptes is forbidden in the range passed to
* invalidate_range_begin/end for the whole duration of the
* invalidate_range_begin/end critical section.
*
* invalidate_range_start() is called when all pages in the
* range are still mapped and have at least a refcount of one.
*
* invalidate_range_end() is called when all pages in the
* range have been unmapped and the pages have been freed by
* the VM.
*
* The VM will remove the page table entries and potentially
* the page between invalidate_range_start() and
* invalidate_range_end(). If the page must not be freed
* because of pending I/O or other circumstances then the
* invalidate_range_start() callback (or the initial mapping
* by the driver) must make sure that the refcount is kept
* elevated.
*
* If the driver increases the refcount when the pages are
* initially mapped into an address space then either
* invalidate_range_start() or invalidate_range_end() may
* decrease the refcount. If the refcount is decreased on
* invalidate_range_start() then the VM can free pages as page
* table entries are removed. If the refcount is only
* droppped on invalidate_range_end() then the driver itself
* will drop the last refcount but it must take care to flush
* any secondary tlb before doing the final free on the
* page. Pages will no longer be referenced by the linux
* address space but may still be referenced by sptes until
* the last refcount is dropped.
*
* If blockable argument is set to false then the callback cannot
* sleep and has to return with -EAGAIN. 0 should be returned
* otherwise. Please note that if invalidate_range_start approves
* a non-blocking behavior then the same applies to
* invalidate_range_end.
*
*/
int (*invalidate_range_start)(struct mmu_notifier *mn,
const struct mmu_notifier_range *range);
void (*invalidate_range_end)(struct mmu_notifier *mn,
const struct mmu_notifier_range *range);
/*
* invalidate_range() is either called between
* invalidate_range_start() and invalidate_range_end() when the
* VM has to free pages that where unmapped, but before the
* pages are actually freed, or outside of _start()/_end() when
* a (remote) TLB is necessary.
*
* If invalidate_range() is used to manage a non-CPU TLB with
* shared page-tables, it not necessary to implement the
* invalidate_range_start()/end() notifiers, as
* invalidate_range() alread catches the points in time when an
* external TLB range needs to be flushed. For more in depth
* discussion on this see Documentation/vm/mmu_notifier.rst
*
* Note that this function might be called with just a sub-range
* of what was passed to invalidate_range_start()/end(), if
* called between those functions.
*/
void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
unsigned long start, unsigned long end);
};
/*
* The notifier chains are protected by mmap_sem and/or the reverse map
* semaphores. Notifier chains are only changed when all reverse maps and
* the mmap_sem locks are taken.
*
* Therefore notifier chains can only be traversed when either
*
* 1. mmap_sem is held.
* 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
* 3. No other concurrent thread can access the list (release)
*/
struct mmu_notifier {
struct hlist_node hlist;
const struct mmu_notifier_ops *ops;
};
static inline int mm_has_notifiers(struct mm_struct *mm)
{
return unlikely(mm->mmu_notifier_mm);
}
extern int mmu_notifier_register(struct mmu_notifier *mn,
struct mm_struct *mm);
extern int __mmu_notifier_register(struct mmu_notifier *mn,
struct mm_struct *mm);
extern void mmu_notifier_unregister(struct mmu_notifier *mn,
struct mm_struct *mm);
extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
struct mm_struct *mm);
extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
extern void __mmu_notifier_release(struct mm_struct *mm);
extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end);
extern int __mmu_notifier_clear_young(struct mm_struct *mm,
unsigned long start,
unsigned long end);
extern int __mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address);
extern void __mmu_notifier_change_pte(struct mm_struct *mm,
unsigned long address, pte_t pte);
extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
bool only_end);
extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
unsigned long start, unsigned long end);
static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
{
return range->blockable;
}
static inline void mmu_notifier_release(struct mm_struct *mm)
{
if (mm_has_notifiers(mm))
__mmu_notifier_release(mm);
}
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_clear_flush_young(mm, start, end);
return 0;
}
static inline int mmu_notifier_clear_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_clear_young(mm, start, end);
return 0;
}
static inline int mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_test_young(mm, address);
return 0;
}
static inline void mmu_notifier_change_pte(struct mm_struct *mm,
unsigned long address, pte_t pte)
{
if (mm_has_notifiers(mm))
__mmu_notifier_change_pte(mm, address, pte);
}
static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
{
if (mm_has_notifiers(range->mm)) {
range->blockable = true;
__mmu_notifier_invalidate_range_start(range);
}
}
static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
{
if (mm_has_notifiers(range->mm)) {
range->blockable = false;
return __mmu_notifier_invalidate_range_start(range);
}
return 0;
}
static inline void
mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
{
if (mm_has_notifiers(range->mm))
__mmu_notifier_invalidate_range_end(range, false);
}
static inline void
mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
{
if (mm_has_notifiers(range->mm))
__mmu_notifier_invalidate_range_end(range, true);
}
static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
if (mm_has_notifiers(mm))
__mmu_notifier_invalidate_range(mm, start, end);
}
static inline void mmu_notifier_mm_init(struct mm_struct *mm)
{
mm->mmu_notifier_mm = NULL;
}
static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
{
if (mm_has_notifiers(mm))
__mmu_notifier_mm_destroy(mm);
}
static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
range->mm = mm;
range->start = start;
range->end = end;
}
#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = ptep_clear_flush_young(___vma, ___address, __ptep); \
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
___address, \
___address + \
PAGE_SIZE); \
__young; \
})
#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
___address, \
___address + \
PMD_SIZE); \
__young; \
})
#define ptep_clear_young_notify(__vma, __address, __ptep) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
___address + PAGE_SIZE); \
__young; \
})
#define pmdp_clear_young_notify(__vma, __address, __pmdp) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
___address + PMD_SIZE); \
__young; \
})
#define ptep_clear_flush_notify(__vma, __address, __ptep) \
({ \
unsigned long ___addr = __address & PAGE_MASK; \
struct mm_struct *___mm = (__vma)->vm_mm; \
pte_t ___pte; \
\
___pte = ptep_clear_flush(__vma, __address, __ptep); \
mmu_notifier_invalidate_range(___mm, ___addr, \
___addr + PAGE_SIZE); \
\
___pte; \
})
#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
({ \
unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
struct mm_struct *___mm = (__vma)->vm_mm; \
pmd_t ___pmd; \
\
___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
mmu_notifier_invalidate_range(___mm, ___haddr, \
___haddr + HPAGE_PMD_SIZE); \
\
___pmd; \
})
#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
({ \
unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
struct mm_struct *___mm = (__vma)->vm_mm; \
pud_t ___pud; \
\
___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
mmu_notifier_invalidate_range(___mm, ___haddr, \
___haddr + HPAGE_PUD_SIZE); \
\
___pud; \
})
/*
* set_pte_at_notify() sets the pte _after_ running the notifier.
* This is safe to start by updating the secondary MMUs, because the primary MMU
* pte invalidate must have already happened with a ptep_clear_flush() before
* set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
* required when we change both the protection of the mapping from read-only to
* read-write and the pfn (like during copy on write page faults). Otherwise the
* old page would remain mapped readonly in the secondary MMUs after the new
* page is already writable by some CPU through the primary MMU.
*/
#define set_pte_at_notify(__mm, __address, __ptep, __pte) \
({ \
struct mm_struct *___mm = __mm; \
unsigned long ___address = __address; \
pte_t ___pte = __pte; \
\
mmu_notifier_change_pte(___mm, ___address, ___pte); \
set_pte_at(___mm, ___address, __ptep, ___pte); \
})
extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
void (*func)(struct rcu_head *rcu));
#else /* CONFIG_MMU_NOTIFIER */
struct mmu_notifier_range {
unsigned long start;
unsigned long end;
};
static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
unsigned long start,
unsigned long end)
{
range->start = start;
range->end = end;
}
#define mmu_notifier_range_init(range, mm, start, end) \
_mmu_notifier_range_init(range, start, end)
static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
{
return true;
}
static inline int mm_has_notifiers(struct mm_struct *mm)
{
return 0;
}
static inline void mmu_notifier_release(struct mm_struct *mm)
{
}
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
return 0;
}
static inline int mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address)
{
return 0;
}
static inline void mmu_notifier_change_pte(struct mm_struct *mm,
unsigned long address, pte_t pte)
{
}
static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
{
}
static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
{
return 0;
}
static inline
void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
{
}
static inline void
mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
{
}
static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
}
static inline void mmu_notifier_mm_init(struct mm_struct *mm)
{
}
static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
{
}
#define ptep_clear_flush_young_notify ptep_clear_flush_young
#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
#define ptep_clear_young_notify ptep_test_and_clear_young
#define pmdp_clear_young_notify pmdp_test_and_clear_young
#define ptep_clear_flush_notify ptep_clear_flush
#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
#define set_pte_at_notify set_pte_at
#endif /* CONFIG_MMU_NOTIFIER */
#endif /* _LINUX_MMU_NOTIFIER_H */