/* SPDX-License-Identifier: GPL-2.0-or-later */
/* memcontrol.h - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*/
#ifndef _LINUX_MEMCONTROL_H
#define _LINUX_MEMCONTROL_H
#include <linux/cgroup.h>
#include <linux/vm_event_item.h>
#include <linux/hardirq.h>
#include <linux/jump_label.h>
#include <linux/page_counter.h>
#include <linux/vmpressure.h>
#include <linux/eventfd.h>
#include <linux/mm.h>
#include <linux/vmstat.h>
#include <linux/writeback.h>
#include <linux/page-flags.h>
struct mem_cgroup;
struct obj_cgroup;
struct page;
struct mm_struct;
struct kmem_cache;
/* Cgroup-specific page state, on top of universal node page state */
enum memcg_stat_item {
MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
MEMCG_SOCK,
MEMCG_PERCPU_B,
MEMCG_NR_STAT,
};
enum memcg_memory_event {
MEMCG_LOW,
MEMCG_HIGH,
MEMCG_MAX,
MEMCG_OOM,
MEMCG_OOM_KILL,
MEMCG_SWAP_HIGH,
MEMCG_SWAP_MAX,
MEMCG_SWAP_FAIL,
MEMCG_NR_MEMORY_EVENTS,
};
struct mem_cgroup_reclaim_cookie {
pg_data_t *pgdat;
unsigned int generation;
};
#ifdef CONFIG_MEMCG
#define MEM_CGROUP_ID_SHIFT 16
#define MEM_CGROUP_ID_MAX USHRT_MAX
struct mem_cgroup_id {
int id;
refcount_t ref;
};
/*
* Per memcg event counter is incremented at every pagein/pageout. With THP,
* it will be incremented by the number of pages. This counter is used
* to trigger some periodic events. This is straightforward and better
* than using jiffies etc. to handle periodic memcg event.
*/
enum mem_cgroup_events_target {
MEM_CGROUP_TARGET_THRESH,
MEM_CGROUP_TARGET_SOFTLIMIT,
MEM_CGROUP_NTARGETS,
};
struct memcg_vmstats_percpu {
/* Local (CPU and cgroup) page state & events */
long state[MEMCG_NR_STAT];
unsigned long events[NR_VM_EVENT_ITEMS];
/* Delta calculation for lockless upward propagation */
long state_prev[MEMCG_NR_STAT];
unsigned long events_prev[NR_VM_EVENT_ITEMS];
/* Cgroup1: threshold notifications & softlimit tree updates */
unsigned long nr_page_events;
unsigned long targets[MEM_CGROUP_NTARGETS];
};
struct memcg_vmstats {
/* Aggregated (CPU and subtree) page state & events */
long state[MEMCG_NR_STAT];
unsigned long events[NR_VM_EVENT_ITEMS];
/* Pending child counts during tree propagation */
long state_pending[MEMCG_NR_STAT];
unsigned long events_pending[NR_VM_EVENT_ITEMS];
};
struct mem_cgroup_reclaim_iter {
struct mem_cgroup *position;
/* scan generation, increased every round-trip */
unsigned int generation;
};
struct lruvec_stat {
long count[NR_VM_NODE_STAT_ITEMS];
};
struct batched_lruvec_stat {
s32 count[NR_VM_NODE_STAT_ITEMS];
};
/*
* Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
* which have elements charged to this memcg.
*/
struct memcg_shrinker_map {
struct rcu_head rcu;
unsigned long map[];
};
/*
* per-node information in memory controller.
*/
struct mem_cgroup_per_node {
struct lruvec lruvec;
/*
* Legacy local VM stats. This should be struct lruvec_stat and
* cannot be optimized to struct batched_lruvec_stat. Because
* the threshold of the lruvec_stat_cpu can be as big as
* MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
* filed has no upper limit.
*/
struct lruvec_stat __percpu *lruvec_stat_local;
/* Subtree VM stats (batched updates) */
struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
struct mem_cgroup_reclaim_iter iter;
struct memcg_shrinker_map __rcu *shrinker_map;
struct rb_node tree_node; /* RB tree node */
unsigned long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *memcg; /* Back pointer, we cannot */
/* use container_of */
};
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
unsigned long threshold;
};
/* For threshold */
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below or equal to usage. */
int current_threshold;
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[];
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
enum memcg_kmem_state {
KMEM_NONE,
KMEM_ALLOCATED,
KMEM_ONLINE,
};
#if defined(CONFIG_SMP)
struct memcg_padding {
char x[0];
} ____cacheline_internodealigned_in_smp;
#define MEMCG_PADDING(name) struct memcg_padding name;
#else
#define MEMCG_PADDING(name)
#endif
/*
* Remember four most recent foreign writebacks with dirty pages in this
* cgroup. Inode sharing is expected to be uncommon and, even if we miss
* one in a given round, we're likely to catch it later if it keeps
* foreign-dirtying, so a fairly low count should be enough.
*
* See mem_cgroup_track_foreign_dirty_slowpath() for details.
*/
#define MEMCG_CGWB_FRN_CNT 4
struct memcg_cgwb_frn {
u64 bdi_id; /* bdi->id of the foreign inode */
int memcg_id; /* memcg->css.id of foreign inode */
u64 at; /* jiffies_64 at the time of dirtying */
struct wb_completion done; /* tracks in-flight foreign writebacks */
};
/*
* Bucket for arbitrarily byte-sized objects charged to a memory
* cgroup. The bucket can be reparented in one piece when the cgroup
* is destroyed, without having to round up the individual references
* of all live memory objects in the wild.
*/
struct obj_cgroup {
struct percpu_ref refcnt;
struct mem_cgroup *memcg;
atomic_t nr_charged_bytes;
union {
struct list_head list;
struct rcu_head rcu;
};
};
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/* Private memcg ID. Used to ID objects that outlive the cgroup */
struct mem_cgroup_id id;
/* Accounted resources */
struct page_counter memory; /* Both v1 & v2 */
union {
struct page_counter swap; /* v2 only */
struct page_counter memsw; /* v1 only */
};
/* Legacy consumer-oriented counters */
struct page_counter kmem; /* v1 only */
struct page_counter tcpmem; /* v1 only */
/* Range enforcement for interrupt charges */
struct work_struct high_work;
unsigned long soft_limit;
/* vmpressure notifications */
struct vmpressure vmpressure;
/*
* Should the OOM killer kill all belonging tasks, had it kill one?
*/
bool oom_group;
/* protected by memcg_oom_lock */
bool oom_lock;
int under_oom;
int swappiness;
/* OOM-Killer disable */
int oom_kill_disable;
/* memory.events and memory.events.local */
struct cgroup_file events_file;
struct cgroup_file events_local_file;
/* handle for "memory.swap.events" */
struct cgroup_file swap_events_file;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
/* taken only while moving_account > 0 */
spinlock_t move_lock;
unsigned long move_lock_flags;
MEMCG_PADDING(_pad1_);
/* memory.stat */
struct memcg_vmstats vmstats;
/* memory.events */
atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
unsigned long socket_pressure;
/* Legacy tcp memory accounting */
bool tcpmem_active;
int tcpmem_pressure;
#ifdef CONFIG_MEMCG_KMEM
int kmemcg_id;
enum memcg_kmem_state kmem_state;
struct obj_cgroup __rcu *objcg;
struct list_head objcg_list; /* list of inherited objcgs */
#endif
MEMCG_PADDING(_pad2_);
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
atomic_t moving_account;
struct task_struct *move_lock_task;
struct memcg_vmstats_percpu __percpu *vmstats_percpu;
#ifdef CONFIG_CGROUP_WRITEBACK
struct list_head cgwb_list;
struct wb_domain cgwb_domain;
struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
#endif
/* List of events which userspace want to receive */
struct list_head event_list;
spinlock_t event_list_lock;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct deferred_split deferred_split_queue;
#endif
struct mem_cgroup_per_node *nodeinfo[0];
/* WARNING: nodeinfo must be the last member here */
};
/*
* size of first charge trial. "32" comes from vmscan.c's magic value.
* TODO: maybe necessary to use big numbers in big irons.
*/
#define MEMCG_CHARGE_BATCH 32U
extern struct mem_cgroup *root_mem_cgroup;
enum page_memcg_data_flags {
/* page->memcg_data is a pointer to an objcgs vector */
MEMCG_DATA_OBJCGS = (1UL << 0),
/* page has been accounted as a non-slab kernel page */
MEMCG_DATA_KMEM = (1UL << 1),
/* the next bit after the last actual flag */
__NR_MEMCG_DATA_FLAGS = (1UL << 2),
};
#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
static inline bool PageMemcgKmem(struct page *page);
/*
* After the initialization objcg->memcg is always pointing at
* a valid memcg, but can be atomically swapped to the parent memcg.
*
* The caller must ensure that the returned memcg won't be released:
* e.g. acquire the rcu_read_lock or css_set_lock.
*/
static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
{
return READ_ONCE(objcg->memcg);
}
/*
* __page_memcg - get the memory cgroup associated with a non-kmem page
* @page: a pointer to the page struct
*
* Returns a pointer to the memory cgroup associated with the page,
* or NULL. This function assumes that the page is known to have a
* proper memory cgroup pointer. It's not safe to call this function
* against some type of pages, e.g. slab pages or ex-slab pages or
* kmem pages.
*/
static inline struct mem_cgroup *__page_memcg(struct page *page)
{
unsigned long memcg_data = page->memcg_data;
VM_BUG_ON_PAGE(PageSlab(page), page);
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
/*
* __page_objcg - get the object cgroup associated with a kmem page
* @page: a pointer to the page struct
*
* Returns a pointer to the object cgroup associated with the page,
* or NULL. This function assumes that the page is known to have a
* proper object cgroup pointer. It's not safe to call this function
* against some type of pages, e.g. slab pages or ex-slab pages or
* LRU pages.
*/
static inline struct obj_cgroup *__page_objcg(struct page *page)
{
unsigned long memcg_data = page->memcg_data;
VM_BUG_ON_PAGE(PageSlab(page), page);
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
/*
* page_memcg - get the memory cgroup associated with a page
* @page: a pointer to the page struct
*
* Returns a pointer to the memory cgroup associated with the page,
* or NULL. This function assumes that the page is known to have a
* proper memory cgroup pointer. It's not safe to call this function
* against some type of pages, e.g. slab pages or ex-slab pages.
*
* For a non-kmem page any of the following ensures page and memcg binding
* stability:
*
* - the page lock
* - LRU isolation
* - lock_page_memcg()
* - exclusive reference
*
* For a kmem page a caller should hold an rcu read lock to protect memcg
* associated with a kmem page from being released.
*/
static inline struct mem_cgroup *page_memcg(struct page *page)
{
if (PageMemcgKmem(page))
return obj_cgroup_memcg(__page_objcg(page));
else
return __page_memcg(page);
}
/*
* page_memcg_rcu - locklessly get the memory cgroup associated with a page
* @page: a pointer to the page struct
*
* Returns a pointer to the memory cgroup associated with the page,
* or NULL. This function assumes that the page is known to have a
* proper memory cgroup pointer. It's not safe to call this function
* against some type of pages, e.g. slab pages or ex-slab pages.
*/
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
{
unsigned long memcg_data = READ_ONCE(page->memcg_data);
VM_BUG_ON_PAGE(PageSlab(page), page);
WARN_ON_ONCE(!rcu_read_lock_held());
if (memcg_data & MEMCG_DATA_KMEM) {
struct obj_cgroup *objcg;
objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
return obj_cgroup_memcg(objcg);
}
return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
/*
* page_memcg_check - get the memory cgroup associated with a page
* @page: a pointer to the page struct
*
* Returns a pointer to the memory cgroup associated with the page,
* or NULL. This function unlike page_memcg() can take any page
* as an argument. It has to be used in cases when it's not known if a page
* has an associated memory cgroup pointer or an object cgroups vector or
* an object cgroup.
*
* For a non-kmem page any of the following ensures page and memcg binding
* stability:
*
* - the page lock
* - LRU isolation
* - lock_page_memcg()
* - exclusive reference
*
* For a kmem page a caller should hold an rcu read lock to protect memcg
* associated with a kmem page from being released.
*/
static inline struct mem_cgroup *page_memcg_check(struct page *page)
{
/*
* Because page->memcg_data might be changed asynchronously
* for slab pages, READ_ONCE() should be used here.
*/
unsigned long memcg_data = READ_ONCE(page->memcg_data);
if (memcg_data & MEMCG_DATA_OBJCGS)
return NULL;
if (memcg_data & MEMCG_DATA_KMEM) {
struct obj_cgroup *objcg;
objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
return obj_cgroup_memcg(objcg);
}
return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
/*
* PageMemcgKmem - check if the page has MemcgKmem flag set
* @page: a pointer to the page struct
*
* Checks if the page has MemcgKmem flag set. The caller must ensure that
* the page has an associated memory cgroup. It's not safe to call this function
* against some types of pages, e.g. slab pages.
*/
static inline bool PageMemcgKmem(struct page *page)
{
VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
return page->memcg_data & MEMCG_DATA_KMEM;
}
#ifdef CONFIG_MEMCG_KMEM
/*
* page_objcgs - get the object cgroups vector associated with a page
* @page: a pointer to the page struct
*
* Returns a pointer to the object cgroups vector associated with the page,
* or NULL. This function assumes that the page is known to have an
* associated object cgroups vector. It's not safe to call this function
* against pages, which might have an associated memory cgroup: e.g.
* kernel stack pages.
*/
static inline struct obj_cgroup **page_objcgs(struct page *page)
{
unsigned long memcg_data = READ_ONCE(page->memcg_data);
VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
/*
* page_objcgs_check - get the object cgroups vector associated with a page
* @page: a pointer to the page struct
*
* Returns a pointer to the object cgroups vector associated with the page,
* or NULL. This function is safe to use if the page can be directly associated
* with a memory cgroup.
*/
static inline struct obj_cgroup **page_objcgs_check(struct page *page)
{
unsigned long memcg_data = READ_ONCE(page->memcg_data);
if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
return NULL;
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
#else
static inline struct obj_cgroup **page_objcgs(struct page *page)
{
return NULL;
}
static inline struct obj_cgroup **page_objcgs_check(struct page *page)
{
return NULL;
}
#endif
static __always_inline bool memcg_stat_item_in_bytes(int idx)
{
if (idx == MEMCG_PERCPU_B)
return true;
return vmstat_item_in_bytes(idx);
}
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
return (memcg == root_mem_cgroup);
}
static inline bool mem_cgroup_disabled(void)
{
return !cgroup_subsys_enabled(memory_cgrp_subsys);
}
static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg,
bool in_low_reclaim)
{
if (mem_cgroup_disabled())
return 0;
/*
* There is no reclaim protection applied to a targeted reclaim.
* We are special casing this specific case here because
* mem_cgroup_protected calculation is not robust enough to keep
* the protection invariant for calculated effective values for
* parallel reclaimers with different reclaim target. This is
* especially a problem for tail memcgs (as they have pages on LRU)
* which would want to have effective values 0 for targeted reclaim
* but a different value for external reclaim.
*
* Example
* Let's have global and A's reclaim in parallel:
* |
* A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
* |\
* | C (low = 1G, usage = 2.5G)
* B (low = 1G, usage = 0.5G)
*
* For the global reclaim
* A.elow = A.low
* B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
* C.elow = min(C.usage, C.low)
*
* With the effective values resetting we have A reclaim
* A.elow = 0
* B.elow = B.low
* C.elow = C.low
*
* If the global reclaim races with A's reclaim then
* B.elow = C.elow = 0 because children_low_usage > A.elow)
* is possible and reclaiming B would be violating the protection.
*
*/
if (root == memcg)
return 0;
if (in_low_reclaim)
return READ_ONCE(memcg->memory.emin);
return max(READ_ONCE(memcg->memory.emin),
READ_ONCE(memcg->memory.elow));
}
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg);
static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
{
/*
* The root memcg doesn't account charges, and doesn't support
* protection.
*/
return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
}
static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
{
if (!mem_cgroup_supports_protection(memcg))
return false;
return READ_ONCE(memcg->memory.elow) >=
page_counter_read(&memcg->memory);
}
static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
{
if (!mem_cgroup_supports_protection(memcg))
return false;
return READ_ONCE(memcg->memory.emin) >=
page_counter_read(&memcg->memory);
}
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
gfp_t gfp, swp_entry_t entry);
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
void mem_cgroup_uncharge(struct page *page);
void mem_cgroup_uncharge_list(struct list_head *page_list);
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
/**
* mem_cgroup_lruvec - get the lru list vector for a memcg & node
* @memcg: memcg of the wanted lruvec
* @pgdat: pglist_data
*
* Returns the lru list vector holding pages for a given @memcg &
* @pgdat combination. This can be the node lruvec, if the memory
* controller is disabled.
*/
static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
struct pglist_data *pgdat)
{
struct mem_cgroup_per_node *mz;
struct lruvec *lruvec;
if (mem_cgroup_disabled()) {
lruvec = &pgdat->__lruvec;
goto out;
}
if (!memcg)
memcg = root_mem_cgroup;
mz = memcg->nodeinfo[pgdat->node_id];
lruvec = &mz->lruvec;
out:
/*
* Since a node can be onlined after the mem_cgroup was created,
* we have to be prepared to initialize lruvec->pgdat here;
* and if offlined then reonlined, we need to reinitialize it.
*/
if (unlikely(lruvec->pgdat != pgdat))
lruvec->pgdat = pgdat;
return lruvec;
}
/**
* mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
* @page: the page
* @pgdat: pgdat of the page
*
* This function relies on page->mem_cgroup being stable.
*/
static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
struct pglist_data *pgdat)
{
struct mem_cgroup *memcg = page_memcg(page);
VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
return mem_cgroup_lruvec(memcg, pgdat);
}
static inline bool lruvec_holds_page_lru_lock(struct page *page,
struct lruvec *lruvec)
{
pg_data_t *pgdat = page_pgdat(page);
const struct mem_cgroup *memcg;
struct mem_cgroup_per_node *mz;
if (mem_cgroup_disabled())
return lruvec == &pgdat->__lruvec;
mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
memcg = page_memcg(page) ? : root_mem_cgroup;
return lruvec->pgdat == pgdat && mz->memcg == memcg;
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
struct lruvec *lock_page_lruvec(struct page *page);
struct lruvec *lock_page_lruvec_irq(struct page *page);
struct lruvec *lock_page_lruvec_irqsave(struct page *page,
unsigned long *flags);
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
#else
static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
}
#endif
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
return css ? container_of(css, struct mem_cgroup, css) : NULL;
}
static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
{
return percpu_ref_tryget(&objcg->refcnt);
}
static inline void obj_cgroup_get(struct obj_cgroup *objcg)
{
percpu_ref_get(&objcg->refcnt);
}
static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
unsigned long nr)
{
percpu_ref_get_many(&objcg->refcnt, nr);
}
static inline void obj_cgroup_put(struct obj_cgroup *objcg)
{
percpu_ref_put(&objcg->refcnt);
}
static inline void mem_cgroup_put(struct mem_cgroup *memcg)
{
if (memcg)
css_put(&memcg->css);
}
#define mem_cgroup_from_counter(counter, member) \
container_of(counter, struct mem_cgroup, member)
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
struct mem_cgroup *,
struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
int mem_cgroup_scan_tasks(struct mem_cgroup *,
int (*)(struct task_struct *, void *), void *);
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return 0;
return memcg->id.id;
}
struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
{
return mem_cgroup_from_css(seq_css(m));
}
static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
{
struct mem_cgroup_per_node *mz;
if (mem_cgroup_disabled())
return NULL;
mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
return mz->memcg;
}
/**
* parent_mem_cgroup - find the accounting parent of a memcg
* @memcg: memcg whose parent to find
*
* Returns the parent memcg, or NULL if this is the root or the memory
* controller is in legacy no-hierarchy mode.
*/
static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
if (!memcg->memory.parent)
return NULL;
return mem_cgroup_from_counter(memcg->memory.parent, memory);
}
static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
struct mem_cgroup *root)
{
if (root == memcg)
return true;
return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
}
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
struct mem_cgroup *task_memcg;
bool match = false;
rcu_read_lock();
task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (task_memcg)
match = mem_cgroup_is_descendant(task_memcg, memcg);
rcu_read_unlock();
return match;
}
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
ino_t page_cgroup_ino(struct page *page);
static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return true;
return !!(memcg->css.flags & CSS_ONLINE);
}
/*
* For memory reclaim.
*/
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int zid, int nr_pages);
static inline
unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
enum lru_list lru, int zone_idx)
{
struct mem_cgroup_per_node *mz;
mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
}
void mem_cgroup_handle_over_high(void);
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
struct task_struct *p);
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
static inline void mem_cgroup_enter_user_fault(void)
{
WARN_ON(current->in_user_fault);
current->in_user_fault = 1;
}
static inline void mem_cgroup_exit_user_fault(void)
{
WARN_ON(!current->in_user_fault);
current->in_user_fault = 0;
}
static inline bool task_in_memcg_oom(struct task_struct *p)
{
return p->memcg_in_oom;
}
bool mem_cgroup_oom_synchronize(bool wait);
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
struct mem_cgroup *oom_domain);
void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
#ifdef CONFIG_MEMCG_SWAP
extern bool cgroup_memory_noswap;
#endif
void lock_page_memcg(struct page *page);
void unlock_page_memcg(struct page *page);
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
/* idx can be of type enum memcg_stat_item or node_stat_item */
static inline void mod_memcg_state(struct mem_cgroup *memcg,
int idx, int val)
{
unsigned long flags;
local_irq_save(flags);
__mod_memcg_state(memcg, idx, val);
local_irq_restore(flags);
}
static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
enum node_stat_item idx)
{
struct mem_cgroup_per_node *pn;
long x;
if (mem_cgroup_disabled())
return node_page_state(lruvec_pgdat(lruvec), idx);
pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
x = atomic_long_read(&pn->lruvec_stat[idx]);
#ifdef CONFIG_SMP
if (x < 0)
x = 0;
#endif
return x;
}
static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
enum node_stat_item idx)
{
struct mem_cgroup_per_node *pn;
long x = 0;
int cpu;
if (mem_cgroup_disabled())
return node_page_state(lruvec_pgdat(lruvec), idx);
pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
for_each_possible_cpu(cpu)
x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
#ifdef CONFIG_SMP
if (x < 0)
x = 0;
#endif
return x;
}
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
int val);
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
int val)
{
unsigned long flags;
local_irq_save(flags);
__mod_lruvec_kmem_state(p, idx, val);
local_irq_restore(flags);
}
static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
enum node_stat_item idx, int val)
{
unsigned long flags;
local_irq_save(flags);
__mod_memcg_lruvec_state(lruvec, idx, val);
local_irq_restore(flags);
}
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
unsigned long count);
static inline void count_memcg_events(struct mem_cgroup *memcg,
enum vm_event_item idx,
unsigned long count)
{
unsigned long flags;
local_irq_save(flags);
__count_memcg_events(memcg, idx, count);
local_irq_restore(flags);
}
static inline void count_memcg_page_event(struct page *page,
enum vm_event_item idx)
{
struct mem_cgroup *memcg = page_memcg(page);
if (memcg)
count_memcg_events(memcg, idx, 1);
}
static inline void count_memcg_event_mm(struct mm_struct *mm,
enum vm_event_item idx)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (likely(memcg))
count_memcg_events(memcg, idx, 1);
rcu_read_unlock();
}
static inline void memcg_memory_event(struct mem_cgroup *memcg,
enum memcg_memory_event event)
{
bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
event == MEMCG_SWAP_FAIL;
atomic_long_inc(&memcg->memory_events_local[event]);
if (!swap_event)
cgroup_file_notify(&memcg->events_local_file);
do {
atomic_long_inc(&memcg->memory_events[event]);
if (swap_event)
cgroup_file_notify(&memcg->swap_events_file);
else
cgroup_file_notify(&memcg->events_file);
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
break;
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
break;
} while ((memcg = parent_mem_cgroup(memcg)) &&
!mem_cgroup_is_root(memcg));
}
static inline void memcg_memory_event_mm(struct mm_struct *mm,
enum memcg_memory_event event)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (likely(memcg))
memcg_memory_event(memcg, event);
rcu_read_unlock();
}
void split_page_memcg(struct page *head, unsigned int nr);
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned);
#else /* CONFIG_MEMCG */
#define MEM_CGROUP_ID_SHIFT 0
#define MEM_CGROUP_ID_MAX 0
struct mem_cgroup;
static inline struct mem_cgroup *page_memcg(struct page *page)
{
return NULL;
}
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return NULL;
}
static inline struct mem_cgroup *page_memcg_check(struct page *page)
{
return NULL;
}
static inline bool PageMemcgKmem(struct page *page)
{
return false;
}
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
return true;
}
static inline bool mem_cgroup_disabled(void)
{
return true;
}
static inline void memcg_memory_event(struct mem_cgroup *memcg,
enum memcg_memory_event event)
{
}
static inline void memcg_memory_event_mm(struct mm_struct *mm,
enum memcg_memory_event event)
{
}
static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg,
bool in_low_reclaim)
{
return 0;
}
static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg)
{
}
static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
{
return false;
}
static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
{
return false;
}
static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
return 0;
}
static inline int mem_cgroup_swapin_charge_page(struct page *page,
struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
{
return 0;
}
static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
}
static inline void mem_cgroup_uncharge(struct page *page)
{
}
static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
{
}
static inline void mem_cgroup_migrate(struct page *old, struct page *new)
{
}
static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
struct pglist_data *pgdat)
{
return &pgdat->__lruvec;
}
static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
struct pglist_data *pgdat)
{
return &pgdat->__lruvec;
}
static inline bool lruvec_holds_page_lru_lock(struct page *page,
struct lruvec *lruvec)
{
pg_data_t *pgdat = page_pgdat(page);
return lruvec == &pgdat->__lruvec;
}
static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
}
static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
return NULL;
}
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
return true;
}
static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
{
return NULL;
}
static inline void mem_cgroup_put(struct mem_cgroup *memcg)
{
}
static inline struct lruvec *lock_page_lruvec(struct page *page)
{
struct pglist_data *pgdat = page_pgdat(page);
spin_lock(&pgdat->__lruvec.lru_lock);
return &pgdat->__lruvec;
}
static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
{
struct pglist_data *pgdat = page_pgdat(page);
spin_lock_irq(&pgdat->__lruvec.lru_lock);
return &pgdat->__lruvec;
}
static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
unsigned long *flagsp)
{
struct pglist_data *pgdat = page_pgdat(page);
spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
return &pgdat->__lruvec;
}
static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
return NULL;
}
static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
struct mem_cgroup *prev)
{
}
static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
int (*fn)(struct task_struct *, void *), void *arg)
{
return 0;
}
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
return 0;
}
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
WARN_ON_ONCE(id);
/* XXX: This should always return root_mem_cgroup */
return NULL;
}
static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
{
return NULL;
}
static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
{
return NULL;
}
static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
{
return true;
}
static inline
unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
enum lru_list lru, int zone_idx)
{
return 0;
}
static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
{
return 0;
}
static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
return 0;
}
static inline void
mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
{
}
static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
}
static inline void lock_page_memcg(struct page *page)
{
}
static inline void unlock_page_memcg(struct page *page)
{
}
static inline void mem_cgroup_handle_over_high(void)
{
}
static inline void mem_cgroup_enter_user_fault(void)
{
}
static inline void mem_cgroup_exit_user_fault(void)
{
}
static inline bool task_in_memcg_oom(struct task_struct *p)
{
return false;
}
static inline bool mem_cgroup_oom_synchronize(bool wait)
{
return false;
}
static inline struct mem_cgroup *mem_cgroup_get_oom_group(
struct task_struct *victim, struct mem_cgroup *oom_domain)
{
return NULL;
}
static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
}
static inline void __mod_memcg_state(struct mem_cgroup *memcg,
int idx,
int nr)
{
}
static inline void mod_memcg_state(struct mem_cgroup *memcg,
int idx,
int nr)
{
}
static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
enum node_stat_item idx)
{
return node_page_state(lruvec_pgdat(lruvec), idx);
}
static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
enum node_stat_item idx)
{
return node_page_state(lruvec_pgdat(lruvec), idx);
}
static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
enum node_stat_item idx, int val)
{
}
static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
int val)
{
struct page *page = virt_to_head_page(p);
__mod_node_page_state(page_pgdat(page), idx, val);
}
static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
int val)
{
struct page *page = virt_to_head_page(p);
mod_node_page_state(page_pgdat(page), idx, val);
}
static inline void count_memcg_events(struct mem_cgroup *memcg,
enum vm_event_item idx,
unsigned long count)
{
}
static inline void __count_memcg_events(struct mem_cgroup *memcg,
enum vm_event_item idx,
unsigned long count)
{
}
static inline void count_memcg_page_event(struct page *page,
int idx)
{
}
static inline
void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
{
}
static inline void split_page_memcg(struct page *head, unsigned int nr)
{
}
static inline
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
return 0;
}
#endif /* CONFIG_MEMCG */
static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
{
__mod_lruvec_kmem_state(p, idx, 1);
}
static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
{
__mod_lruvec_kmem_state(p, idx, -1);
}
static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
{
struct mem_cgroup *memcg;
memcg = lruvec_memcg(lruvec);
if (!memcg)
return NULL;
memcg = parent_mem_cgroup(memcg);
if (!memcg)
return NULL;
return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
}
static inline void unlock_page_lruvec(struct lruvec *lruvec)
{
spin_unlock(&lruvec->lru_lock);
}
static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
{
spin_unlock_irq(&lruvec->lru_lock);
}
static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
unsigned long flags)
{
spin_unlock_irqrestore(&lruvec->lru_lock, flags);
}
/* Don't lock again iff page's lruvec locked */
static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
struct lruvec *locked_lruvec)
{
if (locked_lruvec) {
if (lruvec_holds_page_lru_lock(page, locked_lruvec))
return locked_lruvec;
unlock_page_lruvec_irq(locked_lruvec);
}
return lock_page_lruvec_irq(page);
}
/* Don't lock again iff page's lruvec locked */
static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
struct lruvec *locked_lruvec, unsigned long *flags)
{
if (locked_lruvec) {
if (lruvec_holds_page_lru_lock(page, locked_lruvec))
return locked_lruvec;
unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
}
return lock_page_lruvec_irqsave(page, flags);
}
#ifdef CONFIG_CGROUP_WRITEBACK
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
unsigned long *pheadroom, unsigned long *pdirty,
unsigned long *pwriteback);
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
struct bdi_writeback *wb);
static inline void mem_cgroup_track_foreign_dirty(struct page *page,
struct bdi_writeback *wb)
{
if (mem_cgroup_disabled())
return;
if (unlikely(&page_memcg(page)->css != wb->memcg_css))
mem_cgroup_track_foreign_dirty_slowpath(page, wb);
}
void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
#else /* CONFIG_CGROUP_WRITEBACK */
static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
return NULL;
}
static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
unsigned long *pfilepages,
unsigned long *pheadroom,
unsigned long *pdirty,
unsigned long *pwriteback)
{
}
static inline void mem_cgroup_track_foreign_dirty(struct page *page,
struct bdi_writeback *wb)
{
}
static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
}
#endif /* CONFIG_CGROUP_WRITEBACK */
struct sock;
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
#ifdef CONFIG_MEMCG
extern struct static_key_false memcg_sockets_enabled_key;
#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
void mem_cgroup_sk_alloc(struct sock *sk);
void mem_cgroup_sk_free(struct sock *sk);
static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
{
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
return true;
do {
if (time_before(jiffies, memcg->socket_pressure))
return true;
} while ((memcg = parent_mem_cgroup(memcg)));
return false;
}
extern int memcg_expand_shrinker_maps(int new_id);
extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
int nid, int shrinker_id);
#else
#define mem_cgroup_sockets_enabled 0
static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
static inline void mem_cgroup_sk_free(struct sock *sk) { };
static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
{
return false;
}
static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
int nid, int shrinker_id)
{
}
#endif
#ifdef CONFIG_MEMCG_KMEM
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
void __memcg_kmem_uncharge_page(struct page *page, int order);
struct obj_cgroup *get_obj_cgroup_from_current(void);
int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
extern struct static_key_false memcg_kmem_enabled_key;
extern int memcg_nr_cache_ids;
void memcg_get_cache_ids(void);
void memcg_put_cache_ids(void);
/*
* Helper macro to loop through all memcg-specific caches. Callers must still
* check if the cache is valid (it is either valid or NULL).
* the slab_mutex must be held when looping through those caches
*/
#define for_each_memcg_cache_index(_idx) \
for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
static inline bool memcg_kmem_enabled(void)
{
return static_branch_likely(&memcg_kmem_enabled_key);
}
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
if (memcg_kmem_enabled())
return __memcg_kmem_charge_page(page, gfp, order);
return 0;
}
static inline void memcg_kmem_uncharge_page(struct page *page, int order)
{
if (memcg_kmem_enabled())
__memcg_kmem_uncharge_page(page, order);
}
/*
* A helper for accessing memcg's kmem_id, used for getting
* corresponding LRU lists.
*/
static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
return memcg ? memcg->kmemcg_id : -1;
}
struct mem_cgroup *mem_cgroup_from_obj(void *p);
#else
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
return 0;
}
static inline void memcg_kmem_uncharge_page(struct page *page, int order)
{
}
static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
return 0;
}
static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
{
}
#define for_each_memcg_cache_index(_idx) \
for (; NULL; )
static inline bool memcg_kmem_enabled(void)
{
return false;
}
static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
return -1;
}
static inline void memcg_get_cache_ids(void)
{
}
static inline void memcg_put_cache_ids(void)
{
}
static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
return NULL;
}
#endif /* CONFIG_MEMCG_KMEM */
#endif /* _LINUX_MEMCONTROL_H */