summaryrefslogblamecommitdiff
path: root/include/asm-um/fixmap.h
blob: ae0ca3932d5086f208e8e8b2903260af599e8d2c (plain) (tree)
1
2
3
4
5
6
7





                           
                    


























































































                                                                             
#ifndef __UM_FIXMAP_H
#define __UM_FIXMAP_H

#include <linux/config.h>
#include <asm/kmap_types.h>
#include <asm/archparam.h>
#include <asm/elf.h>

/*
 * Here we define all the compile-time 'special' virtual
 * addresses. The point is to have a constant address at
 * compile time, but to set the physical address only
 * in the boot process. We allocate these special  addresses
 * from the end of virtual memory (0xfffff000) backwards.
 * Also this lets us do fail-safe vmalloc(), we
 * can guarantee that these special addresses and
 * vmalloc()-ed addresses never overlap.
 *
 * these 'compile-time allocated' memory buffers are
 * fixed-size 4k pages. (or larger if used with an increment
 * highger than 1) use fixmap_set(idx,phys) to associate
 * physical memory with fixmap indices.
 *
 * TLB entries of such buffers will not be flushed across
 * task switches.
 */

/*
 * on UP currently we will have no trace of the fixmap mechanizm,
 * no page table allocations, etc. This might change in the
 * future, say framebuffers for the console driver(s) could be
 * fix-mapped?
 */
enum fixed_addresses {
#ifdef CONFIG_HIGHMEM
	FIX_KMAP_BEGIN,	/* reserved pte's for temporary kernel mappings */
	FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1,
#endif
	__end_of_fixed_addresses
};

extern void __set_fixmap (enum fixed_addresses idx,
			  unsigned long phys, pgprot_t flags);

#define set_fixmap(idx, phys) \
		__set_fixmap(idx, phys, PAGE_KERNEL)
/*
 * Some hardware wants to get fixmapped without caching.
 */
#define set_fixmap_nocache(idx, phys) \
		__set_fixmap(idx, phys, PAGE_KERNEL_NOCACHE)
/*
 * used by vmalloc.c.
 *
 * Leave one empty page between vmalloc'ed areas and
 * the start of the fixmap, and leave one page empty
 * at the top of mem..
 */
extern unsigned long get_kmem_end(void);

#define FIXADDR_TOP	(get_kmem_end() - 0x2000)
#define FIXADDR_SIZE	(__end_of_fixed_addresses << PAGE_SHIFT)
#define FIXADDR_START	(FIXADDR_TOP - FIXADDR_SIZE)

#define __fix_to_virt(x)	(FIXADDR_TOP - ((x) << PAGE_SHIFT))
#define __virt_to_fix(x)      ((FIXADDR_TOP - ((x)&PAGE_MASK)) >> PAGE_SHIFT)

extern void __this_fixmap_does_not_exist(void);

/*
 * 'index to address' translation. If anyone tries to use the idx
 * directly without tranlation, we catch the bug with a NULL-deference
 * kernel oops. Illegal ranges of incoming indices are caught too.
 */
static inline unsigned long fix_to_virt(const unsigned int idx)
{
	/*
	 * this branch gets completely eliminated after inlining,
	 * except when someone tries to use fixaddr indices in an
	 * illegal way. (such as mixing up address types or using
	 * out-of-range indices).
	 *
	 * If it doesn't get removed, the linker will complain
	 * loudly with a reasonably clear error message..
	 */
	if (idx >= __end_of_fixed_addresses)
		__this_fixmap_does_not_exist();

        return __fix_to_virt(idx);
}

static inline unsigned long virt_to_fix(const unsigned long vaddr)
{
      BUG_ON(vaddr >= FIXADDR_TOP || vaddr < FIXADDR_START);
      return __virt_to_fix(vaddr);
}

#endif