blob: a1fc6590a7439ff764d4d47565db58029d69bae5 (
plain) (
tree)
|
|
#ifndef __ASM_PREEMPT_H
#define __ASM_PREEMPT_H
#include <linux/thread_info.h>
/*
* We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users
* that think a non-zero value indicates we cannot preempt.
*/
static __always_inline int preempt_count(void)
{
return current_thread_info()->preempt_count & ~PREEMPT_NEED_RESCHED;
}
static __always_inline int *preempt_count_ptr(void)
{
return ¤t_thread_info()->preempt_count;
}
/*
* We now loose PREEMPT_NEED_RESCHED and cause an extra reschedule; however the
* alternative is loosing a reschedule. Better schedule too often -- also this
* should be a very rare operation.
*/
static __always_inline void preempt_count_set(int pc)
{
*preempt_count_ptr() = pc;
}
/*
* We fold the NEED_RESCHED bit into the preempt count such that
* preempt_enable() can decrement and test for needing to reschedule with a
* single instruction.
*
* We invert the actual bit, so that when the decrement hits 0 we know we both
* need to resched (the bit is cleared) and can resched (no preempt count).
*/
static __always_inline void set_preempt_need_resched(void)
{
*preempt_count_ptr() &= ~PREEMPT_NEED_RESCHED;
}
static __always_inline void clear_preempt_need_resched(void)
{
*preempt_count_ptr() |= PREEMPT_NEED_RESCHED;
}
static __always_inline bool test_preempt_need_resched(void)
{
return !(*preempt_count_ptr() & PREEMPT_NEED_RESCHED);
}
#endif /* __ASM_PREEMPT_H */
|