/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_alloc.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_bmap.h"
/*
* Allocation group level functions.
*/
static inline int
xfs_ialloc_cluster_alignment(
xfs_alloc_arg_t *args)
{
if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
args->mp->m_sb.sb_inoalignmt >=
XFS_B_TO_FSBT(args->mp, XFS_INODE_CLUSTER_SIZE(args->mp)))
return args->mp->m_sb.sb_inoalignmt;
return 1;
}
/*
* Lookup a record by ino in the btree given by cur.
*/
int /* error */
xfs_inobt_lookup(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agino_t ino, /* starting inode of chunk */
xfs_lookup_t dir, /* <=, >=, == */
int *stat) /* success/failure */
{
cur->bc_rec.i.ir_startino = ino;
cur->bc_rec.i.ir_freecount = 0;
cur->bc_rec.i.ir_free = 0;
return xfs_btree_lookup(cur, dir, stat);
}
/*
* Update the record referred to by cur to the value given.
* This either works (return 0) or gets an EFSCORRUPTED error.
*/
STATIC int /* error */
xfs_inobt_update(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_inobt_rec_incore_t *irec) /* btree record */
{
union xfs_btree_rec rec;
rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
return xfs_btree_update(cur, &rec);
}
/*
* Get the data from the pointed-to record.
*/
int /* error */
xfs_inobt_get_rec(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_inobt_rec_incore_t *irec, /* btree record */
int *stat) /* output: success/failure */
{
union xfs_btree_rec *rec;
int error;
error = xfs_btree_get_rec(cur, &rec, stat);
if (!error && *stat == 1) {
irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
}
return error;
}
/*
* Verify that the number of free inodes in the AGI is correct.
*/
#ifdef DEBUG
STATIC int
xfs_check_agi_freecount(
struct xfs_btree_cur *cur,
struct xfs_agi *agi)
{
if (cur->bc_nlevels == 1) {
xfs_inobt_rec_incore_t rec;
int freecount = 0;
int error;
int i;
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
if (error)
return error;
do {
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error)
return error;
if (i) {
freecount += rec.ir_freecount;
error = xfs_btree_increment(cur, 0, &i);
if (error)
return error;
}
} while (i == 1);
if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
}
return 0;
}
#else
#define xfs_check_agi_freecount(cur, agi) 0
#endif
/*
* Initialise a new set of inodes.
*/
STATIC void
xfs_ialloc_inode_init(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_agblock_t agbno,
xfs_agblock_t length,
unsigned int gen)
{
struct xfs_buf *fbuf;
struct xfs_dinode *free;
int blks_per_cluster, nbufs, ninodes;
int version;
int i, j;
xfs_daddr_t d;
/*
* Loop over the new block(s), filling in the inodes.
* For small block sizes, manipulate the inodes in buffers
* which are multiples of the blocks size.
*/
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
blks_per_cluster = 1;
nbufs = length;
ninodes = mp->m_sb.sb_inopblock;
} else {
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
mp->m_sb.sb_blocksize;
nbufs = length / blks_per_cluster;
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
}
/*
* Figure out what version number to use in the inodes we create.
* If the superblock version has caught up to the one that supports
* the new inode format, then use the new inode version. Otherwise
* use the old version so that old kernels will continue to be
* able to use the file system.
*/
if (xfs_sb_version_hasnlink(&mp->m_sb))
version = 2;
else
version = 1;
for (j = 0; j < nbufs; j++) {
/*
* Get the block.
*/
d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
mp->m_bsize * blks_per_cluster,
XBF_LOCK);
ASSERT(fbuf);
ASSERT(!XFS_BUF_GETERROR(fbuf));
/*
* Initialize all inodes in this buffer and then log them.
*
* XXX: It would be much better if we had just one transaction
* to log a whole cluster of inodes instead of all the
* individual transactions causing a lot of log traffic.
*/
xfs_buf_zero(fbuf, 0, ninodes << mp->m_sb.sb_inodelog);
for (i = 0; i < ninodes; i++) {
int ioffset = i << mp->m_sb.sb_inodelog;
uint isize = sizeof(struct xfs_dinode);
free = xfs_make_iptr(mp, fbuf, i);
free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
free->di_version = version;
free->di_gen = cpu_to_be32(gen);
free->di_next_unlinked = cpu_to_be32(NULLAGINO);
xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1);
}
xfs_trans_inode_alloc_buf(tp, fbuf);
}
}
/*
* Allocate new inodes in the allocation group specified by agbp.
* Return 0 for success, else error code.
*/
STATIC int /* error code or 0 */
xfs_ialloc_ag_alloc(
xfs_trans_t *tp, /* transaction pointer */
xfs_buf_t *agbp, /* alloc group buffer */
int *alloc)
{
xfs_agi_t *agi; /* allocation group header */
xfs_alloc_arg_t args; /* allocation argument structure */
xfs_btree_cur_t *cur; /* inode btree cursor */
xfs_agnumber_t agno;
int error;
int i;
xfs_agino_t newino; /* new first inode's number */
xfs_agino_t newlen; /* new number of inodes */
xfs_agino_t thisino; /* current inode number, for loop */
int isaligned = 0; /* inode allocation at stripe unit */
/* boundary */
struct xfs_perag *pag;
args.tp = tp;
args.mp = tp->t_mountp;
/*
* Locking will ensure that we don't have two callers in here
* at one time.
*/
newlen = XFS_IALLOC_INODES(args.mp);
if (args.mp->m_maxicount &&
args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
return XFS_ERROR(ENOSPC);
args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp);
/*
* First try to allocate inodes contiguous with the last-allocated
* chunk of inodes. If the filesystem is striped, this will fill
* an entire stripe unit with inodes.
*/
agi = XFS_BUF_TO_AGI(agbp);
newino = be32_to_cpu(agi->agi_newino);
agno = be32_to_cpu(agi->agi_seqno);
args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
XFS_IALLOC_BLOCKS(args.mp);
if (likely(newino != NULLAGINO &&
(args.agbno < be32_to_cpu(agi->agi_length)))) {
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
args.type = XFS_ALLOCTYPE_THIS_BNO;
args.mod = args.total = args.wasdel = args.isfl =
args.userdata = args.minalignslop = 0;
args.prod = 1;
/*
* We need to take into account alignment here to ensure that
* we don't modify the free list if we fail to have an exact
* block. If we don't have an exact match, and every oher
* attempt allocation attempt fails, we'll end up cancelling
* a dirty transaction and shutting down.
*
* For an exact allocation, alignment must be 1,
* however we need to take cluster alignment into account when
* fixing up the freelist. Use the minalignslop field to
* indicate that extra blocks might be required for alignment,
* but not to use them in the actual exact allocation.
*/
args.alignment = 1;
args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
/* Allow space for the inode btree to split. */
args.minleft = args.mp->m_in_maxlevels - 1;
if ((error = xfs_alloc_vextent(&args)))
return error;
} else
args.fsbno = NULLFSBLOCK;
if (unlikely(args.fsbno == NULLFSBLOCK)) {
/*
* Set the alignment for the allocation.
* If stripe alignment is turned on then align at stripe unit
* boundary.
* If the cluster size is smaller than a filesystem block
* then we're doing I/O for inodes in filesystem block size
* pieces, so don't need alignment anyway.
*/
isaligned = 0;
if (args.mp->m_sinoalign) {
ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
args.alignment = args.mp->m_dalign;
isaligned = 1;
} else
args.alignment = xfs_ialloc_cluster_alignment(&args);
/*
* Need to figure out where to allocate the inode blocks.
* Ideally they should be spaced out through the a.g.
* For now, just allocate blocks up front.
*/
args.agbno = be32_to_cpu(agi->agi_root);
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
/*
* Allocate a fixed-size extent of inodes.
*/
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.mod = args.total = args.wasdel = args.isfl =
args.userdata = args.minalignslop = 0;
args.prod = 1;
/*
* Allow space for the inode btree to split.
*/
args.minleft = args.mp->m_in_maxlevels - 1;
if ((error = xfs_alloc_vextent(&args)))
return error;
}
/*
* If stripe alignment is turned on, then try again with cluster
* alignment.
*/
if (isaligned && args.fsbno == NULLFSBLOCK) {
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.agbno = be32_to_cpu(agi->agi_root);
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
args.alignment = xfs_ialloc_cluster_alignment(&args);
if ((error = xfs_alloc_vextent(&args)))
return error;
}
if (args.fsbno == NULLFSBLOCK) {
*alloc = 0;
return 0;
}
ASSERT(args.len == args.minlen);
/*
* Stamp and write the inode buffers.
*
* Seed the new inode cluster with a random generation number. This
* prevents short-term reuse of generation numbers if a chunk is
* freed and then immediately reallocated. We use random numbers
* rather than a linear progression to prevent the next generation
* number from being easily guessable.
*/
xfs_ialloc_inode_init(args.mp, tp, agno, args.agbno, args.len,
random32());
/*
* Convert the results.
*/
newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
be32_add_cpu(&agi->agi_count, newlen);
be32_add_cpu(&agi->agi_freecount, newlen);
pag = xfs_perag_get(args.mp, agno);
pag->pagi_freecount += newlen;
xfs_perag_put(pag);
agi->agi_newino = cpu_to_be32(newino);
/*
* Insert records describing the new inode chunk into the btree.
*/
cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
for (thisino = newino;
thisino < newino + newlen;
thisino += XFS_INODES_PER_CHUNK) {
cur->bc_rec.i.ir_startino = thisino;
cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
if (error) {
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
ASSERT(i == 0);
error = xfs_btree_insert(cur, &i);
if (error) {
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
ASSERT(i == 1);
}
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
/*
* Log allocation group header fields
*/
xfs_ialloc_log_agi(tp, agbp,
XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
/*
* Modify/log superblock values for inode count and inode free count.
*/
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
*alloc = 1;
return 0;
}
STATIC xfs_agnumber_t
xfs_ialloc_next_ag(
xfs_mount_t *mp)
{
xfs_agnumber_t agno;
spin_lock(&mp->m_agirotor_lock);
agno = mp->m_agirotor;
if (++mp->m_agirotor == mp->m_maxagi)
mp->m_agirotor = 0;
spin_unlock(&mp->m_agirotor_lock);
return agno;
}
/*
* Select an allocation group to look for a free inode in, based on the parent
* inode and then mode. Return the allocation group buffer.
*/
STATIC xfs_buf_t * /* allocation group buffer */
xfs_ialloc_ag_select(
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t parent, /* parent directory inode number */
mode_t mode, /* bits set to indicate file type */
int okalloc) /* ok to allocate more space */
{
xfs_buf_t *agbp; /* allocation group header buffer */
xfs_agnumber_t agcount; /* number of ag's in the filesystem */
xfs_agnumber_t agno; /* current ag number */
int flags; /* alloc buffer locking flags */
xfs_extlen_t ineed; /* blocks needed for inode allocation */
xfs_extlen_t longest = 0; /* longest extent available */
xfs_mount_t *mp; /* mount point structure */
int needspace; /* file mode implies space allocated */
xfs_perag_t *pag; /* per allocation group data */
xfs_agnumber_t pagno; /* parent (starting) ag number */
/*
* Files of these types need at least one block if length > 0
* (and they won't fit in the inode, but that's hard to figure out).
*/
needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
mp = tp->t_mountp;
agcount = mp->m_maxagi;
if (S_ISDIR(mode))
pagno = xfs_ialloc_next_ag(mp);
else {
pagno = XFS_INO_TO_AGNO(mp, parent);
if (pagno >= agcount)
pagno = 0;
}
ASSERT(pagno < agcount);
/*
* Loop through allocation groups, looking for one with a little
* free space in it. Note we don't look for free inodes, exactly.
* Instead, we include whether there is a need to allocate inodes
* to mean that blocks must be allocated for them,
* if none are currently free.
*/
agno = pagno;
flags = XFS_ALLOC_FLAG_TRYLOCK;
for (;;) {
pag = xfs_perag_get(mp, agno);
if (!pag->pagi_init) {
if (xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
agbp = NULL;
goto nextag;
}
} else
agbp = NULL;
if (!pag->pagi_inodeok) {
xfs_ialloc_next_ag(mp);
goto unlock_nextag;
}
/*
* Is there enough free space for the file plus a block
* of inodes (if we need to allocate some)?
*/
ineed = pag->pagi_freecount ? 0 : XFS_IALLOC_BLOCKS(mp);
if (ineed && !pag->pagf_init) {
if (agbp == NULL &&
xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
agbp = NULL;
goto nextag;
}
(void)xfs_alloc_pagf_init(mp, tp, agno, flags);
}
if (!ineed || pag->pagf_init) {
if (ineed && !(longest = pag->pagf_longest))
longest = pag->pagf_flcount > 0;
if (!ineed ||
(pag->pagf_freeblks >= needspace + ineed &&
longest >= ineed &&
okalloc)) {
if (agbp == NULL &&
xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
agbp = NULL;
goto nextag;
}
xfs_perag_put(pag);
return agbp;
}
}
unlock_nextag:
if (agbp)
xfs_trans_brelse(tp, agbp);
nextag:
xfs_perag_put(pag);
/*
* No point in iterating over the rest, if we're shutting
* down.
*/
if (XFS_FORCED_SHUTDOWN(mp))
return NULL;
agno++;
if (agno >= agcount)
agno = 0;
if (agno == pagno) {
if (flags == 0)
return NULL;
flags = 0;
}
}
}
/*
* Try to retrieve the next record to the left/right from the current one.
*/
STATIC int
xfs_ialloc_next_rec(
struct xfs_btree_cur *cur,
xfs_inobt_rec_incore_t *rec,
int *done,
int left)
{
int error;
int i;
if (left)
error = xfs_btree_decrement(cur, 0, &i);
else
error = xfs_btree_increment(cur, 0, &i);
if (error)
return error;
*done = !i;
if (i) {
error = xfs_inobt_get_rec(cur, rec, &i);
if (error)
return error;
XFS_WANT_CORRUPTED_RETURN(i == 1);
}
return 0;
}
STATIC int
xfs_ialloc_get_rec(
struct xfs_btree_cur *cur,
xfs_agino_t agino,
xfs_inobt_rec_incore_t *rec,
int *done,
int left)
{
int error;
int i;
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
if (error)
return error;
*done = !i;
if (i) {
error = xfs_inobt_get_rec(cur, rec, &i);
if (error)
return error;
XFS_WANT_CORRUPTED_RETURN(i == 1);
}
return 0;
}
/*
* Visible inode allocation functions.
*/
/*
* Allocate an inode on disk.
* Mode is used to tell whether the new inode will need space, and whether
* it is a directory.
*
* The arguments IO_agbp and alloc_done are defined to work within
* the constraint of one allocation per transaction.
* xfs_dialloc() is designed to be called twice if it has to do an
* allocation to make more free inodes. On the first call,
* IO_agbp should be set to NULL. If an inode is available,
* i.e., xfs_dialloc() did not need to do an allocation, an inode
* number is returned. In this case, IO_agbp would be set to the
* current ag_buf and alloc_done set to false.
* If an allocation needed to be done, xfs_dialloc would return
* the current ag_buf in IO_agbp and set alloc_done to true.
* The caller should then commit the current transaction, allocate a new
* transaction, and call xfs_dialloc() again, passing in the previous
* value of IO_agbp. IO_agbp should be held across the transactions.
* Since the agbp is locked across the two calls, the second call is
* guaranteed to have a free inode available.
*
* Once we successfully pick an inode its number is returned and the
* on-disk data structures are updated. The inode itself is not read
* in, since doing so would break ordering constraints with xfs_reclaim.
*/
int
xfs_dialloc(
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t parent, /* parent inode (directory) */
mode_t mode, /* mode bits for new inode */
int okalloc, /* ok to allocate more space */
xfs_buf_t **IO_agbp, /* in/out ag header's buffer */
boolean_t *alloc_done, /* true if we needed to replenish
inode freelist */
xfs_ino_t *inop) /* inode number allocated */
{
xfs_agnumber_t agcount; /* number of allocation groups */
xfs_buf_t *agbp; /* allocation group header's buffer */
xfs_agnumber_t agno; /* allocation group number */
xfs_agi_t *agi; /* allocation group header structure */
xfs_btree_cur_t *cur; /* inode allocation btree cursor */
int error; /* error return value */
int i; /* result code */
int ialloced; /* inode allocation status */
int noroom = 0; /* no space for inode blk allocation */
xfs_ino_t ino; /* fs-relative inode to be returned */
/* REFERENCED */
int j; /* result code */
xfs_mount_t *mp; /* file system mount structure */
int offset; /* index of inode in chunk */
xfs_agino_t pagino; /* parent's AG relative inode # */
xfs_agnumber_t pagno; /* parent's AG number */
xfs_inobt_rec_incore_t rec; /* inode allocation record */
xfs_agnumber_t tagno; /* testing allocation group number */
xfs_btree_cur_t *tcur; /* temp cursor */
xfs_inobt_rec_incore_t trec; /* temp inode allocation record */
struct xfs_perag *pag;
if (*IO_agbp == NULL) {
/*
* We do not have an agbp, so select an initial allocation
* group for inode allocation.
*/
agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
/*
* Couldn't find an allocation group satisfying the
* criteria, give up.
*/
if (!agbp) {
*inop = NULLFSINO;
return 0;
}
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
} else {
/*
* Continue where we left off before. In this case, we
* know that the allocation group has free inodes.
*/
agbp = *IO_agbp;
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
}
mp = tp->t_mountp;
agcount = mp->m_sb.sb_agcount;
agno = be32_to_cpu(agi->agi_seqno);
tagno = agno;
pagno = XFS_INO_TO_AGNO(mp, parent);
pagino = XFS_INO_TO_AGINO(mp, parent);
/*
* If we have already hit the ceiling of inode blocks then clear
* okalloc so we scan all available agi structures for a free
* inode.
*/
if (mp->m_maxicount &&
mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
noroom = 1;
okalloc = 0;
}
/*
* Loop until we find an allocation group that either has free inodes
* or in which we can allocate some inodes. Iterate through the
* allocation groups upward, wrapping at the end.
*/
*alloc_done = B_FALSE;
while (!agi->agi_freecount) {
/*
* Don't do anything if we're not supposed to allocate
* any blocks, just go on to the next ag.
*/
if (okalloc) {
/*
* Try to allocate some new inodes in the allocation
* group.
*/
if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) {
xfs_trans_brelse(tp, agbp);
if (error == ENOSPC) {
*inop = NULLFSINO;
return 0;
} else
return error;
}
if (ialloced) {
/*
* We successfully allocated some inodes, return
* the current context to the caller so that it
* can commit the current transaction and call
* us again where we left off.
*/
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
*alloc_done = B_TRUE;
*IO_agbp = agbp;
*inop = NULLFSINO;
return 0;
}
}
/*
* If it failed, give up on this ag.
*/
xfs_trans_brelse(tp, agbp);
/*
* Go on to the next ag: get its ag header.
*/
nextag:
if (++tagno == agcount)
tagno = 0;
if (tagno == agno) {
*inop = NULLFSINO;
return noroom ? ENOSPC : 0;
}
pag = xfs_perag_get(mp, tagno);
if (pag->pagi_inodeok == 0) {
xfs_perag_put(pag);
goto nextag;
}
error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp);
xfs_perag_put(pag);
if (error)
goto nextag;
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
}
/*
* Here with an allocation group that has a free inode.
* Reset agno since we may have chosen a new ag in the
* loop above.
*/
agno = tagno;
*IO_agbp = NULL;
pag = xfs_perag_get(mp, agno);
restart_pagno:
cur = xfs_inobt_init_cursor(mp, tp, agbp, be32_to_cpu(agi->agi_seqno));
/*
* If pagino is 0 (this is the root inode allocation) use newino.
* This must work because we've just allocated some.
*/
if (!pagino)
pagino = be32_to_cpu(agi->agi_newino);
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
/*
* If in the same AG as the parent, try to get near the parent.
*/
if (pagno == agno) {
int doneleft; /* done, to the left */
int doneright; /* done, to the right */
int searchdistance = 10;
error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
error = xfs_inobt_get_rec(cur, &rec, &j);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
if (rec.ir_freecount > 0) {
/*
* Found a free inode in the same chunk
* as the parent, done.
*/
goto alloc_inode;
}
/*
* In the same AG as parent, but parent's chunk is full.
*/
/* duplicate the cursor, search left & right simultaneously */
error = xfs_btree_dup_cursor(cur, &tcur);
if (error)
goto error0;
/*
* Skip to last blocks looked up if same parent inode.
*/
if (pagino != NULLAGINO &&
pag->pagl_pagino == pagino &&
pag->pagl_leftrec != NULLAGINO &&
pag->pagl_rightrec != NULLAGINO) {
error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
&trec, &doneleft, 1);
if (error)
goto error1;
error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
&rec, &doneright, 0);
if (error)
goto error1;
} else {
/* search left with tcur, back up 1 record */
error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
if (error)
goto error1;
/* search right with cur, go forward 1 record. */
error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
if (error)
goto error1;
}
/*
* Loop until we find an inode chunk with a free inode.
*/
while (!doneleft || !doneright) {
int useleft; /* using left inode chunk this time */
if (!--searchdistance) {
/*
* Not in range - save last search
* location and allocate a new inode
*/
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
pag->pagl_leftrec = trec.ir_startino;
pag->pagl_rightrec = rec.ir_startino;
pag->pagl_pagino = pagino;
goto newino;
}
/* figure out the closer block if both are valid. */
if (!doneleft && !doneright) {
useleft = pagino -
(trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
rec.ir_startino - pagino;
} else {
useleft = !doneleft;
}
/* free inodes to the left? */
if (useleft && trec.ir_freecount) {
rec = trec;
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
cur = tcur;
pag->pagl_leftrec = trec.ir_startino;
pag->pagl_rightrec = rec.ir_startino;
pag->pagl_pagino = pagino;
goto alloc_inode;
}
/* free inodes to the right? */
if (!useleft && rec.ir_freecount) {
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
pag->pagl_leftrec = trec.ir_startino;
pag->pagl_rightrec = rec.ir_startino;
pag->pagl_pagino = pagino;
goto alloc_inode;
}
/* get next record to check */
if (useleft) {
error = xfs_ialloc_next_rec(tcur, &trec,
&doneleft, 1);
} else {
error = xfs_ialloc_next_rec(cur, &rec,
&doneright, 0);
}
if (error)
goto error1;
}
/*
* We've reached the end of the btree. because
* we are only searching a small chunk of the
* btree each search, there is obviously free
* inodes closer to the parent inode than we
* are now. restart the search again.
*/
pag->pagl_pagino = NULLAGINO;
pag->pagl_leftrec = NULLAGINO;
pag->pagl_rightrec = NULLAGINO;
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
goto restart_pagno;
}
/*
* In a different AG from the parent.
* See if the most recently allocated block has any free.
*/
newino:
if (be32_to_cpu(agi->agi_newino) != NULLAGINO) {
error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
XFS_LOOKUP_EQ, &i);
if (error)
goto error0;
if (i == 1) {
error = xfs_inobt_get_rec(cur, &rec, &j);
if (error)
goto error0;
if (j == 1 && rec.ir_freecount > 0) {
/*
* The last chunk allocated in the group
* still has a free inode.
*/
goto alloc_inode;
}
}
}
/*
* None left in the last group, search the whole AG
*/
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
for (;;) {
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
if (rec.ir_freecount > 0)
break;
error = xfs_btree_increment(cur, 0, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
}
alloc_inode:
offset = xfs_ialloc_find_free(&rec.ir_free);
ASSERT(offset >= 0);
ASSERT(offset < XFS_INODES_PER_CHUNK);
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
XFS_INODES_PER_CHUNK) == 0);
ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
rec.ir_free &= ~XFS_INOBT_MASK(offset);
rec.ir_freecount--;
error = xfs_inobt_update(cur, &rec);
if (error)
goto error0;
be32_add_cpu(&agi->agi_freecount, -1);
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
pag->pagi_freecount--;
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
xfs_perag_put(pag);
*inop = ino;
return 0;
error1:
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
error0:
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
xfs_perag_put(pag);
return error;
}
/*
* Free disk inode. Carefully avoids touching the incore inode, all
* manipulations incore are the caller's responsibility.
* The on-disk inode is not changed by this operation, only the
* btree (free inode mask) is changed.
*/
int
xfs_difree(
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t inode, /* inode to be freed */
xfs_bmap_free_t *flist, /* extents to free */
int *delete, /* set if inode cluster was deleted */
xfs_ino_t *first_ino) /* first inode in deleted cluster */
{
/* REFERENCED */
xfs_agblock_t agbno; /* block number containing inode */
xfs_buf_t *agbp; /* buffer containing allocation group header */
xfs_agino_t agino; /* inode number relative to allocation group */
xfs_agnumber_t agno; /* allocation group number */
xfs_agi_t *agi; /* allocation group header */
xfs_btree_cur_t *cur; /* inode btree cursor */
int error; /* error return value */
int i; /* result code */
int ilen; /* inodes in an inode cluster */
xfs_mount_t *mp; /* mount structure for filesystem */
int off; /* offset of inode in inode chunk */
xfs_inobt_rec_incore_t rec; /* btree record */
struct xfs_perag *pag;
mp = tp->t_mountp;
/*
* Break up inode number into its components.
*/
agno = XFS_INO_TO_AGNO(mp, inode);
if (agno >= mp->m_sb.sb_agcount) {
cmn_err(CE_WARN,
"xfs_difree: agno >= mp->m_sb.sb_agcount (%d >= %d) on %s. Returning EINVAL.",
agno, mp->m_sb.sb_agcount, mp->m_fsname);
ASSERT(0);
return XFS_ERROR(EINVAL);
}
agino = XFS_INO_TO_AGINO(mp, inode);
if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
cmn_err(CE_WARN,
"xfs_difree: inode != XFS_AGINO_TO_INO() "
"(%llu != %llu) on %s. Returning EINVAL.",
(unsigned long long)inode,
(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino),
mp->m_fsname);
ASSERT(0);
return XFS_ERROR(EINVAL);
}
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
if (agbno >= mp->m_sb.sb_agblocks) {
cmn_err(CE_WARN,
"xfs_difree: agbno >= mp->m_sb.sb_agblocks (%d >= %d) on %s. Returning EINVAL.",
agbno, mp->m_sb.sb_agblocks, mp->m_fsname);
ASSERT(0);
return XFS_ERROR(EINVAL);
}
/*
* Get the allocation group header.
*/
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error) {
cmn_err(CE_WARN,
"xfs_difree: xfs_ialloc_read_agi() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
return error;
}
agi = XFS_BUF_TO_AGI(agbp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
ASSERT(agbno < be32_to_cpu(agi->agi_length));
/*
* Initialize the cursor.
*/
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
/*
* Look for the entry describing this inode.
*/
if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
cmn_err(CE_WARN,
"xfs_difree: xfs_inobt_lookup returned() an error %d on %s. Returning error.",
error, mp->m_fsname);
goto error0;
}
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error) {
cmn_err(CE_WARN,
"xfs_difree: xfs_inobt_get_rec() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
goto error0;
}
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
/*
* Get the offset in the inode chunk.
*/
off = agino - rec.ir_startino;
ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
/*
* Mark the inode free & increment the count.
*/
rec.ir_free |= XFS_INOBT_MASK(off);
rec.ir_freecount++;
/*
* When an inode cluster is free, it becomes eligible for removal
*/
if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
(rec.ir_freecount == XFS_IALLOC_INODES(mp))) {
*delete = 1;
*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
/*
* Remove the inode cluster from the AGI B+Tree, adjust the
* AGI and Superblock inode counts, and mark the disk space
* to be freed when the transaction is committed.
*/
ilen = XFS_IALLOC_INODES(mp);
be32_add_cpu(&agi->agi_count, -ilen);
be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
pag = xfs_perag_get(mp, agno);
pag->pagi_freecount -= ilen - 1;
xfs_perag_put(pag);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
if ((error = xfs_btree_delete(cur, &i))) {
cmn_err(CE_WARN, "xfs_difree: xfs_btree_delete returned an error %d on %s.\n",
error, mp->m_fsname);
goto error0;
}
xfs_bmap_add_free(XFS_AGB_TO_FSB(mp,
agno, XFS_INO_TO_AGBNO(mp,rec.ir_startino)),
XFS_IALLOC_BLOCKS(mp), flist, mp);
} else {
*delete = 0;
error = xfs_inobt_update(cur, &rec);
if (error) {
cmn_err(CE_WARN,
"xfs_difree: xfs_inobt_update returned an error %d on %s.",
error, mp->m_fsname);
goto error0;
}
/*
* Change the inode free counts and log the ag/sb changes.
*/
be32_add_cpu(&agi->agi_freecount, 1);
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
pag = xfs_perag_get(mp, agno);
pag->pagi_freecount++;
xfs_perag_put(pag);
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
}
error = xfs_check_agi_freecount(cur, agi);
if (error)
goto error0;
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
return 0;
error0:
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
STATIC int
xfs_imap_lookup(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_agino_t agino,
xfs_agblock_t agbno,
xfs_agblock_t *chunk_agbno,
xfs_agblock_t *offset_agbno,
int flags)
{
struct xfs_inobt_rec_incore rec;
struct xfs_btree_cur *cur;
struct xfs_buf *agbp;
int error;
int i;
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error) {
xfs_alert(mp,
"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
__func__, error, agno);
return error;
}
/*
* Lookup the inode record for the given agino. If the record cannot be
* found, then it's an invalid inode number and we should abort. Once
* we have a record, we need to ensure it contains the inode number
* we are looking up.
*/
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
if (!error) {
if (i)
error = xfs_inobt_get_rec(cur, &rec, &i);
if (!error && i == 0)
error = EINVAL;
}
xfs_trans_brelse(tp, agbp);
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
if (error)
return error;
/* check that the returned record contains the required inode */
if (rec.ir_startino > agino ||
rec.ir_startino + XFS_IALLOC_INODES(mp) <= agino)
return EINVAL;
/* for untrusted inodes check it is allocated first */
if ((flags & XFS_IGET_UNTRUSTED) &&
(rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
return EINVAL;
*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
*offset_agbno = agbno - *chunk_agbno;
return 0;
}
/*
* Return the location of the inode in imap, for mapping it into a buffer.
*/
int
xfs_imap(
xfs_mount_t *mp, /* file system mount structure */
xfs_trans_t *tp, /* transaction pointer */
xfs_ino_t ino, /* inode to locate */
struct xfs_imap *imap, /* location map structure */
uint flags) /* flags for inode btree lookup */
{
xfs_agblock_t agbno; /* block number of inode in the alloc group */
xfs_agino_t agino; /* inode number within alloc group */
xfs_agnumber_t agno; /* allocation group number */
int blks_per_cluster; /* num blocks per inode cluster */
xfs_agblock_t chunk_agbno; /* first block in inode chunk */
xfs_agblock_t cluster_agbno; /* first block in inode cluster */
int error; /* error code */
int offset; /* index of inode in its buffer */
int offset_agbno; /* blks from chunk start to inode */
ASSERT(ino != NULLFSINO);
/*
* Split up the inode number into its parts.
*/
agno = XFS_INO_TO_AGNO(mp, ino);
agino = XFS_INO_TO_AGINO(mp, ino);
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
#ifdef DEBUG
/*
* Don't output diagnostic information for untrusted inodes
* as they can be invalid without implying corruption.
*/
if (flags & XFS_IGET_UNTRUSTED)
return XFS_ERROR(EINVAL);
if (agno >= mp->m_sb.sb_agcount) {
xfs_alert(mp,
"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
__func__, agno, mp->m_sb.sb_agcount);
}
if (agbno >= mp->m_sb.sb_agblocks) {
xfs_alert(mp,
"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
__func__, (unsigned long long)agbno,
(unsigned long)mp->m_sb.sb_agblocks);
}
if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
xfs_alert(mp,
"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
__func__, ino,
XFS_AGINO_TO_INO(mp, agno, agino));
}
xfs_stack_trace();
#endif /* DEBUG */
return XFS_ERROR(EINVAL);
}
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_blocklog;
/*
* For bulkstat and handle lookups, we have an untrusted inode number
* that we have to verify is valid. We cannot do this just by reading
* the inode buffer as it may have been unlinked and removed leaving
* inodes in stale state on disk. Hence we have to do a btree lookup
* in all cases where an untrusted inode number is passed.
*/
if (flags & XFS_IGET_UNTRUSTED) {
error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
&chunk_agbno, &offset_agbno, flags);
if (error)
return error;
goto out_map;
}
/*
* If the inode cluster size is the same as the blocksize or
* smaller we get to the buffer by simple arithmetics.
*/
if (XFS_INODE_CLUSTER_SIZE(mp) <= mp->m_sb.sb_blocksize) {
offset = XFS_INO_TO_OFFSET(mp, ino);
ASSERT(offset < mp->m_sb.sb_inopblock);
imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
imap->im_len = XFS_FSB_TO_BB(mp, 1);
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
return 0;
}
/*
* If the inode chunks are aligned then use simple maths to
* find the location. Otherwise we have to do a btree
* lookup to find the location.
*/
if (mp->m_inoalign_mask) {
offset_agbno = agbno & mp->m_inoalign_mask;
chunk_agbno = agbno - offset_agbno;
} else {
error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
&chunk_agbno, &offset_agbno, flags);
if (error)
return error;
}
out_map:
ASSERT(agbno >= chunk_agbno);
cluster_agbno = chunk_agbno +
((offset_agbno / blks_per_cluster) * blks_per_cluster);
offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
XFS_INO_TO_OFFSET(mp, ino);
imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
/*
* If the inode number maps to a block outside the bounds
* of the file system then return NULL rather than calling
* read_buf and panicing when we get an error from the
* driver.
*/
if ((imap->im_blkno + imap->im_len) >
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
xfs_alert(mp,
"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
__func__, (unsigned long long) imap->im_blkno,
(unsigned long long) imap->im_len,
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
return XFS_ERROR(EINVAL);
}
return 0;
}
/*
* Compute and fill in value of m_in_maxlevels.
*/
void
xfs_ialloc_compute_maxlevels(
xfs_mount_t *mp) /* file system mount structure */
{
int level;
uint maxblocks;
uint maxleafents;
int minleafrecs;
int minnoderecs;
maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
XFS_INODES_PER_CHUNK_LOG;
minleafrecs = mp->m_alloc_mnr[0];
minnoderecs = mp->m_alloc_mnr[1];
maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
for (level = 1; maxblocks > 1; level++)
maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
mp->m_in_maxlevels = level;
}
/*
* Log specified fields for the ag hdr (inode section)
*/
void
xfs_ialloc_log_agi(
xfs_trans_t *tp, /* transaction pointer */
xfs_buf_t *bp, /* allocation group header buffer */
int fields) /* bitmask of fields to log */
{
int first; /* first byte number */
int last; /* last byte number */
static const short offsets[] = { /* field starting offsets */
/* keep in sync with bit definitions */
offsetof(xfs_agi_t, agi_magicnum),
offsetof(xfs_agi_t, agi_versionnum),
offsetof(xfs_agi_t, agi_seqno),
offsetof(xfs_agi_t, agi_length),
offsetof(xfs_agi_t, agi_count),
offsetof(xfs_agi_t, agi_root),
offsetof(xfs_agi_t, agi_level),
offsetof(xfs_agi_t, agi_freecount),
offsetof(xfs_agi_t, agi_newino),
offsetof(xfs_agi_t, agi_dirino),
offsetof(xfs_agi_t, agi_unlinked),
sizeof(xfs_agi_t)
};
#ifdef DEBUG
xfs_agi_t *agi; /* allocation group header */
agi = XFS_BUF_TO_AGI(bp);
ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC);
#endif
/*
* Compute byte offsets for the first and last fields.
*/
xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
/*
* Log the allocation group inode header buffer.
*/
xfs_trans_log_buf(tp, bp, first, last);
}
#ifdef DEBUG
STATIC void
xfs_check_agi_unlinked(
struct xfs_agi *agi)
{
int i;
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
ASSERT(agi->agi_unlinked[i]);
}
#else
#define xfs_check_agi_unlinked(agi)
#endif
/*
* Read in the allocation group header (inode allocation section)
*/
int
xfs_read_agi(
struct xfs_mount *mp, /* file system mount structure */
struct xfs_trans *tp, /* transaction pointer */
xfs_agnumber_t agno, /* allocation group number */
struct xfs_buf **bpp) /* allocation group hdr buf */
{
struct xfs_agi *agi; /* allocation group header */
int agi_ok; /* agi is consistent */
int error;
ASSERT(agno != NULLAGNUMBER);
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, bpp);
if (error)
return error;
ASSERT(*bpp && !XFS_BUF_GETERROR(*bpp));
agi = XFS_BUF_TO_AGI(*bpp);
/*
* Validate the magic number of the agi block.
*/
agi_ok = be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)) &&
be32_to_cpu(agi->agi_seqno) == agno;
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
XFS_RANDOM_IALLOC_READ_AGI))) {
XFS_CORRUPTION_ERROR("xfs_read_agi", XFS_ERRLEVEL_LOW,
mp, agi);
xfs_trans_brelse(tp, *bpp);
return XFS_ERROR(EFSCORRUPTED);
}
XFS_BUF_SET_VTYPE_REF(*bpp, B_FS_AGI, XFS_AGI_REF);
xfs_check_agi_unlinked(agi);
return 0;
}
int
xfs_ialloc_read_agi(
struct xfs_mount *mp, /* file system mount structure */
struct xfs_trans *tp, /* transaction pointer */
xfs_agnumber_t agno, /* allocation group number */
struct xfs_buf **bpp) /* allocation group hdr buf */
{
struct xfs_agi *agi; /* allocation group header */
struct xfs_perag *pag; /* per allocation group data */
int error;
error = xfs_read_agi(mp, tp, agno, bpp);
if (error)
return error;
agi = XFS_BUF_TO_AGI(*bpp);
pag = xfs_perag_get(mp, agno);
if (!pag->pagi_init) {
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
pag->pagi_count = be32_to_cpu(agi->agi_count);
pag->pagi_init = 1;
}
/*
* It's possible for these to be out of sync if
* we are in the middle of a forced shutdown.
*/
ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
XFS_FORCED_SHUTDOWN(mp));
xfs_perag_put(pag);
return 0;
}
/*
* Read in the agi to initialise the per-ag data in the mount structure
*/
int
xfs_ialloc_pagi_init(
xfs_mount_t *mp, /* file system mount structure */
xfs_trans_t *tp, /* transaction pointer */
xfs_agnumber_t agno) /* allocation group number */
{
xfs_buf_t *bp = NULL;
int error;
error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
if (error)
return error;
if (bp)
xfs_trans_brelse(tp, bp);
return 0;
}