/*
* /proc/sys support
*/
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/security.h>
#include <linux/sched.h>
#include <linux/namei.h>
#include <linux/mm.h>
#include <linux/module.h>
#include "internal.h"
static const struct dentry_operations proc_sys_dentry_operations;
static const struct file_operations proc_sys_file_operations;
static const struct inode_operations proc_sys_inode_operations;
static const struct file_operations proc_sys_dir_file_operations;
static const struct inode_operations proc_sys_dir_operations;
void proc_sys_poll_notify(struct ctl_table_poll *poll)
{
if (!poll)
return;
atomic_inc(&poll->event);
wake_up_interruptible(&poll->wait);
}
static struct ctl_table root_table[] = {
{
.procname = "",
.mode = S_IFDIR|S_IRUGO|S_IXUGO,
},
{ }
};
static struct ctl_table_root sysctl_table_root = {
.default_set.dir.header = {
{{.count = 1,
.nreg = 1,
.ctl_table = root_table }},
.ctl_table_arg = root_table,
.root = &sysctl_table_root,
.set = &sysctl_table_root.default_set,
},
};
static DEFINE_SPINLOCK(sysctl_lock);
static void drop_sysctl_table(struct ctl_table_header *header);
static int sysctl_follow_link(struct ctl_table_header **phead,
struct ctl_table **pentry, struct nsproxy *namespaces);
static int insert_links(struct ctl_table_header *head);
static void put_links(struct ctl_table_header *header);
static void sysctl_print_dir(struct ctl_dir *dir)
{
if (dir->header.parent)
sysctl_print_dir(dir->header.parent);
printk(KERN_CONT "%s/", dir->header.ctl_table[0].procname);
}
static int namecmp(const char *name1, int len1, const char *name2, int len2)
{
int minlen;
int cmp;
minlen = len1;
if (minlen > len2)
minlen = len2;
cmp = memcmp(name1, name2, minlen);
if (cmp == 0)
cmp = len1 - len2;
return cmp;
}
/* Called under sysctl_lock */
static struct ctl_table *find_entry(struct ctl_table_header **phead,
struct ctl_dir *dir, const char *name, int namelen)
{
struct ctl_table_header *head;
struct ctl_table *entry;
struct rb_node *node = dir->root.rb_node;
while (node)
{
struct ctl_node *ctl_node;
const char *procname;
int cmp;
ctl_node = rb_entry(node, struct ctl_node, node);
head = ctl_node->header;
entry = &head->ctl_table[ctl_node - head->node];
procname = entry->procname;
cmp = namecmp(name, namelen, procname, strlen(procname));
if (cmp < 0)
node = node->rb_left;
else if (cmp > 0)
node = node->rb_right;
else {
*phead = head;
return entry;
}
}
return NULL;
}
static int insert_entry(struct ctl_table_header *head, struct ctl_table *entry)
{
struct rb_node *node = &head->node[entry - head->ctl_table].node;
struct rb_node **p = &head->parent->root.rb_node;
struct rb_node *parent = NULL;
const char *name = entry->procname;
int namelen = strlen(name);
while (*p) {
struct ctl_table_header *parent_head;
struct ctl_table *parent_entry;
struct ctl_node *parent_node;
const char *parent_name;
int cmp;
parent = *p;
parent_node = rb_entry(parent, struct ctl_node, node);
parent_head = parent_node->header;
parent_entry = &parent_head->ctl_table[parent_node - parent_head->node];
parent_name = parent_entry->procname;
cmp = namecmp(name, namelen, parent_name, strlen(parent_name));
if (cmp < 0)
p = &(*p)->rb_left;
else if (cmp > 0)
p = &(*p)->rb_right;
else {
printk(KERN_ERR "sysctl duplicate entry: ");
sysctl_print_dir(head->parent);
printk(KERN_CONT "/%s\n", entry->procname);
return -EEXIST;
}
}
rb_link_node(node, parent, p);
return 0;
}
static void erase_entry(struct ctl_table_header *head, struct ctl_table *entry)
{
struct rb_node *node = &head->node[entry - head->ctl_table].node;
rb_erase(node, &head->parent->root);
}
static void init_header(struct ctl_table_header *head,
struct ctl_table_root *root, struct ctl_table_set *set,
struct ctl_node *node, struct ctl_table *table)
{
head->ctl_table = table;
head->ctl_table_arg = table;
head->used = 0;
head->count = 1;
head->nreg = 1;
head->unregistering = NULL;
head->root = root;
head->set = set;
head->parent = NULL;
head->node = node;
if (node) {
struct ctl_table *entry;
for (entry = table; entry->procname; entry++, node++) {
rb_init_node(&node->node);
node->header = head;
}
}
}
static void erase_header(struct ctl_table_header *head)
{
struct ctl_table *entry;
for (entry = head->ctl_table; entry->procname; entry++)
erase_entry(head, entry);
}
static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header)
{
struct ctl_table *entry;
int err;
dir->header.nreg++;
header->parent = dir;
err = insert_links(header);
if (err)
goto fail_links;
for (entry = header->ctl_table; entry->procname; entry++) {
err = insert_entry(header, entry);
if (err)
goto fail;
}
return 0;
fail:
erase_header(header);
put_links(header);
fail_links:
header->parent = NULL;
drop_sysctl_table(&dir->header);
return err;
}
/* called under sysctl_lock */
static int use_table(struct ctl_table_header *p)
{
if (unlikely(p->unregistering))
return 0;
p->used++;
return 1;
}
/* called under sysctl_lock */
static void unuse_table(struct ctl_table_header *p)
{
if (!--p->used)
if (unlikely(p->unregistering))
complete(p->unregistering);
}
/* called under sysctl_lock, will reacquire if has to wait */
static void start_unregistering(struct ctl_table_header *p)
{
/*
* if p->used is 0, nobody will ever touch that entry again;
* we'll eliminate all paths to it before dropping sysctl_lock
*/
if (unlikely(p->used)) {
struct completion wait;
init_completion(&wait);
p->unregistering = &wait;
spin_unlock(&sysctl_lock);
wait_for_completion(&wait);
spin_lock(&sysctl_lock);
} else {
/* anything non-NULL; we'll never dereference it */
p->unregistering = ERR_PTR(-EINVAL);
}
/*
* do not remove from the list until nobody holds it; walking the
* list in do_sysctl() relies on that.
*/
erase_header(p);
}
static void sysctl_head_get(struct ctl_table_header *head)
{
spin_lock(&sysctl_lock);
head->count++;
spin_unlock(&sysctl_lock);
}
void sysctl_head_put(struct ctl_table_header *head)
{
spin_lock(&sysctl_lock);
if (!--head->count)
kfree_rcu(head, rcu);
spin_unlock(&sysctl_lock);
}
static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head)
{
if (!head)
BUG();
spin_lock(&sysctl_lock);
if (!use_table(head))
head = ERR_PTR(-ENOENT);
spin_unlock(&sysctl_lock);
return head;
}
static void sysctl_head_finish(struct ctl_table_header *head)
{
if (!head)
return;
spin_lock(&sysctl_lock);
unuse_table(head);
spin_unlock(&sysctl_lock);
}
static struct ctl_table_set *
lookup_header_set(struct ctl_table_root *root, struct nsproxy *namespaces)
{
struct ctl_table_set *set = &root->default_set;
if (root->lookup)
set = root->lookup(root, namespaces);
return set;
}
static struct ctl_table *lookup_entry(struct ctl_table_header **phead,
struct ctl_dir *dir,
const char *name, int namelen)
{
struct ctl_table_header *head;
struct ctl_table *entry;
spin_lock(&sysctl_lock);
entry = find_entry(&head, dir, name, namelen);
if (entry && use_table(head))
*phead = head;
else
entry = NULL;
spin_unlock(&sysctl_lock);
return entry;
}
static struct ctl_node *first_usable_entry(struct rb_node *node)
{
struct ctl_node *ctl_node;
for (;node; node = rb_next(node)) {
ctl_node = rb_entry(node, struct ctl_node, node);
if (use_table(ctl_node->header))
return ctl_node;
}
return NULL;
}
static void first_entry(struct ctl_dir *dir,
struct ctl_table_header **phead, struct ctl_table **pentry)
{
struct ctl_table_header *head = NULL;
struct ctl_table *entry = NULL;
struct ctl_node *ctl_node;
spin_lock(&sysctl_lock);
ctl_node = first_usable_entry(rb_first(&dir->root));
spin_unlock(&sysctl_lock);
if (ctl_node) {
head = ctl_node->header;
entry = &head->ctl_table[ctl_node - head->node];
}
*phead = head;
*pentry = entry;
}
static void next_entry(struct ctl_table_header **phead, struct ctl_table **pentry)
{
struct ctl_table_header *head = *phead;
struct ctl_table *entry = *pentry;
struct ctl_node *ctl_node = &head->node[entry - head->ctl_table];
spin_lock(&sysctl_lock);
unuse_table(head);
ctl_node = first_usable_entry(rb_next(&ctl_node->node));
spin_unlock(&sysctl_lock);
head = NULL;
if (ctl_node) {
head = ctl_node->header;
entry = &head->ctl_table[ctl_node - head->node];
}
*phead = head;
*pentry = entry;
}
void register_sysctl_root(struct ctl_table_root *root)
{
}
/*
* sysctl_perm does NOT grant the superuser all rights automatically, because
* some sysctl variables are readonly even to root.
*/
static int test_perm(int mode, int op)
{
if (!current_euid())
mode >>= 6;
else if (in_egroup_p(0))
mode >>= 3;
if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0)
return 0;
return -EACCES;
}
static int sysctl_perm(struct ctl_table_root *root, struct ctl_table *table, int op)
{
int mode;
if (root->permissions)
mode = root->permissions(root, current->nsproxy, table);
else
mode = table->mode;
return test_perm(mode, op);
}
static struct inode *proc_sys_make_inode(struct super_block *sb,
struct ctl_table_header *head, struct ctl_table *table)
{
struct inode *inode;
struct proc_inode *ei;
inode = new_inode(sb);
if (!inode)
goto out;
inode->i_ino = get_next_ino();
sysctl_head_get(head);
ei = PROC_I(inode);
ei->sysctl = head;
ei->sysctl_entry = table;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_mode = table->mode;
if (!S_ISDIR(table->mode)) {
inode->i_mode |= S_IFREG;
inode->i_op = &proc_sys_inode_operations;
inode->i_fop = &proc_sys_file_operations;
} else {
inode->i_mode |= S_IFDIR;
inode->i_op = &proc_sys_dir_operations;
inode->i_fop = &proc_sys_dir_file_operations;
}
out:
return inode;
}
static struct ctl_table_header *grab_header(struct inode *inode)
{
struct ctl_table_header *head = PROC_I(inode)->sysctl;
if (!head)
head = &sysctl_table_root.default_set.dir.header;
return sysctl_head_grab(head);
}
static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry,
struct nameidata *nd)
{
struct ctl_table_header *head = grab_header(dir);
struct ctl_table_header *h = NULL;
struct qstr *name = &dentry->d_name;
struct ctl_table *p;
struct inode *inode;
struct dentry *err = ERR_PTR(-ENOENT);
struct ctl_dir *ctl_dir;
int ret;
if (IS_ERR(head))
return ERR_CAST(head);
ctl_dir = container_of(head, struct ctl_dir, header);
p = lookup_entry(&h, ctl_dir, name->name, name->len);
if (!p)
goto out;
if (S_ISLNK(p->mode)) {
ret = sysctl_follow_link(&h, &p, current->nsproxy);
err = ERR_PTR(ret);
if (ret)
goto out;
}
err = ERR_PTR(-ENOMEM);
inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p);
if (h)
sysctl_head_finish(h);
if (!inode)
goto out;
err = NULL;
d_set_d_op(dentry, &proc_sys_dentry_operations);
d_add(dentry, inode);
out:
sysctl_head_finish(head);
return err;
}
static ssize_t proc_sys_call_handler(struct file *filp, void __user *buf,
size_t count, loff_t *ppos, int write)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct ctl_table_header *head = grab_header(inode);
struct ctl_table *table = PROC_I(inode)->sysctl_entry;
ssize_t error;
size_t res;
if (IS_ERR(head))
return PTR_ERR(head);
/*
* At this point we know that the sysctl was not unregistered
* and won't be until we finish.
*/
error = -EPERM;
if (sysctl_perm(head->root, table, write ? MAY_WRITE : MAY_READ))
goto out;
/* if that can happen at all, it should be -EINVAL, not -EISDIR */
error = -EINVAL;
if (!table->proc_handler)
goto out;
/* careful: calling conventions are nasty here */
res = count;
error = table->proc_handler(table, write, buf, &res, ppos);
if (!error)
error = res;
out:
sysctl_head_finish(head);
return error;
}
static ssize_t proc_sys_read(struct file *filp, char __user *buf,
size_t count, loff_t *ppos)
{
return proc_sys_call_handler(filp, (void __user *)buf, count, ppos, 0);
}
static ssize_t proc_sys_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
return proc_sys_call_handler(filp, (void __user *)buf, count, ppos, 1);
}
static int proc_sys_open(struct inode *inode, struct file *filp)
{
struct ctl_table_header *head = grab_header(inode);
struct ctl_table *table = PROC_I(inode)->sysctl_entry;
/* sysctl was unregistered */
if (IS_ERR(head))
return PTR_ERR(head);
if (table->poll)
filp->private_data = proc_sys_poll_event(table->poll);
sysctl_head_finish(head);
return 0;
}
static unsigned int proc_sys_poll(struct file *filp, poll_table *wait)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct ctl_table_header *head = grab_header(inode);
struct ctl_table *table = PROC_I(inode)->sysctl_entry;
unsigned int ret = DEFAULT_POLLMASK;
unsigned long event;
/* sysctl was unregistered */
if (IS_ERR(head))
return POLLERR | POLLHUP;
if (!table->proc_handler)
goto out;
if (!table->poll)
goto out;
event = (unsigned long)filp->private_data;
poll_wait(filp, &table->poll->wait, wait);
if (event != atomic_read(&table->poll->event)) {
filp->private_data = proc_sys_poll_event(table->poll);
ret = POLLIN | POLLRDNORM | POLLERR | POLLPRI;
}
out:
sysctl_head_finish(head);
return ret;
}
static int proc_sys_fill_cache(struct file *filp, void *dirent,
filldir_t filldir,
struct ctl_table_header *head,
struct ctl_table *table)
{
struct dentry *child, *dir = filp->f_path.dentry;
struct inode *inode;
struct qstr qname;
ino_t ino = 0;
unsigned type = DT_UNKNOWN;
qname.name = table->procname;
qname.len = strlen(table->procname);
qname.hash = full_name_hash(qname.name, qname.len);
child = d_lookup(dir, &qname);
if (!child) {
child = d_alloc(dir, &qname);
if (child) {
inode = proc_sys_make_inode(dir->d_sb, head, table);
if (!inode) {
dput(child);
return -ENOMEM;
} else {
d_set_d_op(child, &proc_sys_dentry_operations);
d_add(child, inode);
}
} else {
return -ENOMEM;
}
}
inode = child->d_inode;
ino = inode->i_ino;
type = inode->i_mode >> 12;
dput(child);
return !!filldir(dirent, qname.name, qname.len, filp->f_pos, ino, type);
}
static int proc_sys_link_fill_cache(struct file *filp, void *dirent,
filldir_t filldir,
struct ctl_table_header *head,
struct ctl_table *table)
{
int err, ret = 0;
head = sysctl_head_grab(head);
if (S_ISLNK(table->mode)) {
/* It is not an error if we can not follow the link ignore it */
err = sysctl_follow_link(&head, &table, current->nsproxy);
if (err)
goto out;
}
ret = proc_sys_fill_cache(filp, dirent, filldir, head, table);
out:
sysctl_head_finish(head);
return ret;
}
static int scan(struct ctl_table_header *head, ctl_table *table,
unsigned long *pos, struct file *file,
void *dirent, filldir_t filldir)
{
int res;
if ((*pos)++ < file->f_pos)
return 0;
if (unlikely(S_ISLNK(table->mode)))
res = proc_sys_link_fill_cache(file, dirent, filldir, head, table);
else
res = proc_sys_fill_cache(file, dirent, filldir, head, table);
if (res == 0)
file->f_pos = *pos;
return res;
}
static int proc_sys_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
struct dentry *dentry = filp->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct ctl_table_header *head = grab_header(inode);
struct ctl_table_header *h = NULL;
struct ctl_table *entry;
struct ctl_dir *ctl_dir;
unsigned long pos;
int ret = -EINVAL;
if (IS_ERR(head))
return PTR_ERR(head);
ctl_dir = container_of(head, struct ctl_dir, header);
ret = 0;
/* Avoid a switch here: arm builds fail with missing __cmpdi2 */
if (filp->f_pos == 0) {
if (filldir(dirent, ".", 1, filp->f_pos,
inode->i_ino, DT_DIR) < 0)
goto out;
filp->f_pos++;
}
if (filp->f_pos == 1) {
if (filldir(dirent, "..", 2, filp->f_pos,
parent_ino(dentry), DT_DIR) < 0)
goto out;
filp->f_pos++;
}
pos = 2;
for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) {
ret = scan(h, entry, &pos, filp, dirent, filldir);
if (ret) {
sysctl_head_finish(h);
break;
}
}
ret = 1;
out:
sysctl_head_finish(head);
return ret;
}
static int proc_sys_permission(struct inode *inode, int mask)
{
/*
* sysctl entries that are not writeable,
* are _NOT_ writeable, capabilities or not.
*/
struct ctl_table_header *head;
struct ctl_table *table;
int error;
/* Executable files are not allowed under /proc/sys/ */
if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode))
return -EACCES;
head = grab_header(inode);
if (IS_ERR(head))
return PTR_ERR(head);
table = PROC_I(inode)->sysctl_entry;
if (!table) /* global root - r-xr-xr-x */
error = mask & MAY_WRITE ? -EACCES : 0;
else /* Use the permissions on the sysctl table entry */
error = sysctl_perm(head->root, table, mask & ~MAY_NOT_BLOCK);
sysctl_head_finish(head);
return error;
}
static int proc_sys_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
int error;
if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID))
return -EPERM;
error = inode_change_ok(inode, attr);
if (error)
return error;
if ((attr->ia_valid & ATTR_SIZE) &&
attr->ia_size != i_size_read(inode)) {
error = vmtruncate(inode, attr->ia_size);
if (error)
return error;
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
return 0;
}
static int proc_sys_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
struct ctl_table_header *head = grab_header(inode);
struct ctl_table *table = PROC_I(inode)->sysctl_entry;
if (IS_ERR(head))
return PTR_ERR(head);
generic_fillattr(inode, stat);
if (table)
stat->mode = (stat->mode & S_IFMT) | table->mode;
sysctl_head_finish(head);
return 0;
}
static const struct file_operations proc_sys_file_operations = {
.open = proc_sys_open,
.poll = proc_sys_poll,
.read = proc_sys_read,
.write = proc_sys_write,
.llseek = default_llseek,
};
static const struct file_operations proc_sys_dir_file_operations = {
.read = generic_read_dir,
.readdir = proc_sys_readdir,
.llseek = generic_file_llseek,
};
static const struct inode_operations proc_sys_inode_operations = {
.permission = proc_sys_permission,
.setattr = proc_sys_setattr,
.getattr = proc_sys_getattr,
};
static const struct inode_operations proc_sys_dir_operations = {
.lookup = proc_sys_lookup,
.permission = proc_sys_permission,
.setattr = proc_sys_setattr,
.getattr = proc_sys_getattr,
};
static int proc_sys_revalidate(struct dentry *dentry, struct nameidata *nd)
{
if (nd->flags & LOOKUP_RCU)
return -ECHILD;
return !PROC_I(dentry->d_inode)->sysctl->unregistering;
}
static int proc_sys_delete(const struct dentry *dentry)
{
return !!PROC_I(dentry->d_inode)->sysctl->unregistering;
}
static int sysctl_is_seen(struct ctl_table_header *p)
{
struct ctl_table_set *set = p->set;
int res;
spin_lock(&sysctl_lock);
if (p->unregistering)
res = 0;
else if (!set->is_seen)
res = 1;
else
res = set->is_seen(set);
spin_unlock(&sysctl_lock);
return res;
}
static int proc_sys_compare(const struct dentry *parent,
const struct inode *pinode,
const struct dentry *dentry, const struct inode *inode,
unsigned int len, const char *str, const struct qstr *name)
{
struct ctl_table_header *head;
/* Although proc doesn't have negative dentries, rcu-walk means
* that inode here can be NULL */
/* AV: can it, indeed? */
if (!inode)
return 1;
if (name->len != len)
return 1;
if (memcmp(name->name, str, len))
return 1;
head = rcu_dereference(PROC_I(inode)->sysctl);
return !head || !sysctl_is_seen(head);
}
static const struct dentry_operations proc_sys_dentry_operations = {
.d_revalidate = proc_sys_revalidate,
.d_delete = proc_sys_delete,
.d_compare = proc_sys_compare,
};
static struct ctl_dir *find_subdir(struct ctl_dir *dir,
const char *name, int namelen)
{
struct ctl_table_header *head;
struct ctl_table *entry;
entry = find_entry(&head, dir, name, namelen);
if (!entry)
return ERR_PTR(-ENOENT);
if (!S_ISDIR(entry->mode))
return ERR_PTR(-ENOTDIR);
return container_of(head, struct ctl_dir, header);
}
static struct ctl_dir *new_dir(struct ctl_table_set *set,
const char *name, int namelen)
{
struct ctl_table *table;
struct ctl_dir *new;
struct ctl_node *node;
char *new_name;
new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) +
sizeof(struct ctl_table)*2 + namelen + 1,
GFP_KERNEL);
if (!new)
return NULL;
node = (struct ctl_node *)(new + 1);
table = (struct ctl_table *)(node + 1);
new_name = (char *)(table + 2);
memcpy(new_name, name, namelen);
new_name[namelen] = '\0';
table[0].procname = new_name;
table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO;
init_header(&new->header, set->dir.header.root, set, node, table);
return new;
}
/**
* get_subdir - find or create a subdir with the specified name.
* @dir: Directory to create the subdirectory in
* @name: The name of the subdirectory to find or create
* @namelen: The length of name
*
* Takes a directory with an elevated reference count so we know that
* if we drop the lock the directory will not go away. Upon success
* the reference is moved from @dir to the returned subdirectory.
* Upon error an error code is returned and the reference on @dir is
* simply dropped.
*/
static struct ctl_dir *get_subdir(struct ctl_dir *dir,
const char *name, int namelen)
{
struct ctl_table_set *set = dir->header.set;
struct ctl_dir *subdir, *new = NULL;
int err;
spin_lock(&sysctl_lock);
subdir = find_subdir(dir, name, namelen);
if (!IS_ERR(subdir))
goto found;
if (PTR_ERR(subdir) != -ENOENT)
goto failed;
spin_unlock(&sysctl_lock);
new = new_dir(set, name, namelen);
spin_lock(&sysctl_lock);
subdir = ERR_PTR(-ENOMEM);
if (!new)
goto failed;
/* Was the subdir added while we dropped the lock? */
subdir = find_subdir(dir, name, namelen);
if (!IS_ERR(subdir))
goto found;
if (PTR_ERR(subdir) != -ENOENT)
goto failed;
/* Nope. Use the our freshly made directory entry. */
err = insert_header(dir, &new->header);
subdir = ERR_PTR(err);
if (err)
goto failed;
subdir = new;
found:
subdir->header.nreg++;
failed:
if (unlikely(IS_ERR(subdir))) {
printk(KERN_ERR "sysctl could not get directory: ");
sysctl_print_dir(dir);
printk(KERN_CONT "/%*.*s %ld\n",
namelen, namelen, name, PTR_ERR(subdir));
}
drop_sysctl_table(&dir->header);
if (new)
drop_sysctl_table(&new->header);
spin_unlock(&sysctl_lock);
return subdir;
}
static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir)
{
struct ctl_dir *parent;
const char *procname;
if (!dir->header.parent)
return &set->dir;
parent = xlate_dir(set, dir->header.parent);
if (IS_ERR(parent))
return parent;
procname = dir->header.ctl_table[0].procname;
return find_subdir(parent, procname, strlen(procname));
}
static int sysctl_follow_link(struct ctl_table_header **phead,
struct ctl_table **pentry, struct nsproxy *namespaces)
{
struct ctl_table_header *head;
struct ctl_table_root *root;
struct ctl_table_set *set;
struct ctl_table *entry;
struct ctl_dir *dir;
int ret;
ret = 0;
spin_lock(&sysctl_lock);
root = (*pentry)->data;
set = lookup_header_set(root, namespaces);
dir = xlate_dir(set, (*phead)->parent);
if (IS_ERR(dir))
ret = PTR_ERR(dir);
else {
const char *procname = (*pentry)->procname;
head = NULL;
entry = find_entry(&head, dir, procname, strlen(procname));
ret = -ENOENT;
if (entry && use_table(head)) {
unuse_table(*phead);
*phead = head;
*pentry = entry;
ret = 0;
}
}
spin_unlock(&sysctl_lock);
return ret;
}
static int sysctl_err(const char *path, struct ctl_table *table, char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_ERR "sysctl table check failed: %s/%s %pV\n",
path, table->procname, &vaf);
va_end(args);
return -EINVAL;
}
static int sysctl_check_table(const char *path, struct ctl_table *table)
{
int err = 0;
for (; table->procname; table++) {
if (table->child)
err = sysctl_err(path, table, "Not a file");
if ((table->proc_handler == proc_dostring) ||
(table->proc_handler == proc_dointvec) ||
(table->proc_handler == proc_dointvec_minmax) ||
(table->proc_handler == proc_dointvec_jiffies) ||
(table->proc_handler == proc_dointvec_userhz_jiffies) ||
(table->proc_handler == proc_dointvec_ms_jiffies) ||
(table->proc_handler == proc_doulongvec_minmax) ||
(table->proc_handler == proc_doulongvec_ms_jiffies_minmax)) {
if (!table->data)
err = sysctl_err(path, table, "No data");
if (!table->maxlen)
err = sysctl_err(path, table, "No maxlen");
}
if (!table->proc_handler)
err = sysctl_err(path, table, "No proc_handler");
if ((table->mode & (S_IRUGO|S_IWUGO)) != table->mode)
err = sysctl_err(path, table, "bogus .mode 0%o",
table->mode);
}
return err;
}
static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table *table,
struct ctl_table_root *link_root)
{
struct ctl_table *link_table, *entry, *link;
struct ctl_table_header *links;
struct ctl_node *node;
char *link_name;
int nr_entries, name_bytes;
name_bytes = 0;
nr_entries = 0;
for (entry = table; entry->procname; entry++) {
nr_entries++;
name_bytes += strlen(entry->procname) + 1;
}
links = kzalloc(sizeof(struct ctl_table_header) +
sizeof(struct ctl_node)*nr_entries +
sizeof(struct ctl_table)*(nr_entries + 1) +
name_bytes,
GFP_KERNEL);
if (!links)
return NULL;
node = (struct ctl_node *)(links + 1);
link_table = (struct ctl_table *)(node + nr_entries);
link_name = (char *)&link_table[nr_entries + 1];
for (link = link_table, entry = table; entry->procname; link++, entry++) {
int len = strlen(entry->procname) + 1;
memcpy(link_name, entry->procname, len);
link->procname = link_name;
link->mode = S_IFLNK|S_IRWXUGO;
link->data = link_root;
link_name += len;
}
init_header(links, dir->header.root, dir->header.set, node, link_table);
links->nreg = nr_entries;
return links;
}
static bool get_links(struct ctl_dir *dir,
struct ctl_table *table, struct ctl_table_root *link_root)
{
struct ctl_table_header *head;
struct ctl_table *entry, *link;
/* Are there links available for every entry in table? */
for (entry = table; entry->procname; entry++) {
const char *procname = entry->procname;
link = find_entry(&head, dir, procname, strlen(procname));
if (!link)
return false;
if (S_ISDIR(link->mode) && S_ISDIR(entry->mode))
continue;
if (S_ISLNK(link->mode) && (link->data == link_root))
continue;
return false;
}
/* The checks passed. Increase the registration count on the links */
for (entry = table; entry->procname; entry++) {
const char *procname = entry->procname;
link = find_entry(&head, dir, procname, strlen(procname));
head->nreg++;
}
return true;
}
static int insert_links(struct ctl_table_header *head)
{
struct ctl_table_set *root_set = &sysctl_table_root.default_set;
struct ctl_dir *core_parent = NULL;
struct ctl_table_header *links;
int err;
if (head->set == root_set)
return 0;
core_parent = xlate_dir(root_set, head->parent);
if (IS_ERR(core_parent))
return 0;
if (get_links(core_parent, head->ctl_table, head->root))
return 0;
core_parent->header.nreg++;
spin_unlock(&sysctl_lock);
links = new_links(core_parent, head->ctl_table, head->root);
spin_lock(&sysctl_lock);
err = -ENOMEM;
if (!links)
goto out;
err = 0;
if (get_links(core_parent, head->ctl_table, head->root)) {
kfree(links);
goto out;
}
err = insert_header(core_parent, links);
if (err)
kfree(links);
out:
drop_sysctl_table(&core_parent->header);
return err;
}
/**
* __register_sysctl_table - register a leaf sysctl table
* @set: Sysctl tree to register on
* @path: The path to the directory the sysctl table is in.
* @table: the top-level table structure
*
* Register a sysctl table hierarchy. @table should be a filled in ctl_table
* array. A completely 0 filled entry terminates the table.
*
* The members of the &struct ctl_table structure are used as follows:
*
* procname - the name of the sysctl file under /proc/sys. Set to %NULL to not
* enter a sysctl file
*
* data - a pointer to data for use by proc_handler
*
* maxlen - the maximum size in bytes of the data
*
* mode - the file permissions for the /proc/sys file
*
* child - must be %NULL.
*
* proc_handler - the text handler routine (described below)
*
* extra1, extra2 - extra pointers usable by the proc handler routines
*
* Leaf nodes in the sysctl tree will be represented by a single file
* under /proc; non-leaf nodes will be represented by directories.
*
* There must be a proc_handler routine for any terminal nodes.
* Several default handlers are available to cover common cases -
*
* proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(),
* proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(),
* proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax()
*
* It is the handler's job to read the input buffer from user memory
* and process it. The handler should return 0 on success.
*
* This routine returns %NULL on a failure to register, and a pointer
* to the table header on success.
*/
struct ctl_table_header *__register_sysctl_table(
struct ctl_table_set *set,
const char *path, struct ctl_table *table)
{
struct ctl_table_root *root = set->dir.header.root;
struct ctl_table_header *header;
const char *name, *nextname;
struct ctl_dir *dir;
struct ctl_table *entry;
struct ctl_node *node;
int nr_entries = 0;
for (entry = table; entry->procname; entry++)
nr_entries++;
header = kzalloc(sizeof(struct ctl_table_header) +
sizeof(struct ctl_node)*nr_entries, GFP_KERNEL);
if (!header)
return NULL;
node = (struct ctl_node *)(header + 1);
init_header(header, root, set, node, table);
if (sysctl_check_table(path, table))
goto fail;
spin_lock(&sysctl_lock);
dir = &set->dir;
/* Reference moved down the diretory tree get_subdir */
dir->header.nreg++;
spin_unlock(&sysctl_lock);
/* Find the directory for the ctl_table */
for (name = path; name; name = nextname) {
int namelen;
nextname = strchr(name, '/');
if (nextname) {
namelen = nextname - name;
nextname++;
} else {
namelen = strlen(name);
}
if (namelen == 0)
continue;
dir = get_subdir(dir, name, namelen);
if (IS_ERR(dir))
goto fail;
}
spin_lock(&sysctl_lock);
if (insert_header(dir, header))
goto fail_put_dir_locked;
drop_sysctl_table(&dir->header);
spin_unlock(&sysctl_lock);
return header;
fail_put_dir_locked:
drop_sysctl_table(&dir->header);
spin_unlock(&sysctl_lock);
fail:
kfree(header);
dump_stack();
return NULL;
}
/**
* register_sysctl - register a sysctl table
* @path: The path to the directory the sysctl table is in.
* @table: the table structure
*
* Register a sysctl table. @table should be a filled in ctl_table
* array. A completely 0 filled entry terminates the table.
*
* See __register_sysctl_table for more details.
*/
struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table)
{
return __register_sysctl_table(&sysctl_table_root.default_set,
path, table);
}
EXPORT_SYMBOL(register_sysctl);
static char *append_path(const char *path, char *pos, const char *name)
{
int namelen;
namelen = strlen(name);
if (((pos - path) + namelen + 2) >= PATH_MAX)
return NULL;
memcpy(pos, name, namelen);
pos[namelen] = '/';
pos[namelen + 1] = '\0';
pos += namelen + 1;
return pos;
}
static int count_subheaders(struct ctl_table *table)
{
int has_files = 0;
int nr_subheaders = 0;
struct ctl_table *entry;
/* special case: no directory and empty directory */
if (!table || !table->procname)
return 1;
for (entry = table; entry->procname; entry++) {
if (entry->child)
nr_subheaders += count_subheaders(entry->child);
else
has_files = 1;
}
return nr_subheaders + has_files;
}
static int register_leaf_sysctl_tables(const char *path, char *pos,
struct ctl_table_header ***subheader, struct ctl_table_set *set,
struct ctl_table *table)
{
struct ctl_table *ctl_table_arg = NULL;
struct ctl_table *entry, *files;
int nr_files = 0;
int nr_dirs = 0;
int err = -ENOMEM;
for (entry = table; entry->procname; entry++) {
if (entry->child)
nr_dirs++;
else
nr_files++;
}
files = table;
/* If there are mixed files and directories we need a new table */
if (nr_dirs && nr_files) {
struct ctl_table *new;
files = kzalloc(sizeof(struct ctl_table) * (nr_files + 1),
GFP_KERNEL);
if (!files)
goto out;
ctl_table_arg = files;
for (new = files, entry = table; entry->procname; entry++) {
if (entry->child)
continue;
*new = *entry;
new++;
}
}
/* Register everything except a directory full of subdirectories */
if (nr_files || !nr_dirs) {
struct ctl_table_header *header;
header = __register_sysctl_table(set, path, files);
if (!header) {
kfree(ctl_table_arg);
goto out;
}
/* Remember if we need to free the file table */
header->ctl_table_arg = ctl_table_arg;
**subheader = header;
(*subheader)++;
}
/* Recurse into the subdirectories. */
for (entry = table; entry->procname; entry++) {
char *child_pos;
if (!entry->child)
continue;
err = -ENAMETOOLONG;
child_pos = append_path(path, pos, entry->procname);
if (!child_pos)
goto out;
err = register_leaf_sysctl_tables(path, child_pos, subheader,
set, entry->child);
pos[0] = '\0';
if (err)
goto out;
}
err = 0;
out:
/* On failure our caller will unregister all registered subheaders */
return err;
}
/**
* __register_sysctl_paths - register a sysctl table hierarchy
* @set: Sysctl tree to register on
* @path: The path to the directory the sysctl table is in.
* @table: the top-level table structure
*
* Register a sysctl table hierarchy. @table should be a filled in ctl_table
* array. A completely 0 filled entry terminates the table.
*
* See __register_sysctl_table for more details.
*/
struct ctl_table_header *__register_sysctl_paths(
struct ctl_table_set *set,
const struct ctl_path *path, struct ctl_table *table)
{
struct ctl_table *ctl_table_arg = table;
int nr_subheaders = count_subheaders(table);
struct ctl_table_header *header = NULL, **subheaders, **subheader;
const struct ctl_path *component;
char *new_path, *pos;
pos = new_path = kmalloc(PATH_MAX, GFP_KERNEL);
if (!new_path)
return NULL;
pos[0] = '\0';
for (component = path; component->procname; component++) {
pos = append_path(new_path, pos, component->procname);
if (!pos)
goto out;
}
while (table->procname && table->child && !table[1].procname) {
pos = append_path(new_path, pos, table->procname);
if (!pos)
goto out;
table = table->child;
}
if (nr_subheaders == 1) {
header = __register_sysctl_table(set, new_path, table);
if (header)
header->ctl_table_arg = ctl_table_arg;
} else {
header = kzalloc(sizeof(*header) +
sizeof(*subheaders)*nr_subheaders, GFP_KERNEL);
if (!header)
goto out;
subheaders = (struct ctl_table_header **) (header + 1);
subheader = subheaders;
header->ctl_table_arg = ctl_table_arg;
if (register_leaf_sysctl_tables(new_path, pos, &subheader,
set, table))
goto err_register_leaves;
}
out:
kfree(new_path);
return header;
err_register_leaves:
while (subheader > subheaders) {
struct ctl_table_header *subh = *(--subheader);
struct ctl_table *table = subh->ctl_table_arg;
unregister_sysctl_table(subh);
kfree(table);
}
kfree(header);
header = NULL;
goto out;
}
/**
* register_sysctl_table_path - register a sysctl table hierarchy
* @path: The path to the directory the sysctl table is in.
* @table: the top-level table structure
*
* Register a sysctl table hierarchy. @table should be a filled in ctl_table
* array. A completely 0 filled entry terminates the table.
*
* See __register_sysctl_paths for more details.
*/
struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path,
struct ctl_table *table)
{
return __register_sysctl_paths(&sysctl_table_root.default_set,
path, table);
}
EXPORT_SYMBOL(register_sysctl_paths);
/**
* register_sysctl_table - register a sysctl table hierarchy
* @table: the top-level table structure
*
* Register a sysctl table hierarchy. @table should be a filled in ctl_table
* array. A completely 0 filled entry terminates the table.
*
* See register_sysctl_paths for more details.
*/
struct ctl_table_header *register_sysctl_table(struct ctl_table *table)
{
static const struct ctl_path null_path[] = { {} };
return register_sysctl_paths(null_path, table);
}
EXPORT_SYMBOL(register_sysctl_table);
static void put_links(struct ctl_table_header *header)
{
struct ctl_table_set *root_set = &sysctl_table_root.default_set;
struct ctl_table_root *root = header->root;
struct ctl_dir *parent = header->parent;
struct ctl_dir *core_parent;
struct ctl_table *entry;
if (header->set == root_set)
return;
core_parent = xlate_dir(root_set, parent);
if (IS_ERR(core_parent))
return;
for (entry = header->ctl_table; entry->procname; entry++) {
struct ctl_table_header *link_head;
struct ctl_table *link;
const char *name = entry->procname;
link = find_entry(&link_head, core_parent, name, strlen(name));
if (link &&
((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) ||
(S_ISLNK(link->mode) && (link->data == root)))) {
drop_sysctl_table(link_head);
}
else {
printk(KERN_ERR "sysctl link missing during unregister: ");
sysctl_print_dir(parent);
printk(KERN_CONT "/%s\n", name);
}
}
}
static void drop_sysctl_table(struct ctl_table_header *header)
{
struct ctl_dir *parent = header->parent;
if (--header->nreg)
return;
put_links(header);
start_unregistering(header);
if (!--header->count)
kfree_rcu(header, rcu);
if (parent)
drop_sysctl_table(&parent->header);
}
/**
* unregister_sysctl_table - unregister a sysctl table hierarchy
* @header: the header returned from register_sysctl_table
*
* Unregisters the sysctl table and all children. proc entries may not
* actually be removed until they are no longer used by anyone.
*/
void unregister_sysctl_table(struct ctl_table_header * header)
{
int nr_subheaders;
might_sleep();
if (header == NULL)
return;
nr_subheaders = count_subheaders(header->ctl_table_arg);
if (unlikely(nr_subheaders > 1)) {
struct ctl_table_header **subheaders;
int i;
subheaders = (struct ctl_table_header **)(header + 1);
for (i = nr_subheaders -1; i >= 0; i--) {
struct ctl_table_header *subh = subheaders[i];
struct ctl_table *table = subh->ctl_table_arg;
unregister_sysctl_table(subh);
kfree(table);
}
kfree(header);
return;
}
spin_lock(&sysctl_lock);
drop_sysctl_table(header);
spin_unlock(&sysctl_lock);
}
EXPORT_SYMBOL(unregister_sysctl_table);
void setup_sysctl_set(struct ctl_table_set *set,
struct ctl_table_root *root,
int (*is_seen)(struct ctl_table_set *))
{
memset(set, 0, sizeof(*set));
set->is_seen = is_seen;
init_header(&set->dir.header, root, set, NULL, root_table);
}
void retire_sysctl_set(struct ctl_table_set *set)
{
WARN_ON(!RB_EMPTY_ROOT(&set->dir.root));
}
int __init proc_sys_init(void)
{
struct proc_dir_entry *proc_sys_root;
proc_sys_root = proc_mkdir("sys", NULL);
proc_sys_root->proc_iops = &proc_sys_dir_operations;
proc_sys_root->proc_fops = &proc_sys_dir_file_operations;
proc_sys_root->nlink = 0;
return sysctl_init();
}