/* SPDX-License-Identifier: GPL-2.0-or-later */
/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* ocfs2.h
*
* Defines macros and structures used in OCFS2
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*/
#ifndef OCFS2_H
#define OCFS2_H
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/llist.h>
#include <linux/rbtree.h>
#include <linux/workqueue.h>
#include <linux/kref.h>
#include <linux/mutex.h>
#include <linux/lockdep.h>
#include <linux/jbd2.h>
/* For union ocfs2_dlm_lksb */
#include "stackglue.h"
#include "ocfs2_fs.h"
#include "ocfs2_lockid.h"
#include "ocfs2_ioctl.h"
/* For struct ocfs2_blockcheck_stats */
#include "blockcheck.h"
#include "reservations.h"
#include "filecheck.h"
/* Caching of metadata buffers */
/* Most user visible OCFS2 inodes will have very few pieces of
* metadata, but larger files (including bitmaps, etc) must be taken
* into account when designing an access scheme. We allow a small
* amount of inlined blocks to be stored on an array and grow the
* structure into a rb tree when necessary. */
#define OCFS2_CACHE_INFO_MAX_ARRAY 2
/* Flags for ocfs2_caching_info */
enum ocfs2_caching_info_flags {
/* Indicates that the metadata cache is using the inline array */
OCFS2_CACHE_FL_INLINE = 1<<1,
};
struct ocfs2_caching_operations;
struct ocfs2_caching_info {
/*
* The parent structure provides the locks, but because the
* parent structure can differ, it provides locking operations
* to struct ocfs2_caching_info.
*/
const struct ocfs2_caching_operations *ci_ops;
/* next two are protected by trans_inc_lock */
/* which transaction were we created on? Zero if none. */
unsigned long ci_created_trans;
/* last transaction we were a part of. */
unsigned long ci_last_trans;
/* Cache structures */
unsigned int ci_flags;
unsigned int ci_num_cached;
union {
sector_t ci_array[OCFS2_CACHE_INFO_MAX_ARRAY];
struct rb_root ci_tree;
} ci_cache;
};
/*
* Need this prototype here instead of in uptodate.h because journal.h
* uses it.
*/
struct super_block *ocfs2_metadata_cache_get_super(struct ocfs2_caching_info *ci);
/* this limits us to 256 nodes
* if we need more, we can do a kmalloc for the map */
#define OCFS2_NODE_MAP_MAX_NODES 256
struct ocfs2_node_map {
u16 num_nodes;
unsigned long map[BITS_TO_LONGS(OCFS2_NODE_MAP_MAX_NODES)];
};
enum ocfs2_ast_action {
OCFS2_AST_INVALID = 0,
OCFS2_AST_ATTACH,
OCFS2_AST_CONVERT,
OCFS2_AST_DOWNCONVERT,
};
/* actions for an unlockast function to take. */
enum ocfs2_unlock_action {
OCFS2_UNLOCK_INVALID = 0,
OCFS2_UNLOCK_CANCEL_CONVERT,
OCFS2_UNLOCK_DROP_LOCK,
};
/* ocfs2_lock_res->l_flags flags. */
#define OCFS2_LOCK_ATTACHED (0x00000001) /* we have initialized
* the lvb */
#define OCFS2_LOCK_BUSY (0x00000002) /* we are currently in
* dlm_lock */
#define OCFS2_LOCK_BLOCKED (0x00000004) /* blocked waiting to
* downconvert*/
#define OCFS2_LOCK_LOCAL (0x00000008) /* newly created inode */
#define OCFS2_LOCK_NEEDS_REFRESH (0x00000010)
#define OCFS2_LOCK_REFRESHING (0x00000020)
#define OCFS2_LOCK_INITIALIZED (0x00000040) /* track initialization
* for shutdown paths */
#define OCFS2_LOCK_FREEING (0x00000080) /* help dlmglue track
* when to skip queueing
* a lock because it's
* about to be
* dropped. */
#define OCFS2_LOCK_QUEUED (0x00000100) /* queued for downconvert */
#define OCFS2_LOCK_NOCACHE (0x00000200) /* don't use a holder count */
#define OCFS2_LOCK_PENDING (0x00000400) /* This lockres is pending a
call to dlm_lock. Only
exists with BUSY set. */
#define OCFS2_LOCK_UPCONVERT_FINISHING (0x00000800) /* blocks the dc thread
* from downconverting
* before the upconvert
* has completed */
#define OCFS2_LOCK_NONBLOCK_FINISHED (0x00001000) /* NONBLOCK cluster
* lock has already
* returned, do not block
* dc thread from
* downconverting */
struct ocfs2_lock_res_ops;
typedef void (*ocfs2_lock_callback)(int status, unsigned long data);
#ifdef CONFIG_OCFS2_FS_STATS
struct ocfs2_lock_stats {
u64 ls_total; /* Total wait in NSEC */
u32 ls_gets; /* Num acquires */
u32 ls_fail; /* Num failed acquires */
/* Storing max wait in usecs saves 24 bytes per inode */
u32 ls_max; /* Max wait in USEC */
u64 ls_last; /* Last unlock time in USEC */
};
#endif
struct ocfs2_lock_res {
void *l_priv;
struct ocfs2_lock_res_ops *l_ops;
struct list_head l_blocked_list;
struct list_head l_mask_waiters;
struct list_head l_holders;
unsigned long l_flags;
char l_name[OCFS2_LOCK_ID_MAX_LEN];
unsigned int l_ro_holders;
unsigned int l_ex_holders;
signed char l_level;
signed char l_requested;
signed char l_blocking;
/* Data packed - type enum ocfs2_lock_type */
unsigned char l_type;
/* used from AST/BAST funcs. */
/* Data packed - enum type ocfs2_ast_action */
unsigned char l_action;
/* Data packed - enum type ocfs2_unlock_action */
unsigned char l_unlock_action;
unsigned int l_pending_gen;
spinlock_t l_lock;
struct ocfs2_dlm_lksb l_lksb;
wait_queue_head_t l_event;
struct list_head l_debug_list;
#ifdef CONFIG_OCFS2_FS_STATS
struct ocfs2_lock_stats l_lock_prmode; /* PR mode stats */
u32 l_lock_refresh; /* Disk refreshes */
u64 l_lock_wait; /* First lock wait time */
struct ocfs2_lock_stats l_lock_exmode; /* EX mode stats */
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map l_lockdep_map;
#endif
};
enum ocfs2_orphan_reco_type {
ORPHAN_NO_NEED_TRUNCATE = 0,
ORPHAN_NEED_TRUNCATE,
};
enum ocfs2_orphan_scan_state {
ORPHAN_SCAN_ACTIVE,
ORPHAN_SCAN_INACTIVE
};
struct ocfs2_orphan_scan {
struct mutex os_lock;
struct ocfs2_super *os_osb;
struct ocfs2_lock_res os_lockres; /* lock to synchronize scans */
struct delayed_work os_orphan_scan_work;
time64_t os_scantime; /* time this node ran the scan */
u32 os_count; /* tracks node specific scans */
u32 os_seqno; /* tracks cluster wide scans */
atomic_t os_state; /* ACTIVE or INACTIVE */
};
struct ocfs2_dlm_debug {
struct kref d_refcnt;
u32 d_filter_secs;
struct list_head d_lockres_tracking;
};
enum ocfs2_vol_state
{
VOLUME_INIT = 0,
VOLUME_MOUNTED,
VOLUME_MOUNTED_QUOTAS,
VOLUME_DISMOUNTED,
VOLUME_DISABLED
};
struct ocfs2_alloc_stats
{
atomic_t moves;
atomic_t local_data;
atomic_t bitmap_data;
atomic_t bg_allocs;
atomic_t bg_extends;
};
enum ocfs2_local_alloc_state
{
OCFS2_LA_UNUSED = 0, /* Local alloc will never be used for
* this mountpoint. */
OCFS2_LA_ENABLED, /* Local alloc is in use. */
OCFS2_LA_THROTTLED, /* Local alloc is in use, but number
* of bits has been reduced. */
OCFS2_LA_DISABLED /* Local alloc has temporarily been
* disabled. */
};
enum ocfs2_mount_options
{
OCFS2_MOUNT_HB_LOCAL = 1 << 0, /* Local heartbeat */
OCFS2_MOUNT_BARRIER = 1 << 1, /* Use block barriers */
OCFS2_MOUNT_NOINTR = 1 << 2, /* Don't catch signals */
OCFS2_MOUNT_ERRORS_PANIC = 1 << 3, /* Panic on errors */
OCFS2_MOUNT_DATA_WRITEBACK = 1 << 4, /* No data ordering */
OCFS2_MOUNT_LOCALFLOCKS = 1 << 5, /* No cluster aware user file locks */
OCFS2_MOUNT_NOUSERXATTR = 1 << 6, /* No user xattr */
OCFS2_MOUNT_INODE64 = 1 << 7, /* Allow inode numbers > 2^32 */
OCFS2_MOUNT_POSIX_ACL = 1 << 8, /* Force POSIX access control lists */
OCFS2_MOUNT_NO_POSIX_ACL = 1 << 9, /* Disable POSIX access
control lists */
OCFS2_MOUNT_USRQUOTA = 1 << 10, /* We support user quotas */
OCFS2_MOUNT_GRPQUOTA = 1 << 11, /* We support group quotas */
OCFS2_MOUNT_COHERENCY_BUFFERED = 1 << 12, /* Allow concurrent O_DIRECT
writes */
OCFS2_MOUNT_HB_NONE = 1 << 13, /* No heartbeat */
OCFS2_MOUNT_HB_GLOBAL = 1 << 14, /* Global heartbeat */
OCFS2_MOUNT_JOURNAL_ASYNC_COMMIT = 1 << 15, /* Journal Async Commit */
OCFS2_MOUNT_ERRORS_CONT = 1 << 16, /* Return EIO to the calling process on error */
OCFS2_MOUNT_ERRORS_ROFS = 1 << 17, /* Change filesystem to read-only on error */
};
#define OCFS2_OSB_SOFT_RO 0x0001
#define OCFS2_OSB_HARD_RO 0x0002
#define OCFS2_OSB_ERROR_FS 0x0004
#define OCFS2_DEFAULT_ATIME_QUANTUM 60
struct ocfs2_journal;
struct ocfs2_slot_info;
struct ocfs2_recovery_map;
struct ocfs2_replay_map;
struct ocfs2_quota_recovery;
struct ocfs2_super
{
struct task_struct *commit_task;
struct super_block *sb;
struct inode *root_inode;
struct inode *sys_root_inode;
struct inode *global_system_inodes[NUM_GLOBAL_SYSTEM_INODES];
struct inode **local_system_inodes;
struct ocfs2_slot_info *slot_info;
u32 *slot_recovery_generations;
spinlock_t node_map_lock;
u64 root_blkno;
u64 system_dir_blkno;
u64 bitmap_blkno;
u32 bitmap_cpg;
char *uuid_str;
u32 uuid_hash;
u8 *vol_label;
u64 first_cluster_group_blkno;
u32 fs_generation;
u32 s_feature_compat;
u32 s_feature_incompat;
u32 s_feature_ro_compat;
/* Protects s_next_generation, osb_flags and s_inode_steal_slot.
* Could protect more on osb as it's very short lived.
*/
spinlock_t osb_lock;
u32 s_next_generation;
unsigned long osb_flags;
s16 s_inode_steal_slot;
s16 s_meta_steal_slot;
atomic_t s_num_inodes_stolen;
atomic_t s_num_meta_stolen;
unsigned long s_mount_opt;
unsigned int s_atime_quantum;
unsigned int max_slots;
unsigned int node_num;
int slot_num;
int preferred_slot;
int s_sectsize_bits;
int s_clustersize;
int s_clustersize_bits;
unsigned int s_xattr_inline_size;
atomic_t vol_state;
struct mutex recovery_lock;
struct ocfs2_recovery_map *recovery_map;
struct ocfs2_replay_map *replay_map;
struct task_struct *recovery_thread_task;
int disable_recovery;
wait_queue_head_t checkpoint_event;
struct ocfs2_journal *journal;
unsigned long osb_commit_interval;
struct delayed_work la_enable_wq;
/*
* Must hold local alloc i_mutex and osb->osb_lock to change
* local_alloc_bits. Reads can be done under either lock.
*/
unsigned int local_alloc_bits;
unsigned int local_alloc_default_bits;
/* osb_clusters_at_boot can become stale! Do not trust it to
* be up to date. */
unsigned int osb_clusters_at_boot;
enum ocfs2_local_alloc_state local_alloc_state; /* protected
* by osb_lock */
struct buffer_head *local_alloc_bh;
u64 la_last_gd;
struct ocfs2_reservation_map osb_la_resmap;
unsigned int osb_resv_level;
unsigned int osb_dir_resv_level;
/* Next two fields are for local node slot recovery during
* mount. */
struct ocfs2_dinode *local_alloc_copy;
struct ocfs2_quota_recovery *quota_rec;
struct ocfs2_blockcheck_stats osb_ecc_stats;
struct ocfs2_alloc_stats alloc_stats;
char dev_str[20]; /* "major,minor" of the device */
u8 osb_stackflags;
char osb_cluster_stack[OCFS2_STACK_LABEL_LEN + 1];
char osb_cluster_name[OCFS2_CLUSTER_NAME_LEN + 1];
struct ocfs2_cluster_connection *cconn;
struct ocfs2_lock_res osb_super_lockres;
struct ocfs2_lock_res osb_rename_lockres;
struct ocfs2_lock_res osb_nfs_sync_lockres;
struct ocfs2_lock_res osb_trim_fs_lockres;
struct mutex obs_trim_fs_mutex;
struct ocfs2_dlm_debug *osb_dlm_debug;
struct dentry *osb_debug_root;
wait_queue_head_t recovery_event;
spinlock_t dc_task_lock;
struct task_struct *dc_task;
wait_queue_head_t dc_event;
unsigned long dc_wake_sequence;
unsigned long dc_work_sequence;
/*
* Any thread can add locks to the list, but the downconvert
* thread is the only one allowed to remove locks. Any change
* to this rule requires updating
* ocfs2_downconvert_thread_do_work().
*/
struct list_head blocked_lock_list;
unsigned long blocked_lock_count;
/* List of dquot structures to drop last reference to */
struct llist_head dquot_drop_list;
struct work_struct dquot_drop_work;
wait_queue_head_t osb_mount_event;
/* Truncate log info */
struct inode *osb_tl_inode;
struct buffer_head *osb_tl_bh;
struct delayed_work osb_truncate_log_wq;
atomic_t osb_tl_disable;
/*
* How many clusters in our truncate log.
* It must be protected by osb_tl_inode->i_mutex.
*/
unsigned int truncated_clusters;
struct ocfs2_node_map osb_recovering_orphan_dirs;
unsigned int *osb_orphan_wipes;
wait_queue_head_t osb_wipe_event;
struct ocfs2_orphan_scan osb_orphan_scan;
/* used to protect metaecc calculation check of xattr. */
spinlock_t osb_xattr_lock;
unsigned int osb_dx_mask;
u32 osb_dx_seed[4];
/* the group we used to allocate inodes. */
u64 osb_inode_alloc_group;
/* rb tree root for refcount lock. */
struct rb_root osb_rf_lock_tree;
struct ocfs2_refcount_tree *osb_ref_tree_lru;
struct mutex system_file_mutex;
/*
* OCFS2 needs to schedule several different types of work which
* require cluster locking, disk I/O, recovery waits, etc. Since these
* types of work tend to be heavy we avoid using the kernel events
* workqueue and schedule on our own.
*/
struct workqueue_struct *ocfs2_wq;
/* sysfs directory per partition */
struct kset *osb_dev_kset;
/* file check related stuff */
struct ocfs2_filecheck_sysfs_entry osb_fc_ent;
};
#define OCFS2_SB(sb) ((struct ocfs2_super *)(sb)->s_fs_info)
/* Useful typedef for passing around journal access functions */
typedef int (*ocfs2_journal_access_func)(handle_t *handle,
struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type);
static inline int ocfs2_should_order_data(struct inode *inode)
{
if (!S_ISREG(inode->i_mode))
return 0;
if (OCFS2_SB(inode->i_sb)->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK)
return 0;
return 1;
}
static inline int ocfs2_sparse_alloc(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_SPARSE_ALLOC)
return 1;
return 0;
}
static inline int ocfs2_writes_unwritten_extents(struct ocfs2_super *osb)
{
/*
* Support for sparse files is a pre-requisite
*/
if (!ocfs2_sparse_alloc(osb))
return 0;
if (osb->s_feature_ro_compat & OCFS2_FEATURE_RO_COMPAT_UNWRITTEN)
return 1;
return 0;
}
static inline int ocfs2_supports_append_dio(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_APPEND_DIO)
return 1;
return 0;
}
static inline int ocfs2_supports_inline_data(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_INLINE_DATA)
return 1;
return 0;
}
static inline int ocfs2_supports_xattr(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_XATTR)
return 1;
return 0;
}
static inline int ocfs2_meta_ecc(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_META_ECC)
return 1;
return 0;
}
static inline int ocfs2_supports_indexed_dirs(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_INDEXED_DIRS)
return 1;
return 0;
}
static inline int ocfs2_supports_discontig_bg(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_DISCONTIG_BG)
return 1;
return 0;
}
static inline unsigned int ocfs2_link_max(struct ocfs2_super *osb)
{
if (ocfs2_supports_indexed_dirs(osb))
return OCFS2_DX_LINK_MAX;
return OCFS2_LINK_MAX;
}
static inline unsigned int ocfs2_read_links_count(struct ocfs2_dinode *di)
{
u32 nlink = le16_to_cpu(di->i_links_count);
u32 hi = le16_to_cpu(di->i_links_count_hi);
if (di->i_dyn_features & cpu_to_le16(OCFS2_INDEXED_DIR_FL))
nlink |= (hi << OCFS2_LINKS_HI_SHIFT);
return nlink;
}
static inline void ocfs2_set_links_count(struct ocfs2_dinode *di, u32 nlink)
{
u16 lo, hi;
lo = nlink;
hi = nlink >> OCFS2_LINKS_HI_SHIFT;
di->i_links_count = cpu_to_le16(lo);
di->i_links_count_hi = cpu_to_le16(hi);
}
static inline void ocfs2_add_links_count(struct ocfs2_dinode *di, int n)
{
u32 links = ocfs2_read_links_count(di);
links += n;
ocfs2_set_links_count(di, links);
}
static inline int ocfs2_refcount_tree(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_REFCOUNT_TREE)
return 1;
return 0;
}
/* set / clear functions because cluster events can make these happen
* in parallel so we want the transitions to be atomic. this also
* means that any future flags osb_flags must be protected by spinlock
* too! */
static inline void ocfs2_set_osb_flag(struct ocfs2_super *osb,
unsigned long flag)
{
spin_lock(&osb->osb_lock);
osb->osb_flags |= flag;
spin_unlock(&osb->osb_lock);
}
static inline void ocfs2_set_ro_flag(struct ocfs2_super *osb,
int hard)
{
spin_lock(&osb->osb_lock);
osb->osb_flags &= ~(OCFS2_OSB_SOFT_RO|OCFS2_OSB_HARD_RO);
if (hard)
osb->osb_flags |= OCFS2_OSB_HARD_RO;
else
osb->osb_flags |= OCFS2_OSB_SOFT_RO;
spin_unlock(&osb->osb_lock);
}
static inline int ocfs2_is_hard_readonly(struct ocfs2_super *osb)
{
int ret;
spin_lock(&osb->osb_lock);
ret = osb->osb_flags & OCFS2_OSB_HARD_RO;
spin_unlock(&osb->osb_lock);
return ret;
}
static inline int ocfs2_is_soft_readonly(struct ocfs2_super *osb)
{
int ret;
spin_lock(&osb->osb_lock);
ret = osb->osb_flags & OCFS2_OSB_SOFT_RO;
spin_unlock(&osb->osb_lock);
return ret;
}
static inline int ocfs2_clusterinfo_valid(struct ocfs2_super *osb)
{
return (osb->s_feature_incompat &
(OCFS2_FEATURE_INCOMPAT_USERSPACE_STACK |
OCFS2_FEATURE_INCOMPAT_CLUSTERINFO));
}
static inline int ocfs2_userspace_stack(struct ocfs2_super *osb)
{
if (ocfs2_clusterinfo_valid(osb) &&
memcmp(osb->osb_cluster_stack, OCFS2_CLASSIC_CLUSTER_STACK,
OCFS2_STACK_LABEL_LEN))
return 1;
return 0;
}
static inline int ocfs2_o2cb_stack(struct ocfs2_super *osb)
{
if (ocfs2_clusterinfo_valid(osb) &&
!memcmp(osb->osb_cluster_stack, OCFS2_CLASSIC_CLUSTER_STACK,
OCFS2_STACK_LABEL_LEN))
return 1;
return 0;
}
static inline int ocfs2_cluster_o2cb_global_heartbeat(struct ocfs2_super *osb)
{
return ocfs2_o2cb_stack(osb) &&
(osb->osb_stackflags & OCFS2_CLUSTER_O2CB_GLOBAL_HEARTBEAT);
}
static inline int ocfs2_mount_local(struct ocfs2_super *osb)
{
return (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_LOCAL_MOUNT);
}
static inline int ocfs2_uses_extended_slot_map(struct ocfs2_super *osb)
{
return (osb->s_feature_incompat &
OCFS2_FEATURE_INCOMPAT_EXTENDED_SLOT_MAP);
}
#define OCFS2_IS_VALID_DINODE(ptr) \
(!strcmp((ptr)->i_signature, OCFS2_INODE_SIGNATURE))
#define OCFS2_IS_VALID_EXTENT_BLOCK(ptr) \
(!strcmp((ptr)->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE))
#define OCFS2_IS_VALID_GROUP_DESC(ptr) \
(!strcmp((ptr)->bg_signature, OCFS2_GROUP_DESC_SIGNATURE))
#define OCFS2_IS_VALID_XATTR_BLOCK(ptr) \
(!strcmp((ptr)->xb_signature, OCFS2_XATTR_BLOCK_SIGNATURE))
#define OCFS2_IS_VALID_DIR_TRAILER(ptr) \
(!strcmp((ptr)->db_signature, OCFS2_DIR_TRAILER_SIGNATURE))
#define OCFS2_IS_VALID_DX_ROOT(ptr) \
(!strcmp((ptr)->dr_signature, OCFS2_DX_ROOT_SIGNATURE))
#define OCFS2_IS_VALID_DX_LEAF(ptr) \
(!strcmp((ptr)->dl_signature, OCFS2_DX_LEAF_SIGNATURE))
#define OCFS2_IS_VALID_REFCOUNT_BLOCK(ptr) \
(!strcmp((ptr)->rf_signature, OCFS2_REFCOUNT_BLOCK_SIGNATURE))
static inline unsigned long ino_from_blkno(struct super_block *sb,
u64 blkno)
{
return (unsigned long)(blkno & (u64)ULONG_MAX);
}
static inline u64 ocfs2_clusters_to_blocks(struct super_block *sb,
u32 clusters)
{
int c_to_b_bits = OCFS2_SB(sb)->s_clustersize_bits -
sb->s_blocksize_bits;
return (u64)clusters << c_to_b_bits;
}
static inline u32 ocfs2_clusters_for_blocks(struct super_block *sb,
u64 blocks)
{
int b_to_c_bits = OCFS2_SB(sb)->s_clustersize_bits -
sb->s_blocksize_bits;
blocks += (1 << b_to_c_bits) - 1;
return (u32)(blocks >> b_to_c_bits);
}
static inline u32 ocfs2_blocks_to_clusters(struct super_block *sb,
u64 blocks)
{
int b_to_c_bits = OCFS2_SB(sb)->s_clustersize_bits -
sb->s_blocksize_bits;
return (u32)(blocks >> b_to_c_bits);
}
static inline unsigned int ocfs2_clusters_for_bytes(struct super_block *sb,
u64 bytes)
{
int cl_bits = OCFS2_SB(sb)->s_clustersize_bits;
unsigned int clusters;
bytes += OCFS2_SB(sb)->s_clustersize - 1;
/* OCFS2 just cannot have enough clusters to overflow this */
clusters = (unsigned int)(bytes >> cl_bits);
return clusters;
}
static inline unsigned int ocfs2_bytes_to_clusters(struct super_block *sb,
u64 bytes)
{
int cl_bits = OCFS2_SB(sb)->s_clustersize_bits;
unsigned int clusters;
clusters = (unsigned int)(bytes >> cl_bits);
return clusters;
}
static inline u64 ocfs2_blocks_for_bytes(struct super_block *sb,
u64 bytes)
{
bytes += sb->s_blocksize - 1;
return bytes >> sb->s_blocksize_bits;
}
static inline u64 ocfs2_clusters_to_bytes(struct super_block *sb,
u32 clusters)
{
return (u64)clusters << OCFS2_SB(sb)->s_clustersize_bits;
}
static inline u64 ocfs2_block_to_cluster_start(struct super_block *sb,
u64 blocks)
{
int bits = OCFS2_SB(sb)->s_clustersize_bits - sb->s_blocksize_bits;
unsigned int clusters;
clusters = ocfs2_blocks_to_clusters(sb, blocks);
return (u64)clusters << bits;
}
static inline u64 ocfs2_align_bytes_to_clusters(struct super_block *sb,
u64 bytes)
{
int cl_bits = OCFS2_SB(sb)->s_clustersize_bits;
unsigned int clusters;
clusters = ocfs2_clusters_for_bytes(sb, bytes);
return (u64)clusters << cl_bits;
}
static inline u64 ocfs2_align_bytes_to_blocks(struct super_block *sb,
u64 bytes)
{
u64 blocks;
blocks = ocfs2_blocks_for_bytes(sb, bytes);
return blocks << sb->s_blocksize_bits;
}
static inline unsigned long ocfs2_align_bytes_to_sectors(u64 bytes)
{
return (unsigned long)((bytes + 511) >> 9);
}
static inline unsigned int ocfs2_page_index_to_clusters(struct super_block *sb,
unsigned long pg_index)
{
u32 clusters = pg_index;
unsigned int cbits = OCFS2_SB(sb)->s_clustersize_bits;
if (unlikely(PAGE_SHIFT > cbits))
clusters = pg_index << (PAGE_SHIFT - cbits);
else if (PAGE_SHIFT < cbits)
clusters = pg_index >> (cbits - PAGE_SHIFT);
return clusters;
}
/*
* Find the 1st page index which covers the given clusters.
*/
static inline pgoff_t ocfs2_align_clusters_to_page_index(struct super_block *sb,
u32 clusters)
{
unsigned int cbits = OCFS2_SB(sb)->s_clustersize_bits;
pgoff_t index = clusters;
if (PAGE_SHIFT > cbits) {
index = (pgoff_t)clusters >> (PAGE_SHIFT - cbits);
} else if (PAGE_SHIFT < cbits) {
index = (pgoff_t)clusters << (cbits - PAGE_SHIFT);
}
return index;
}
static inline unsigned int ocfs2_pages_per_cluster(struct super_block *sb)
{
unsigned int cbits = OCFS2_SB(sb)->s_clustersize_bits;
unsigned int pages_per_cluster = 1;
if (PAGE_SHIFT < cbits)
pages_per_cluster = 1 << (cbits - PAGE_SHIFT);
return pages_per_cluster;
}
static inline unsigned int ocfs2_megabytes_to_clusters(struct super_block *sb,
unsigned int megs)
{
BUILD_BUG_ON(OCFS2_MAX_CLUSTERSIZE > 1048576);
return megs << (20 - OCFS2_SB(sb)->s_clustersize_bits);
}
static inline unsigned int ocfs2_clusters_to_megabytes(struct super_block *sb,
unsigned int clusters)
{
return clusters >> (20 - OCFS2_SB(sb)->s_clustersize_bits);
}
static inline void _ocfs2_set_bit(unsigned int bit, unsigned long *bitmap)
{
__set_bit_le(bit, bitmap);
}
#define ocfs2_set_bit(bit, addr) _ocfs2_set_bit((bit), (unsigned long *)(addr))
static inline void _ocfs2_clear_bit(unsigned int bit, unsigned long *bitmap)
{
__clear_bit_le(bit, bitmap);
}
#define ocfs2_clear_bit(bit, addr) _ocfs2_clear_bit((bit), (unsigned long *)(addr))
#define ocfs2_test_bit test_bit_le
#define ocfs2_find_next_zero_bit find_next_zero_bit_le
#define ocfs2_find_next_bit find_next_bit_le
static inline void *correct_addr_and_bit_unaligned(int *bit, void *addr)
{
#if BITS_PER_LONG == 64
*bit += ((unsigned long) addr & 7UL) << 3;
addr = (void *) ((unsigned long) addr & ~7UL);
#elif BITS_PER_LONG == 32
*bit += ((unsigned long) addr & 3UL) << 3;
addr = (void *) ((unsigned long) addr & ~3UL);
#else
#error "how many bits you are?!"
#endif
return addr;
}
static inline void ocfs2_set_bit_unaligned(int bit, void *bitmap)
{
bitmap = correct_addr_and_bit_unaligned(&bit, bitmap);
ocfs2_set_bit(bit, bitmap);
}
static inline void ocfs2_clear_bit_unaligned(int bit, void *bitmap)
{
bitmap = correct_addr_and_bit_unaligned(&bit, bitmap);
ocfs2_clear_bit(bit, bitmap);
}
static inline int ocfs2_test_bit_unaligned(int bit, void *bitmap)
{
bitmap = correct_addr_and_bit_unaligned(&bit, bitmap);
return ocfs2_test_bit(bit, bitmap);
}
static inline int ocfs2_find_next_zero_bit_unaligned(void *bitmap, int max,
int start)
{
int fix = 0, ret, tmpmax;
bitmap = correct_addr_and_bit_unaligned(&fix, bitmap);
tmpmax = max + fix;
start += fix;
ret = ocfs2_find_next_zero_bit(bitmap, tmpmax, start) - fix;
if (ret > max)
return max;
return ret;
}
#endif /* OCFS2_H */