summaryrefslogblamecommitdiff
path: root/fs/nfs/nfs42xattr.c
blob: e7b34f7e0614b6ff47836777c98fd21a07ba054d (plain) (tree)
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882




































































                                                                                






                                                               
























                                                  




































































                                                                   
                                                                    





























                                                           
                                            












                                                              
                                                 










































































                                                                    
                                                                      





































































                                                                    

                                                              













































                                                                             



















































































                                                                           
                                              

                             
                                                   































































































































































































































































































































































































                                                                               
                                                                 




























































































                                                                           
                                               











                                                                      









                                                                             
                                                   


















                                                              

                                                            
                          











                                                                  













                                                      
                                                              

                                                        
                                                      


                                                    
 
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
 *
 * User extended attribute client side cache functions.
 *
 * Author: Frank van der Linden <fllinden@amazon.com>
 */
#include <linux/errno.h>
#include <linux/nfs_fs.h>
#include <linux/hashtable.h>
#include <linux/refcount.h>
#include <uapi/linux/xattr.h>

#include "nfs4_fs.h"
#include "internal.h"

/*
 * User extended attributes client side caching is implemented by having
 * a cache structure attached to NFS inodes. This structure is allocated
 * when needed, and freed when the cache is zapped.
 *
 * The cache structure contains as hash table of entries, and a pointer
 * to a special-cased entry for the listxattr cache.
 *
 * Accessing and allocating / freeing the caches is done via reference
 * counting. The cache entries use a similar refcounting scheme.
 *
 * This makes freeing a cache, both from the shrinker and from the
 * zap cache path, easy. It also means that, in current use cases,
 * the large majority of inodes will not waste any memory, as they
 * will never have any user extended attributes assigned to them.
 *
 * Attribute entries are hashed in to a simple hash table. They are
 * also part of an LRU.
 *
 * There are three shrinkers.
 *
 * Two shrinkers deal with the cache entries themselves: one for
 * large entries (> PAGE_SIZE), and one for smaller entries. The
 * shrinker for the larger entries works more aggressively than
 * those for the smaller entries.
 *
 * The other shrinker frees the cache structures themselves.
 */

/*
 * 64 buckets is a good default. There is likely no reasonable
 * workload that uses more than even 64 user extended attributes.
 * You can certainly add a lot more - but you get what you ask for
 * in those circumstances.
 */
#define NFS4_XATTR_HASH_SIZE	64

#define NFSDBG_FACILITY	NFSDBG_XATTRCACHE

struct nfs4_xattr_cache;
struct nfs4_xattr_entry;

struct nfs4_xattr_bucket {
	spinlock_t lock;
	struct hlist_head hlist;
	struct nfs4_xattr_cache *cache;
	bool draining;
};

struct nfs4_xattr_cache {
	struct kref ref;
	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
	struct list_head lru;
	struct list_head dispose;
	atomic_long_t nent;
	spinlock_t listxattr_lock;
	struct inode *inode;
	struct nfs4_xattr_entry *listxattr;
};

struct nfs4_xattr_entry {
	struct kref ref;
	struct hlist_node hnode;
	struct list_head lru;
	struct list_head dispose;
	char *xattr_name;
	void *xattr_value;
	size_t xattr_size;
	struct nfs4_xattr_bucket *bucket;
	uint32_t flags;
};

#define	NFS4_XATTR_ENTRY_EXTVAL	0x0001

/*
 * LRU list of NFS inodes that have xattr caches.
 */
static struct list_lru nfs4_xattr_cache_lru;
static struct list_lru nfs4_xattr_entry_lru;
static struct list_lru nfs4_xattr_large_entry_lru;

static struct kmem_cache *nfs4_xattr_cache_cachep;

/*
 * Hashing helper functions.
 */
static void
nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
{
	unsigned int i;

	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
		spin_lock_init(&cache->buckets[i].lock);
		cache->buckets[i].cache = cache;
		cache->buckets[i].draining = false;
	}
}

/*
 * Locking order:
 * 1. inode i_lock or bucket lock
 * 2. list_lru lock (taken by list_lru_* functions)
 */

/*
 * Wrapper functions to add a cache entry to the right LRU.
 */
static bool
nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
{
	struct list_lru *lru;

	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;

	return list_lru_add(lru, &entry->lru);
}

static bool
nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
{
	struct list_lru *lru;

	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;

	return list_lru_del(lru, &entry->lru);
}

/*
 * This function allocates cache entries. They are the normal
 * extended attribute name/value pairs, but may also be a listxattr
 * cache. Those allocations use the same entry so that they can be
 * treated as one by the memory shrinker.
 *
 * xattr cache entries are allocated together with names. If the
 * value fits in to one page with the entry structure and the name,
 * it will also be part of the same allocation (kmalloc). This is
 * expected to be the vast majority of cases. Larger allocations
 * have a value pointer that is allocated separately by kvmalloc.
 *
 * Parameters:
 *
 * @name:  Name of the extended attribute. NULL for listxattr cache
 *         entry.
 * @value: Value of attribute, or listxattr cache. NULL if the
 *         value is to be copied from pages instead.
 * @pages: Pages to copy the value from, if not NULL. Passed in to
 *	   make it easier to copy the value after an RPC, even if
 *	   the value will not be passed up to application (e.g.
 *	   for a 'query' getxattr with NULL buffer).
 * @len:   Length of the value. Can be 0 for zero-length attributes.
 *         @value and @pages will be NULL if @len is 0.
 */
static struct nfs4_xattr_entry *
nfs4_xattr_alloc_entry(const char *name, const void *value,
		       struct page **pages, size_t len)
{
	struct nfs4_xattr_entry *entry;
	void *valp;
	char *namep;
	size_t alloclen, slen;
	char *buf;
	uint32_t flags;

	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
	    XATTR_NAME_MAX + 1 > PAGE_SIZE);

	alloclen = sizeof(struct nfs4_xattr_entry);
	if (name != NULL) {
		slen = strlen(name) + 1;
		alloclen += slen;
	} else
		slen = 0;

	if (alloclen + len <= PAGE_SIZE) {
		alloclen += len;
		flags = 0;
	} else {
		flags = NFS4_XATTR_ENTRY_EXTVAL;
	}

	buf = kmalloc(alloclen, GFP_KERNEL);
	if (buf == NULL)
		return NULL;
	entry = (struct nfs4_xattr_entry *)buf;

	if (name != NULL) {
		namep = buf + sizeof(struct nfs4_xattr_entry);
		memcpy(namep, name, slen);
	} else {
		namep = NULL;
	}


	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
		valp = kvmalloc(len, GFP_KERNEL);
		if (valp == NULL) {
			kfree(buf);
			return NULL;
		}
	} else if (len != 0) {
		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
	} else
		valp = NULL;

	if (valp != NULL) {
		if (value != NULL)
			memcpy(valp, value, len);
		else
			_copy_from_pages(valp, pages, 0, len);
	}

	entry->flags = flags;
	entry->xattr_value = valp;
	kref_init(&entry->ref);
	entry->xattr_name = namep;
	entry->xattr_size = len;
	entry->bucket = NULL;
	INIT_LIST_HEAD(&entry->lru);
	INIT_LIST_HEAD(&entry->dispose);
	INIT_HLIST_NODE(&entry->hnode);

	return entry;
}

static void
nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
{
	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
		kvfree(entry->xattr_value);
	kfree(entry);
}

static void
nfs4_xattr_free_entry_cb(struct kref *kref)
{
	struct nfs4_xattr_entry *entry;

	entry = container_of(kref, struct nfs4_xattr_entry, ref);

	if (WARN_ON(!list_empty(&entry->lru)))
		return;

	nfs4_xattr_free_entry(entry);
}

static void
nfs4_xattr_free_cache_cb(struct kref *kref)
{
	struct nfs4_xattr_cache *cache;
	int i;

	cache = container_of(kref, struct nfs4_xattr_cache, ref);

	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
			return;
		cache->buckets[i].draining = false;
	}

	cache->listxattr = NULL;

	kmem_cache_free(nfs4_xattr_cache_cachep, cache);

}

static struct nfs4_xattr_cache *
nfs4_xattr_alloc_cache(void)
{
	struct nfs4_xattr_cache *cache;

	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep, GFP_KERNEL);
	if (cache == NULL)
		return NULL;

	kref_init(&cache->ref);
	atomic_long_set(&cache->nent, 0);

	return cache;
}

/*
 * Set the listxattr cache, which is a special-cased cache entry.
 * The special value ERR_PTR(-ESTALE) is used to indicate that
 * the cache is being drained - this prevents a new listxattr
 * cache from being added to what is now a stale cache.
 */
static int
nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
			 struct nfs4_xattr_entry *new)
{
	struct nfs4_xattr_entry *old;
	int ret = 1;

	spin_lock(&cache->listxattr_lock);

	old = cache->listxattr;

	if (old == ERR_PTR(-ESTALE)) {
		ret = 0;
		goto out;
	}

	cache->listxattr = new;
	if (new != NULL && new != ERR_PTR(-ESTALE))
		nfs4_xattr_entry_lru_add(new);

	if (old != NULL) {
		nfs4_xattr_entry_lru_del(old);
		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
	}
out:
	spin_unlock(&cache->listxattr_lock);

	return ret;
}

/*
 * Unlink a cache from its parent inode, clearing out an invalid
 * cache. Must be called with i_lock held.
 */
static struct nfs4_xattr_cache *
nfs4_xattr_cache_unlink(struct inode *inode)
{
	struct nfs_inode *nfsi;
	struct nfs4_xattr_cache *oldcache;

	nfsi = NFS_I(inode);

	oldcache = nfsi->xattr_cache;
	if (oldcache != NULL) {
		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
		oldcache->inode = NULL;
	}
	nfsi->xattr_cache = NULL;
	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;

	return oldcache;

}

/*
 * Discard a cache. Called by get_cache() if there was an old,
 * invalid cache. Can also be called from a shrinker callback.
 *
 * The cache is dead, it has already been unlinked from its inode,
 * and no longer appears on the cache LRU list.
 *
 * Mark all buckets as draining, so that no new entries are added. This
 * could still happen in the unlikely, but possible case that another
 * thread had grabbed a reference before it was unlinked from the inode,
 * and is still holding it for an add operation.
 *
 * Remove all entries from the LRU lists, so that there is no longer
 * any way to 'find' this cache. Then, remove the entries from the hash
 * table.
 *
 * At that point, the cache will remain empty and can be freed when the final
 * reference drops, which is very likely the kref_put at the end of
 * this function, or the one called immediately afterwards in the
 * shrinker callback.
 */
static void
nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
{
	unsigned int i;
	struct nfs4_xattr_entry *entry;
	struct nfs4_xattr_bucket *bucket;
	struct hlist_node *n;

	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));

	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
		bucket = &cache->buckets[i];

		spin_lock(&bucket->lock);
		bucket->draining = true;
		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
			nfs4_xattr_entry_lru_del(entry);
			hlist_del_init(&entry->hnode);
			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
		}
		spin_unlock(&bucket->lock);
	}

	atomic_long_set(&cache->nent, 0);

	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
}

/*
 * Get a referenced copy of the cache structure. Avoid doing allocs
 * while holding i_lock. Which means that we do some optimistic allocation,
 * and might have to free the result in rare cases.
 *
 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
 * and acts accordingly, replacing the cache when needed. For the read case
 * (!add), this means that the caller must make sure that the cache
 * is valid before caling this function. getxattr and listxattr call
 * revalidate_inode to do this. The attribute cache timeout (for the
 * non-delegated case) is expected to be dealt with in the revalidate
 * call.
 */

static struct nfs4_xattr_cache *
nfs4_xattr_get_cache(struct inode *inode, int add)
{
	struct nfs_inode *nfsi;
	struct nfs4_xattr_cache *cache, *oldcache, *newcache;

	nfsi = NFS_I(inode);

	cache = oldcache = NULL;

	spin_lock(&inode->i_lock);

	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
		oldcache = nfs4_xattr_cache_unlink(inode);
	else
		cache = nfsi->xattr_cache;

	if (cache != NULL)
		kref_get(&cache->ref);

	spin_unlock(&inode->i_lock);

	if (add && cache == NULL) {
		newcache = NULL;

		cache = nfs4_xattr_alloc_cache();
		if (cache == NULL)
			goto out;

		spin_lock(&inode->i_lock);
		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
			/*
			 * The cache was invalidated again. Give up,
			 * since what we want to enter is now likely
			 * outdated anyway.
			 */
			spin_unlock(&inode->i_lock);
			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
			cache = NULL;
			goto out;
		}

		/*
		 * Check if someone beat us to it.
		 */
		if (nfsi->xattr_cache != NULL) {
			newcache = nfsi->xattr_cache;
			kref_get(&newcache->ref);
		} else {
			kref_get(&cache->ref);
			nfsi->xattr_cache = cache;
			cache->inode = inode;
			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
		}

		spin_unlock(&inode->i_lock);

		/*
		 * If there was a race, throw away the cache we just
		 * allocated, and use the new one allocated by someone
		 * else.
		 */
		if (newcache != NULL) {
			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
			cache = newcache;
		}
	}

out:
	/*
	 * Discard the now orphaned old cache.
	 */
	if (oldcache != NULL)
		nfs4_xattr_discard_cache(oldcache);

	return cache;
}

static inline struct nfs4_xattr_bucket *
nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
{
	return &cache->buckets[jhash(name, strlen(name), 0) &
	    (ARRAY_SIZE(cache->buckets) - 1)];
}

static struct nfs4_xattr_entry *
nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
{
	struct nfs4_xattr_entry *entry;

	entry = NULL;

	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
		if (!strcmp(entry->xattr_name, name))
			break;
	}

	return entry;
}

static int
nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
		    struct nfs4_xattr_entry *entry)
{
	struct nfs4_xattr_bucket *bucket;
	struct nfs4_xattr_entry *oldentry = NULL;
	int ret = 1;

	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
	entry->bucket = bucket;

	spin_lock(&bucket->lock);

	if (bucket->draining) {
		ret = 0;
		goto out;
	}

	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
	if (oldentry != NULL) {
		hlist_del_init(&oldentry->hnode);
		nfs4_xattr_entry_lru_del(oldentry);
	} else {
		atomic_long_inc(&cache->nent);
	}

	hlist_add_head(&entry->hnode, &bucket->hlist);
	nfs4_xattr_entry_lru_add(entry);

out:
	spin_unlock(&bucket->lock);

	if (oldentry != NULL)
		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);

	return ret;
}

static void
nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
{
	struct nfs4_xattr_bucket *bucket;
	struct nfs4_xattr_entry *entry;

	bucket = nfs4_xattr_hash_bucket(cache, name);

	spin_lock(&bucket->lock);

	entry = nfs4_xattr_get_entry(bucket, name);
	if (entry != NULL) {
		hlist_del_init(&entry->hnode);
		nfs4_xattr_entry_lru_del(entry);
		atomic_long_dec(&cache->nent);
	}

	spin_unlock(&bucket->lock);

	if (entry != NULL)
		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
}

static struct nfs4_xattr_entry *
nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
{
	struct nfs4_xattr_bucket *bucket;
	struct nfs4_xattr_entry *entry;

	bucket = nfs4_xattr_hash_bucket(cache, name);

	spin_lock(&bucket->lock);

	entry = nfs4_xattr_get_entry(bucket, name);
	if (entry != NULL)
		kref_get(&entry->ref);

	spin_unlock(&bucket->lock);

	return entry;
}

/*
 * Entry point to retrieve an entry from the cache.
 */
ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
			 ssize_t buflen)
{
	struct nfs4_xattr_cache *cache;
	struct nfs4_xattr_entry *entry;
	ssize_t ret;

	cache = nfs4_xattr_get_cache(inode, 0);
	if (cache == NULL)
		return -ENOENT;

	ret = 0;
	entry = nfs4_xattr_hash_find(cache, name);

	if (entry != NULL) {
		dprintk("%s: cache hit '%s', len %lu\n", __func__,
		    entry->xattr_name, (unsigned long)entry->xattr_size);
		if (buflen == 0) {
			/* Length probe only */
			ret = entry->xattr_size;
		} else if (buflen < entry->xattr_size)
			ret = -ERANGE;
		else {
			memcpy(buf, entry->xattr_value, entry->xattr_size);
			ret = entry->xattr_size;
		}
		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
	} else {
		dprintk("%s: cache miss '%s'\n", __func__, name);
		ret = -ENOENT;
	}

	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);

	return ret;
}

/*
 * Retrieve a cached list of xattrs from the cache.
 */
ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
{
	struct nfs4_xattr_cache *cache;
	struct nfs4_xattr_entry *entry;
	ssize_t ret;

	cache = nfs4_xattr_get_cache(inode, 0);
	if (cache == NULL)
		return -ENOENT;

	spin_lock(&cache->listxattr_lock);

	entry = cache->listxattr;

	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
		if (buflen == 0) {
			/* Length probe only */
			ret = entry->xattr_size;
		} else if (entry->xattr_size > buflen)
			ret = -ERANGE;
		else {
			memcpy(buf, entry->xattr_value, entry->xattr_size);
			ret = entry->xattr_size;
		}
	} else {
		ret = -ENOENT;
	}

	spin_unlock(&cache->listxattr_lock);

	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);

	return ret;
}

/*
 * Add an xattr to the cache.
 *
 * This also invalidates the xattr list cache.
 */
void nfs4_xattr_cache_add(struct inode *inode, const char *name,
			  const char *buf, struct page **pages, ssize_t buflen)
{
	struct nfs4_xattr_cache *cache;
	struct nfs4_xattr_entry *entry;

	dprintk("%s: add '%s' len %lu\n", __func__,
	    name, (unsigned long)buflen);

	cache = nfs4_xattr_get_cache(inode, 1);
	if (cache == NULL)
		return;

	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
	if (entry == NULL)
		goto out;

	(void)nfs4_xattr_set_listcache(cache, NULL);

	if (!nfs4_xattr_hash_add(cache, entry))
		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);

out:
	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
}


/*
 * Remove an xattr from the cache.
 *
 * This also invalidates the xattr list cache.
 */
void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
{
	struct nfs4_xattr_cache *cache;

	dprintk("%s: remove '%s'\n", __func__, name);

	cache = nfs4_xattr_get_cache(inode, 0);
	if (cache == NULL)
		return;

	(void)nfs4_xattr_set_listcache(cache, NULL);
	nfs4_xattr_hash_remove(cache, name);

	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
}

/*
 * Cache listxattr output, replacing any possible old one.
 */
void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
			       ssize_t buflen)
{
	struct nfs4_xattr_cache *cache;
	struct nfs4_xattr_entry *entry;

	cache = nfs4_xattr_get_cache(inode, 1);
	if (cache == NULL)
		return;

	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
	if (entry == NULL)
		goto out;

	/*
	 * This is just there to be able to get to bucket->cache,
	 * which is obviously the same for all buckets, so just
	 * use bucket 0.
	 */
	entry->bucket = &cache->buckets[0];

	if (!nfs4_xattr_set_listcache(cache, entry))
		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);

out:
	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
}

/*
 * Zap the entire cache. Called when an inode is evicted.
 */
void nfs4_xattr_cache_zap(struct inode *inode)
{
	struct nfs4_xattr_cache *oldcache;

	spin_lock(&inode->i_lock);
	oldcache = nfs4_xattr_cache_unlink(inode);
	spin_unlock(&inode->i_lock);

	if (oldcache)
		nfs4_xattr_discard_cache(oldcache);
}

/*
 * The entry LRU is shrunk more aggressively than the cache LRU,
 * by settings @seeks to 1.
 *
 * Cache structures are freed only when they've become empty, after
 * pruning all but one entry.
 */

static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
					    struct shrink_control *sc);
static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
					    struct shrink_control *sc);
static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
					   struct shrink_control *sc);
static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
					   struct shrink_control *sc);

static struct shrinker nfs4_xattr_cache_shrinker = {
	.count_objects	= nfs4_xattr_cache_count,
	.scan_objects	= nfs4_xattr_cache_scan,
	.seeks		= DEFAULT_SEEKS,
	.flags		= SHRINKER_MEMCG_AWARE,
};

static struct shrinker nfs4_xattr_entry_shrinker = {
	.count_objects	= nfs4_xattr_entry_count,
	.scan_objects	= nfs4_xattr_entry_scan,
	.seeks		= DEFAULT_SEEKS,
	.batch		= 512,
	.flags		= SHRINKER_MEMCG_AWARE,
};

static struct shrinker nfs4_xattr_large_entry_shrinker = {
	.count_objects	= nfs4_xattr_entry_count,
	.scan_objects	= nfs4_xattr_entry_scan,
	.seeks		= 1,
	.batch		= 512,
	.flags		= SHRINKER_MEMCG_AWARE,
};

static enum lru_status
cache_lru_isolate(struct list_head *item,
	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
{
	struct list_head *dispose = arg;
	struct inode *inode;
	struct nfs4_xattr_cache *cache = container_of(item,
	    struct nfs4_xattr_cache, lru);

	if (atomic_long_read(&cache->nent) > 1)
		return LRU_SKIP;

	/*
	 * If a cache structure is on the LRU list, we know that
	 * its inode is valid. Try to lock it to break the link.
	 * Since we're inverting the lock order here, only try.
	 */
	inode = cache->inode;

	if (!spin_trylock(&inode->i_lock))
		return LRU_SKIP;

	kref_get(&cache->ref);

	cache->inode = NULL;
	NFS_I(inode)->xattr_cache = NULL;
	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
	list_lru_isolate(lru, &cache->lru);

	spin_unlock(&inode->i_lock);

	list_add_tail(&cache->dispose, dispose);
	return LRU_REMOVED;
}

static unsigned long
nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
{
	LIST_HEAD(dispose);
	unsigned long freed;
	struct nfs4_xattr_cache *cache;

	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
	    cache_lru_isolate, &dispose);
	while (!list_empty(&dispose)) {
		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
		    dispose);
		list_del_init(&cache->dispose);
		nfs4_xattr_discard_cache(cache);
		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
	}

	return freed;
}


static unsigned long
nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
{
	unsigned long count;

	count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
	return vfs_pressure_ratio(count);
}

static enum lru_status
entry_lru_isolate(struct list_head *item,
	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
{
	struct list_head *dispose = arg;
	struct nfs4_xattr_bucket *bucket;
	struct nfs4_xattr_cache *cache;
	struct nfs4_xattr_entry *entry = container_of(item,
	    struct nfs4_xattr_entry, lru);

	bucket = entry->bucket;
	cache = bucket->cache;

	/*
	 * Unhook the entry from its parent (either a cache bucket
	 * or a cache structure if it's a listxattr buf), so that
	 * it's no longer found. Then add it to the isolate list,
	 * to be freed later.
	 *
	 * In both cases, we're reverting lock order, so use
	 * trylock and skip the entry if we can't get the lock.
	 */
	if (entry->xattr_name != NULL) {
		/* Regular cache entry */
		if (!spin_trylock(&bucket->lock))
			return LRU_SKIP;

		kref_get(&entry->ref);

		hlist_del_init(&entry->hnode);
		atomic_long_dec(&cache->nent);
		list_lru_isolate(lru, &entry->lru);

		spin_unlock(&bucket->lock);
	} else {
		/* Listxattr cache entry */
		if (!spin_trylock(&cache->listxattr_lock))
			return LRU_SKIP;

		kref_get(&entry->ref);

		cache->listxattr = NULL;
		list_lru_isolate(lru, &entry->lru);

		spin_unlock(&cache->listxattr_lock);
	}

	list_add_tail(&entry->dispose, dispose);
	return LRU_REMOVED;
}

static unsigned long
nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
{
	LIST_HEAD(dispose);
	unsigned long freed;
	struct nfs4_xattr_entry *entry;
	struct list_lru *lru;

	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;

	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);

	while (!list_empty(&dispose)) {
		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
		    dispose);
		list_del_init(&entry->dispose);

		/*
		 * Drop two references: the one that we just grabbed
		 * in entry_lru_isolate, and the one that was set
		 * when the entry was first allocated.
		 */
		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
	}

	return freed;
}

static unsigned long
nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
{
	unsigned long count;
	struct list_lru *lru;

	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;

	count = list_lru_shrink_count(lru, sc);
	return vfs_pressure_ratio(count);
}


static void nfs4_xattr_cache_init_once(void *p)
{
	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;

	spin_lock_init(&cache->listxattr_lock);
	atomic_long_set(&cache->nent, 0);
	nfs4_xattr_hash_init(cache);
	cache->listxattr = NULL;
	INIT_LIST_HEAD(&cache->lru);
	INIT_LIST_HEAD(&cache->dispose);
}

int __init nfs4_xattr_cache_init(void)
{
	int ret = 0;

	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
	    sizeof(struct nfs4_xattr_cache), 0,
	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
	    nfs4_xattr_cache_init_once);
	if (nfs4_xattr_cache_cachep == NULL)
		return -ENOMEM;

	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
	    &nfs4_xattr_large_entry_shrinker);
	if (ret)
		goto out4;

	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
	    &nfs4_xattr_entry_shrinker);
	if (ret)
		goto out3;

	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
	    &nfs4_xattr_cache_shrinker);
	if (ret)
		goto out2;

	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
	if (ret)
		goto out1;

	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
	if (ret)
		goto out;

	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
	if (!ret)
		return 0;

	unregister_shrinker(&nfs4_xattr_entry_shrinker);
out:
	unregister_shrinker(&nfs4_xattr_cache_shrinker);
out1:
	list_lru_destroy(&nfs4_xattr_cache_lru);
out2:
	list_lru_destroy(&nfs4_xattr_entry_lru);
out3:
	list_lru_destroy(&nfs4_xattr_large_entry_lru);
out4:
	kmem_cache_destroy(nfs4_xattr_cache_cachep);

	return ret;
}

void nfs4_xattr_cache_exit(void)
{
	unregister_shrinker(&nfs4_xattr_large_entry_shrinker);
	unregister_shrinker(&nfs4_xattr_entry_shrinker);
	unregister_shrinker(&nfs4_xattr_cache_shrinker);
	list_lru_destroy(&nfs4_xattr_large_entry_lru);
	list_lru_destroy(&nfs4_xattr_entry_lru);
	list_lru_destroy(&nfs4_xattr_cache_lru);
	kmem_cache_destroy(nfs4_xattr_cache_cachep);
}