// SPDX-License-Identifier: GPL-2.0
/*
* Shared application/kernel submission and completion ring pairs, for
* supporting fast/efficient IO.
*
* A note on the read/write ordering memory barriers that are matched between
* the application and kernel side. When the application reads the CQ ring
* tail, it must use an appropriate smp_rmb() to order with the smp_wmb()
* the kernel uses after writing the tail. Failure to do so could cause a
* delay in when the application notices that completion events available.
* This isn't a fatal condition. Likewise, the application must use an
* appropriate smp_wmb() both before writing the SQ tail, and after writing
* the SQ tail. The first one orders the sqe writes with the tail write, and
* the latter is paired with the smp_rmb() the kernel will issue before
* reading the SQ tail on submission.
*
* Also see the examples in the liburing library:
*
* git://git.kernel.dk/liburing
*
* io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
* from data shared between the kernel and application. This is done both
* for ordering purposes, but also to ensure that once a value is loaded from
* data that the application could potentially modify, it remains stable.
*
* Copyright (C) 2018-2019 Jens Axboe
* Copyright (c) 2018-2019 Christoph Hellwig
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/refcount.h>
#include <linux/uio.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/mmu_context.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/blkdev.h>
#include <linux/net.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <linux/anon_inodes.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>
#include <linux/nospec.h>
#include <uapi/linux/io_uring.h>
#include "internal.h"
#define IORING_MAX_ENTRIES 4096
struct io_uring {
u32 head ____cacheline_aligned_in_smp;
u32 tail ____cacheline_aligned_in_smp;
};
struct io_sq_ring {
struct io_uring r;
u32 ring_mask;
u32 ring_entries;
u32 dropped;
u32 flags;
u32 array[];
};
struct io_cq_ring {
struct io_uring r;
u32 ring_mask;
u32 ring_entries;
u32 overflow;
struct io_uring_cqe cqes[];
};
struct io_ring_ctx {
struct {
struct percpu_ref refs;
} ____cacheline_aligned_in_smp;
struct {
unsigned int flags;
bool compat;
bool account_mem;
/* SQ ring */
struct io_sq_ring *sq_ring;
unsigned cached_sq_head;
unsigned sq_entries;
unsigned sq_mask;
struct io_uring_sqe *sq_sqes;
} ____cacheline_aligned_in_smp;
/* IO offload */
struct workqueue_struct *sqo_wq;
struct mm_struct *sqo_mm;
struct {
/* CQ ring */
struct io_cq_ring *cq_ring;
unsigned cached_cq_tail;
unsigned cq_entries;
unsigned cq_mask;
struct wait_queue_head cq_wait;
struct fasync_struct *cq_fasync;
} ____cacheline_aligned_in_smp;
struct user_struct *user;
struct completion ctx_done;
struct {
struct mutex uring_lock;
wait_queue_head_t wait;
} ____cacheline_aligned_in_smp;
struct {
spinlock_t completion_lock;
bool poll_multi_file;
/*
* ->poll_list is protected by the ctx->uring_lock for
* io_uring instances that don't use IORING_SETUP_SQPOLL.
* For SQPOLL, only the single threaded io_sq_thread() will
* manipulate the list, hence no extra locking is needed there.
*/
struct list_head poll_list;
} ____cacheline_aligned_in_smp;
#if defined(CONFIG_UNIX)
struct socket *ring_sock;
#endif
};
struct sqe_submit {
const struct io_uring_sqe *sqe;
unsigned short index;
bool has_user;
bool needs_lock;
};
struct io_kiocb {
struct kiocb rw;
struct sqe_submit submit;
struct io_ring_ctx *ctx;
struct list_head list;
unsigned int flags;
#define REQ_F_FORCE_NONBLOCK 1 /* inline submission attempt */
#define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
u64 user_data;
u64 error;
struct work_struct work;
};
#define IO_PLUG_THRESHOLD 2
#define IO_IOPOLL_BATCH 8
static struct kmem_cache *req_cachep;
static const struct file_operations io_uring_fops;
struct sock *io_uring_get_socket(struct file *file)
{
#if defined(CONFIG_UNIX)
if (file->f_op == &io_uring_fops) {
struct io_ring_ctx *ctx = file->private_data;
return ctx->ring_sock->sk;
}
#endif
return NULL;
}
EXPORT_SYMBOL(io_uring_get_socket);
static void io_ring_ctx_ref_free(struct percpu_ref *ref)
{
struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
complete(&ctx->ctx_done);
}
static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
{
struct io_ring_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
kfree(ctx);
return NULL;
}
ctx->flags = p->flags;
init_waitqueue_head(&ctx->cq_wait);
init_completion(&ctx->ctx_done);
mutex_init(&ctx->uring_lock);
init_waitqueue_head(&ctx->wait);
spin_lock_init(&ctx->completion_lock);
INIT_LIST_HEAD(&ctx->poll_list);
return ctx;
}
static void io_commit_cqring(struct io_ring_ctx *ctx)
{
struct io_cq_ring *ring = ctx->cq_ring;
if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
/* order cqe stores with ring update */
smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
/*
* Write sider barrier of tail update, app has read side. See
* comment at the top of this file.
*/
smp_wmb();
if (wq_has_sleeper(&ctx->cq_wait)) {
wake_up_interruptible(&ctx->cq_wait);
kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
}
}
}
static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
{
struct io_cq_ring *ring = ctx->cq_ring;
unsigned tail;
tail = ctx->cached_cq_tail;
/* See comment at the top of the file */
smp_rmb();
if (tail + 1 == READ_ONCE(ring->r.head))
return NULL;
ctx->cached_cq_tail++;
return &ring->cqes[tail & ctx->cq_mask];
}
static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
long res, unsigned ev_flags)
{
struct io_uring_cqe *cqe;
/*
* If we can't get a cq entry, userspace overflowed the
* submission (by quite a lot). Increment the overflow count in
* the ring.
*/
cqe = io_get_cqring(ctx);
if (cqe) {
WRITE_ONCE(cqe->user_data, ki_user_data);
WRITE_ONCE(cqe->res, res);
WRITE_ONCE(cqe->flags, ev_flags);
} else {
unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
}
}
static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 ki_user_data,
long res, unsigned ev_flags)
{
unsigned long flags;
spin_lock_irqsave(&ctx->completion_lock, flags);
io_cqring_fill_event(ctx, ki_user_data, res, ev_flags);
io_commit_cqring(ctx);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
if (waitqueue_active(&ctx->wait))
wake_up(&ctx->wait);
}
static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
{
percpu_ref_put_many(&ctx->refs, refs);
if (waitqueue_active(&ctx->wait))
wake_up(&ctx->wait);
}
static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx)
{
struct io_kiocb *req;
if (!percpu_ref_tryget(&ctx->refs))
return NULL;
req = kmem_cache_alloc(req_cachep, __GFP_NOWARN);
if (req) {
req->ctx = ctx;
req->flags = 0;
return req;
}
io_ring_drop_ctx_refs(ctx, 1);
return NULL;
}
static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
{
if (*nr) {
kmem_cache_free_bulk(req_cachep, *nr, reqs);
io_ring_drop_ctx_refs(ctx, *nr);
*nr = 0;
}
}
static void io_free_req(struct io_kiocb *req)
{
io_ring_drop_ctx_refs(req->ctx, 1);
kmem_cache_free(req_cachep, req);
}
/*
* Find and free completed poll iocbs
*/
static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
struct list_head *done)
{
void *reqs[IO_IOPOLL_BATCH];
struct io_kiocb *req;
int to_free = 0;
while (!list_empty(done)) {
req = list_first_entry(done, struct io_kiocb, list);
list_del(&req->list);
io_cqring_fill_event(ctx, req->user_data, req->error, 0);
reqs[to_free++] = req;
(*nr_events)++;
fput(req->rw.ki_filp);
if (to_free == ARRAY_SIZE(reqs))
io_free_req_many(ctx, reqs, &to_free);
}
io_commit_cqring(ctx);
io_free_req_many(ctx, reqs, &to_free);
}
static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
long min)
{
struct io_kiocb *req, *tmp;
LIST_HEAD(done);
bool spin;
int ret;
/*
* Only spin for completions if we don't have multiple devices hanging
* off our complete list, and we're under the requested amount.
*/
spin = !ctx->poll_multi_file && *nr_events < min;
ret = 0;
list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
struct kiocb *kiocb = &req->rw;
/*
* Move completed entries to our local list. If we find a
* request that requires polling, break out and complete
* the done list first, if we have entries there.
*/
if (req->flags & REQ_F_IOPOLL_COMPLETED) {
list_move_tail(&req->list, &done);
continue;
}
if (!list_empty(&done))
break;
ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
if (ret < 0)
break;
if (ret && spin)
spin = false;
ret = 0;
}
if (!list_empty(&done))
io_iopoll_complete(ctx, nr_events, &done);
return ret;
}
/*
* Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
* non-spinning poll check - we'll still enter the driver poll loop, but only
* as a non-spinning completion check.
*/
static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
long min)
{
while (!list_empty(&ctx->poll_list)) {
int ret;
ret = io_do_iopoll(ctx, nr_events, min);
if (ret < 0)
return ret;
if (!min || *nr_events >= min)
return 0;
}
return 1;
}
/*
* We can't just wait for polled events to come to us, we have to actively
* find and complete them.
*/
static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
{
if (!(ctx->flags & IORING_SETUP_IOPOLL))
return;
mutex_lock(&ctx->uring_lock);
while (!list_empty(&ctx->poll_list)) {
unsigned int nr_events = 0;
io_iopoll_getevents(ctx, &nr_events, 1);
}
mutex_unlock(&ctx->uring_lock);
}
static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
long min)
{
int ret = 0;
do {
int tmin = 0;
if (*nr_events < min)
tmin = min - *nr_events;
ret = io_iopoll_getevents(ctx, nr_events, tmin);
if (ret <= 0)
break;
ret = 0;
} while (min && !*nr_events && !need_resched());
return ret;
}
static void kiocb_end_write(struct kiocb *kiocb)
{
if (kiocb->ki_flags & IOCB_WRITE) {
struct inode *inode = file_inode(kiocb->ki_filp);
/*
* Tell lockdep we inherited freeze protection from submission
* thread.
*/
if (S_ISREG(inode->i_mode))
__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
file_end_write(kiocb->ki_filp);
}
}
static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
kiocb_end_write(kiocb);
fput(kiocb->ki_filp);
io_cqring_add_event(req->ctx, req->user_data, res, 0);
io_free_req(req);
}
static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
kiocb_end_write(kiocb);
req->error = res;
if (res != -EAGAIN)
req->flags |= REQ_F_IOPOLL_COMPLETED;
}
/*
* After the iocb has been issued, it's safe to be found on the poll list.
* Adding the kiocb to the list AFTER submission ensures that we don't
* find it from a io_iopoll_getevents() thread before the issuer is done
* accessing the kiocb cookie.
*/
static void io_iopoll_req_issued(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
/*
* Track whether we have multiple files in our lists. This will impact
* how we do polling eventually, not spinning if we're on potentially
* different devices.
*/
if (list_empty(&ctx->poll_list)) {
ctx->poll_multi_file = false;
} else if (!ctx->poll_multi_file) {
struct io_kiocb *list_req;
list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
list);
if (list_req->rw.ki_filp != req->rw.ki_filp)
ctx->poll_multi_file = true;
}
/*
* For fast devices, IO may have already completed. If it has, add
* it to the front so we find it first.
*/
if (req->flags & REQ_F_IOPOLL_COMPLETED)
list_add(&req->list, &ctx->poll_list);
else
list_add_tail(&req->list, &ctx->poll_list);
}
/*
* If we tracked the file through the SCM inflight mechanism, we could support
* any file. For now, just ensure that anything potentially problematic is done
* inline.
*/
static bool io_file_supports_async(struct file *file)
{
umode_t mode = file_inode(file)->i_mode;
if (S_ISBLK(mode) || S_ISCHR(mode))
return true;
if (S_ISREG(mode) && file->f_op != &io_uring_fops)
return true;
return false;
}
static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
bool force_nonblock)
{
struct io_ring_ctx *ctx = req->ctx;
struct kiocb *kiocb = &req->rw;
unsigned ioprio;
int fd, ret;
/* For -EAGAIN retry, everything is already prepped */
if (kiocb->ki_filp)
return 0;
fd = READ_ONCE(sqe->fd);
kiocb->ki_filp = fget(fd);
if (unlikely(!kiocb->ki_filp))
return -EBADF;
if (force_nonblock && !io_file_supports_async(kiocb->ki_filp))
force_nonblock = false;
kiocb->ki_pos = READ_ONCE(sqe->off);
kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
ioprio = READ_ONCE(sqe->ioprio);
if (ioprio) {
ret = ioprio_check_cap(ioprio);
if (ret)
goto out_fput;
kiocb->ki_ioprio = ioprio;
} else
kiocb->ki_ioprio = get_current_ioprio();
ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
if (unlikely(ret))
goto out_fput;
if (force_nonblock) {
kiocb->ki_flags |= IOCB_NOWAIT;
req->flags |= REQ_F_FORCE_NONBLOCK;
}
if (ctx->flags & IORING_SETUP_IOPOLL) {
ret = -EOPNOTSUPP;
if (!(kiocb->ki_flags & IOCB_DIRECT) ||
!kiocb->ki_filp->f_op->iopoll)
goto out_fput;
req->error = 0;
kiocb->ki_flags |= IOCB_HIPRI;
kiocb->ki_complete = io_complete_rw_iopoll;
} else {
if (kiocb->ki_flags & IOCB_HIPRI) {
ret = -EINVAL;
goto out_fput;
}
kiocb->ki_complete = io_complete_rw;
}
return 0;
out_fput:
fput(kiocb->ki_filp);
return ret;
}
static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
{
switch (ret) {
case -EIOCBQUEUED:
break;
case -ERESTARTSYS:
case -ERESTARTNOINTR:
case -ERESTARTNOHAND:
case -ERESTART_RESTARTBLOCK:
/*
* We can't just restart the syscall, since previously
* submitted sqes may already be in progress. Just fail this
* IO with EINTR.
*/
ret = -EINTR;
/* fall through */
default:
kiocb->ki_complete(kiocb, ret, 0);
}
}
static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
const struct sqe_submit *s, struct iovec **iovec,
struct iov_iter *iter)
{
const struct io_uring_sqe *sqe = s->sqe;
void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
size_t sqe_len = READ_ONCE(sqe->len);
if (!s->has_user)
return -EFAULT;
#ifdef CONFIG_COMPAT
if (ctx->compat)
return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
iovec, iter);
#endif
return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
}
static ssize_t io_read(struct io_kiocb *req, const struct sqe_submit *s,
bool force_nonblock)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct kiocb *kiocb = &req->rw;
struct iov_iter iter;
struct file *file;
ssize_t ret;
ret = io_prep_rw(req, s->sqe, force_nonblock);
if (ret)
return ret;
file = kiocb->ki_filp;
ret = -EBADF;
if (unlikely(!(file->f_mode & FMODE_READ)))
goto out_fput;
ret = -EINVAL;
if (unlikely(!file->f_op->read_iter))
goto out_fput;
ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
if (ret)
goto out_fput;
ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_iter_count(&iter));
if (!ret) {
ssize_t ret2;
/* Catch -EAGAIN return for forced non-blocking submission */
ret2 = call_read_iter(file, kiocb, &iter);
if (!force_nonblock || ret2 != -EAGAIN)
io_rw_done(kiocb, ret2);
else
ret = -EAGAIN;
}
kfree(iovec);
out_fput:
/* Hold on to the file for -EAGAIN */
if (unlikely(ret && ret != -EAGAIN))
fput(file);
return ret;
}
static ssize_t io_write(struct io_kiocb *req, const struct sqe_submit *s,
bool force_nonblock)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct kiocb *kiocb = &req->rw;
struct iov_iter iter;
struct file *file;
ssize_t ret;
ret = io_prep_rw(req, s->sqe, force_nonblock);
if (ret)
return ret;
/* Hold on to the file for -EAGAIN */
if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT))
return -EAGAIN;
ret = -EBADF;
file = kiocb->ki_filp;
if (unlikely(!(file->f_mode & FMODE_WRITE)))
goto out_fput;
ret = -EINVAL;
if (unlikely(!file->f_op->write_iter))
goto out_fput;
ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
if (ret)
goto out_fput;
ret = rw_verify_area(WRITE, file, &kiocb->ki_pos,
iov_iter_count(&iter));
if (!ret) {
/*
* Open-code file_start_write here to grab freeze protection,
* which will be released by another thread in
* io_complete_rw(). Fool lockdep by telling it the lock got
* released so that it doesn't complain about the held lock when
* we return to userspace.
*/
if (S_ISREG(file_inode(file)->i_mode)) {
__sb_start_write(file_inode(file)->i_sb,
SB_FREEZE_WRITE, true);
__sb_writers_release(file_inode(file)->i_sb,
SB_FREEZE_WRITE);
}
kiocb->ki_flags |= IOCB_WRITE;
io_rw_done(kiocb, call_write_iter(file, kiocb, &iter));
}
kfree(iovec);
out_fput:
if (unlikely(ret))
fput(file);
return ret;
}
/*
* IORING_OP_NOP just posts a completion event, nothing else.
*/
static int io_nop(struct io_kiocb *req, u64 user_data)
{
struct io_ring_ctx *ctx = req->ctx;
long err = 0;
if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
/*
* Twilight zone - it's possible that someone issued an opcode that
* has a file attached, then got -EAGAIN on submission, and changed
* the sqe before we retried it from async context. Avoid dropping
* a file reference for this malicious case, and flag the error.
*/
if (req->rw.ki_filp) {
err = -EBADF;
fput(req->rw.ki_filp);
}
io_cqring_add_event(ctx, user_data, err, 0);
io_free_req(req);
return 0;
}
static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
int fd;
/* Prep already done */
if (req->rw.ki_filp)
return 0;
if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (unlikely(sqe->addr || sqe->ioprio))
return -EINVAL;
fd = READ_ONCE(sqe->fd);
req->rw.ki_filp = fget(fd);
if (unlikely(!req->rw.ki_filp))
return -EBADF;
return 0;
}
static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
bool force_nonblock)
{
loff_t sqe_off = READ_ONCE(sqe->off);
loff_t sqe_len = READ_ONCE(sqe->len);
loff_t end = sqe_off + sqe_len;
unsigned fsync_flags;
int ret;
fsync_flags = READ_ONCE(sqe->fsync_flags);
if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
return -EINVAL;
ret = io_prep_fsync(req, sqe);
if (ret)
return ret;
/* fsync always requires a blocking context */
if (force_nonblock)
return -EAGAIN;
ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
end > 0 ? end : LLONG_MAX,
fsync_flags & IORING_FSYNC_DATASYNC);
fput(req->rw.ki_filp);
io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
io_free_req(req);
return 0;
}
static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
const struct sqe_submit *s, bool force_nonblock)
{
ssize_t ret;
int opcode;
if (unlikely(s->index >= ctx->sq_entries))
return -EINVAL;
req->user_data = READ_ONCE(s->sqe->user_data);
opcode = READ_ONCE(s->sqe->opcode);
switch (opcode) {
case IORING_OP_NOP:
ret = io_nop(req, req->user_data);
break;
case IORING_OP_READV:
ret = io_read(req, s, force_nonblock);
break;
case IORING_OP_WRITEV:
ret = io_write(req, s, force_nonblock);
break;
case IORING_OP_FSYNC:
ret = io_fsync(req, s->sqe, force_nonblock);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
return ret;
if (ctx->flags & IORING_SETUP_IOPOLL) {
if (req->error == -EAGAIN)
return -EAGAIN;
/* workqueue context doesn't hold uring_lock, grab it now */
if (s->needs_lock)
mutex_lock(&ctx->uring_lock);
io_iopoll_req_issued(req);
if (s->needs_lock)
mutex_unlock(&ctx->uring_lock);
}
return 0;
}
static void io_sq_wq_submit_work(struct work_struct *work)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
struct sqe_submit *s = &req->submit;
const struct io_uring_sqe *sqe = s->sqe;
struct io_ring_ctx *ctx = req->ctx;
mm_segment_t old_fs = get_fs();
int ret;
/* Ensure we clear previously set forced non-block flag */
req->flags &= ~REQ_F_FORCE_NONBLOCK;
req->rw.ki_flags &= ~IOCB_NOWAIT;
if (!mmget_not_zero(ctx->sqo_mm)) {
ret = -EFAULT;
goto err;
}
use_mm(ctx->sqo_mm);
set_fs(USER_DS);
s->has_user = true;
s->needs_lock = true;
do {
ret = __io_submit_sqe(ctx, req, s, false);
/*
* We can get EAGAIN for polled IO even though we're forcing
* a sync submission from here, since we can't wait for
* request slots on the block side.
*/
if (ret != -EAGAIN)
break;
cond_resched();
} while (1);
set_fs(old_fs);
unuse_mm(ctx->sqo_mm);
mmput(ctx->sqo_mm);
err:
if (ret) {
io_cqring_add_event(ctx, sqe->user_data, ret, 0);
io_free_req(req);
}
/* async context always use a copy of the sqe */
kfree(sqe);
}
static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s)
{
struct io_kiocb *req;
ssize_t ret;
/* enforce forwards compatibility on users */
if (unlikely(s->sqe->flags))
return -EINVAL;
req = io_get_req(ctx);
if (unlikely(!req))
return -EAGAIN;
req->rw.ki_filp = NULL;
ret = __io_submit_sqe(ctx, req, s, true);
if (ret == -EAGAIN) {
struct io_uring_sqe *sqe_copy;
sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
if (sqe_copy) {
memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
s->sqe = sqe_copy;
memcpy(&req->submit, s, sizeof(*s));
INIT_WORK(&req->work, io_sq_wq_submit_work);
queue_work(ctx->sqo_wq, &req->work);
ret = 0;
}
}
if (ret)
io_free_req(req);
return ret;
}
static void io_commit_sqring(struct io_ring_ctx *ctx)
{
struct io_sq_ring *ring = ctx->sq_ring;
if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
/*
* Ensure any loads from the SQEs are done at this point,
* since once we write the new head, the application could
* write new data to them.
*/
smp_store_release(&ring->r.head, ctx->cached_sq_head);
/*
* write side barrier of head update, app has read side. See
* comment at the top of this file
*/
smp_wmb();
}
}
/*
* Undo last io_get_sqring()
*/
static void io_drop_sqring(struct io_ring_ctx *ctx)
{
ctx->cached_sq_head--;
}
/*
* Fetch an sqe, if one is available. Note that s->sqe will point to memory
* that is mapped by userspace. This means that care needs to be taken to
* ensure that reads are stable, as we cannot rely on userspace always
* being a good citizen. If members of the sqe are validated and then later
* used, it's important that those reads are done through READ_ONCE() to
* prevent a re-load down the line.
*/
static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
{
struct io_sq_ring *ring = ctx->sq_ring;
unsigned head;
/*
* The cached sq head (or cq tail) serves two purposes:
*
* 1) allows us to batch the cost of updating the user visible
* head updates.
* 2) allows the kernel side to track the head on its own, even
* though the application is the one updating it.
*/
head = ctx->cached_sq_head;
/* See comment at the top of this file */
smp_rmb();
if (head == READ_ONCE(ring->r.tail))
return false;
head = READ_ONCE(ring->array[head & ctx->sq_mask]);
if (head < ctx->sq_entries) {
s->index = head;
s->sqe = &ctx->sq_sqes[head];
ctx->cached_sq_head++;
return true;
}
/* drop invalid entries */
ctx->cached_sq_head++;
ring->dropped++;
/* See comment at the top of this file */
smp_wmb();
return false;
}
static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
{
int i, ret = 0, submit = 0;
struct blk_plug plug;
if (to_submit > IO_PLUG_THRESHOLD)
blk_start_plug(&plug);
for (i = 0; i < to_submit; i++) {
struct sqe_submit s;
if (!io_get_sqring(ctx, &s))
break;
s.has_user = true;
s.needs_lock = false;
ret = io_submit_sqe(ctx, &s);
if (ret) {
io_drop_sqring(ctx);
break;
}
submit++;
}
io_commit_sqring(ctx);
if (to_submit > IO_PLUG_THRESHOLD)
blk_finish_plug(&plug);
return submit ? submit : ret;
}
static unsigned io_cqring_events(struct io_cq_ring *ring)
{
return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
}
/*
* Wait until events become available, if we don't already have some. The
* application must reap them itself, as they reside on the shared cq ring.
*/
static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
const sigset_t __user *sig, size_t sigsz)
{
struct io_cq_ring *ring = ctx->cq_ring;
sigset_t ksigmask, sigsaved;
DEFINE_WAIT(wait);
int ret;
/* See comment at the top of this file */
smp_rmb();
if (io_cqring_events(ring) >= min_events)
return 0;
if (sig) {
ret = set_user_sigmask(sig, &ksigmask, &sigsaved, sigsz);
if (ret)
return ret;
}
do {
prepare_to_wait(&ctx->wait, &wait, TASK_INTERRUPTIBLE);
ret = 0;
/* See comment at the top of this file */
smp_rmb();
if (io_cqring_events(ring) >= min_events)
break;
schedule();
ret = -EINTR;
if (signal_pending(current))
break;
} while (1);
finish_wait(&ctx->wait, &wait);
if (sig)
restore_user_sigmask(sig, &sigsaved);
return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
}
static int io_sq_offload_start(struct io_ring_ctx *ctx)
{
int ret;
mmgrab(current->mm);
ctx->sqo_mm = current->mm;
/* Do QD, or 2 * CPUS, whatever is smallest */
ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
min(ctx->sq_entries - 1, 2 * num_online_cpus()));
if (!ctx->sqo_wq) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
mmdrop(ctx->sqo_mm);
ctx->sqo_mm = NULL;
return ret;
}
static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
{
atomic_long_sub(nr_pages, &user->locked_vm);
}
static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
{
unsigned long page_limit, cur_pages, new_pages;
/* Don't allow more pages than we can safely lock */
page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
do {
cur_pages = atomic_long_read(&user->locked_vm);
new_pages = cur_pages + nr_pages;
if (new_pages > page_limit)
return -ENOMEM;
} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
new_pages) != cur_pages);
return 0;
}
static void io_mem_free(void *ptr)
{
struct page *page = virt_to_head_page(ptr);
if (put_page_testzero(page))
free_compound_page(page);
}
static void *io_mem_alloc(size_t size)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
__GFP_NORETRY;
return (void *) __get_free_pages(gfp_flags, get_order(size));
}
static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
{
struct io_sq_ring *sq_ring;
struct io_cq_ring *cq_ring;
size_t bytes;
bytes = struct_size(sq_ring, array, sq_entries);
bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
bytes += struct_size(cq_ring, cqes, cq_entries);
return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
}
static void io_ring_ctx_free(struct io_ring_ctx *ctx)
{
if (ctx->sqo_wq)
destroy_workqueue(ctx->sqo_wq);
if (ctx->sqo_mm)
mmdrop(ctx->sqo_mm);
io_iopoll_reap_events(ctx);
#if defined(CONFIG_UNIX)
if (ctx->ring_sock)
sock_release(ctx->ring_sock);
#endif
io_mem_free(ctx->sq_ring);
io_mem_free(ctx->sq_sqes);
io_mem_free(ctx->cq_ring);
percpu_ref_exit(&ctx->refs);
if (ctx->account_mem)
io_unaccount_mem(ctx->user,
ring_pages(ctx->sq_entries, ctx->cq_entries));
free_uid(ctx->user);
kfree(ctx);
}
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
{
struct io_ring_ctx *ctx = file->private_data;
__poll_t mask = 0;
poll_wait(file, &ctx->cq_wait, wait);
/* See comment at the top of this file */
smp_rmb();
if (READ_ONCE(ctx->sq_ring->r.tail) + 1 != ctx->cached_sq_head)
mask |= EPOLLOUT | EPOLLWRNORM;
if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
mask |= EPOLLIN | EPOLLRDNORM;
return mask;
}
static int io_uring_fasync(int fd, struct file *file, int on)
{
struct io_ring_ctx *ctx = file->private_data;
return fasync_helper(fd, file, on, &ctx->cq_fasync);
}
static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
{
mutex_lock(&ctx->uring_lock);
percpu_ref_kill(&ctx->refs);
mutex_unlock(&ctx->uring_lock);
io_iopoll_reap_events(ctx);
wait_for_completion(&ctx->ctx_done);
io_ring_ctx_free(ctx);
}
static int io_uring_release(struct inode *inode, struct file *file)
{
struct io_ring_ctx *ctx = file->private_data;
file->private_data = NULL;
io_ring_ctx_wait_and_kill(ctx);
return 0;
}
static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
unsigned long sz = vma->vm_end - vma->vm_start;
struct io_ring_ctx *ctx = file->private_data;
unsigned long pfn;
struct page *page;
void *ptr;
switch (offset) {
case IORING_OFF_SQ_RING:
ptr = ctx->sq_ring;
break;
case IORING_OFF_SQES:
ptr = ctx->sq_sqes;
break;
case IORING_OFF_CQ_RING:
ptr = ctx->cq_ring;
break;
default:
return -EINVAL;
}
page = virt_to_head_page(ptr);
if (sz > (PAGE_SIZE << compound_order(page)))
return -EINVAL;
pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
}
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
u32, min_complete, u32, flags, const sigset_t __user *, sig,
size_t, sigsz)
{
struct io_ring_ctx *ctx;
long ret = -EBADF;
int submitted = 0;
struct fd f;
if (flags & ~IORING_ENTER_GETEVENTS)
return -EINVAL;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = -EOPNOTSUPP;
if (f.file->f_op != &io_uring_fops)
goto out_fput;
ret = -ENXIO;
ctx = f.file->private_data;
if (!percpu_ref_tryget(&ctx->refs))
goto out_fput;
ret = 0;
if (to_submit) {
to_submit = min(to_submit, ctx->sq_entries);
mutex_lock(&ctx->uring_lock);
submitted = io_ring_submit(ctx, to_submit);
mutex_unlock(&ctx->uring_lock);
if (submitted < 0)
goto out_ctx;
}
if (flags & IORING_ENTER_GETEVENTS) {
unsigned nr_events = 0;
min_complete = min(min_complete, ctx->cq_entries);
/*
* The application could have included the 'to_submit' count
* in how many events it wanted to wait for. If we failed to
* submit the desired count, we may need to adjust the number
* of events to poll/wait for.
*/
if (submitted < to_submit)
min_complete = min_t(unsigned, submitted, min_complete);
if (ctx->flags & IORING_SETUP_IOPOLL) {
mutex_lock(&ctx->uring_lock);
ret = io_iopoll_check(ctx, &nr_events, min_complete);
mutex_unlock(&ctx->uring_lock);
} else {
ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
}
}
out_ctx:
io_ring_drop_ctx_refs(ctx, 1);
out_fput:
fdput(f);
return submitted ? submitted : ret;
}
static const struct file_operations io_uring_fops = {
.release = io_uring_release,
.mmap = io_uring_mmap,
.poll = io_uring_poll,
.fasync = io_uring_fasync,
};
static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
struct io_uring_params *p)
{
struct io_sq_ring *sq_ring;
struct io_cq_ring *cq_ring;
size_t size;
sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
if (!sq_ring)
return -ENOMEM;
ctx->sq_ring = sq_ring;
sq_ring->ring_mask = p->sq_entries - 1;
sq_ring->ring_entries = p->sq_entries;
ctx->sq_mask = sq_ring->ring_mask;
ctx->sq_entries = sq_ring->ring_entries;
size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
if (size == SIZE_MAX)
return -EOVERFLOW;
ctx->sq_sqes = io_mem_alloc(size);
if (!ctx->sq_sqes) {
io_mem_free(ctx->sq_ring);
return -ENOMEM;
}
cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
if (!cq_ring) {
io_mem_free(ctx->sq_ring);
io_mem_free(ctx->sq_sqes);
return -ENOMEM;
}
ctx->cq_ring = cq_ring;
cq_ring->ring_mask = p->cq_entries - 1;
cq_ring->ring_entries = p->cq_entries;
ctx->cq_mask = cq_ring->ring_mask;
ctx->cq_entries = cq_ring->ring_entries;
return 0;
}
/*
* Allocate an anonymous fd, this is what constitutes the application
* visible backing of an io_uring instance. The application mmaps this
* fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
* we have to tie this fd to a socket for file garbage collection purposes.
*/
static int io_uring_get_fd(struct io_ring_ctx *ctx)
{
struct file *file;
int ret;
#if defined(CONFIG_UNIX)
ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
&ctx->ring_sock);
if (ret)
return ret;
#endif
ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
if (ret < 0)
goto err;
file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
O_RDWR | O_CLOEXEC);
if (IS_ERR(file)) {
put_unused_fd(ret);
ret = PTR_ERR(file);
goto err;
}
#if defined(CONFIG_UNIX)
ctx->ring_sock->file = file;
#endif
fd_install(ret, file);
return ret;
err:
#if defined(CONFIG_UNIX)
sock_release(ctx->ring_sock);
ctx->ring_sock = NULL;
#endif
return ret;
}
static int io_uring_create(unsigned entries, struct io_uring_params *p)
{
struct user_struct *user = NULL;
struct io_ring_ctx *ctx;
bool account_mem;
int ret;
if (!entries || entries > IORING_MAX_ENTRIES)
return -EINVAL;
/*
* Use twice as many entries for the CQ ring. It's possible for the
* application to drive a higher depth than the size of the SQ ring,
* since the sqes are only used at submission time. This allows for
* some flexibility in overcommitting a bit.
*/
p->sq_entries = roundup_pow_of_two(entries);
p->cq_entries = 2 * p->sq_entries;
user = get_uid(current_user());
account_mem = !capable(CAP_IPC_LOCK);
if (account_mem) {
ret = io_account_mem(user,
ring_pages(p->sq_entries, p->cq_entries));
if (ret) {
free_uid(user);
return ret;
}
}
ctx = io_ring_ctx_alloc(p);
if (!ctx) {
if (account_mem)
io_unaccount_mem(user, ring_pages(p->sq_entries,
p->cq_entries));
free_uid(user);
return -ENOMEM;
}
ctx->compat = in_compat_syscall();
ctx->account_mem = account_mem;
ctx->user = user;
ret = io_allocate_scq_urings(ctx, p);
if (ret)
goto err;
ret = io_sq_offload_start(ctx);
if (ret)
goto err;
ret = io_uring_get_fd(ctx);
if (ret < 0)
goto err;
memset(&p->sq_off, 0, sizeof(p->sq_off));
p->sq_off.head = offsetof(struct io_sq_ring, r.head);
p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
p->sq_off.flags = offsetof(struct io_sq_ring, flags);
p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
p->sq_off.array = offsetof(struct io_sq_ring, array);
memset(&p->cq_off, 0, sizeof(p->cq_off));
p->cq_off.head = offsetof(struct io_cq_ring, r.head);
p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
return ret;
err:
io_ring_ctx_wait_and_kill(ctx);
return ret;
}
/*
* Sets up an aio uring context, and returns the fd. Applications asks for a
* ring size, we return the actual sq/cq ring sizes (among other things) in the
* params structure passed in.
*/
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
{
struct io_uring_params p;
long ret;
int i;
if (copy_from_user(&p, params, sizeof(p)))
return -EFAULT;
for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
if (p.resv[i])
return -EINVAL;
}
if (p.flags & ~IORING_SETUP_IOPOLL)
return -EINVAL;
ret = io_uring_create(entries, &p);
if (ret < 0)
return ret;
if (copy_to_user(params, &p, sizeof(p)))
return -EFAULT;
return ret;
}
SYSCALL_DEFINE2(io_uring_setup, u32, entries,
struct io_uring_params __user *, params)
{
return io_uring_setup(entries, params);
}
static int __init io_uring_init(void)
{
req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
return 0;
};
__initcall(io_uring_init);