/*
* fs/f2fs/f2fs.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H
#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
#include <linux/kobject.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/bio.h>
#ifdef CONFIG_F2FS_CHECK_FS
#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
#define f2fs_down_write(x, y) down_write_nest_lock(x, y)
#else
#define f2fs_bug_on(sbi, condition) \
do { \
if (unlikely(condition)) { \
WARN_ON(1); \
set_sbi_flag(sbi, SBI_NEED_FSCK); \
} \
} while (0)
#define f2fs_down_write(x, y) down_write(x)
#endif
/*
* For mount options
*/
#define F2FS_MOUNT_BG_GC 0x00000001
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
#define F2FS_MOUNT_DISCARD 0x00000004
#define F2FS_MOUNT_NOHEAP 0x00000008
#define F2FS_MOUNT_XATTR_USER 0x00000010
#define F2FS_MOUNT_POSIX_ACL 0x00000020
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
#define F2FS_MOUNT_INLINE_XATTR 0x00000080
#define F2FS_MOUNT_INLINE_DATA 0x00000100
#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
#define F2FS_MOUNT_NOBARRIER 0x00000800
#define F2FS_MOUNT_FASTBOOT 0x00001000
#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
#define F2FS_MOUNT_FORCE_FG_GC 0x00004000
#define F2FS_MOUNT_DATA_FLUSH 0x00008000
#define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
#define ver_after(a, b) (typecheck(unsigned long long, a) && \
typecheck(unsigned long long, b) && \
((long long)((a) - (b)) > 0))
typedef u32 block_t; /*
* should not change u32, since it is the on-disk block
* address format, __le32.
*/
typedef u32 nid_t;
struct f2fs_mount_info {
unsigned int opt;
};
#define F2FS_FEATURE_ENCRYPT 0x0001
#define F2FS_HAS_FEATURE(sb, mask) \
((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
#define F2FS_SET_FEATURE(sb, mask) \
F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
#define F2FS_CLEAR_FEATURE(sb, mask) \
F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
#define CRCPOLY_LE 0xedb88320
static inline __u32 f2fs_crc32(void *buf, size_t len)
{
unsigned char *p = (unsigned char *)buf;
__u32 crc = F2FS_SUPER_MAGIC;
int i;
while (len--) {
crc ^= *p++;
for (i = 0; i < 8; i++)
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
}
return crc;
}
static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
{
return f2fs_crc32(buf, buf_size) == blk_crc;
}
/*
* For checkpoint manager
*/
enum {
NAT_BITMAP,
SIT_BITMAP
};
enum {
CP_UMOUNT,
CP_FASTBOOT,
CP_SYNC,
CP_RECOVERY,
CP_DISCARD,
};
#define DEF_BATCHED_TRIM_SECTIONS 32
#define BATCHED_TRIM_SEGMENTS(sbi) \
(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
#define BATCHED_TRIM_BLOCKS(sbi) \
(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
#define DEF_CP_INTERVAL 60 /* 60 secs */
struct cp_control {
int reason;
__u64 trim_start;
__u64 trim_end;
__u64 trim_minlen;
__u64 trimmed;
};
/*
* For CP/NAT/SIT/SSA readahead
*/
enum {
META_CP,
META_NAT,
META_SIT,
META_SSA,
META_POR,
};
/* for the list of ino */
enum {
ORPHAN_INO, /* for orphan ino list */
APPEND_INO, /* for append ino list */
UPDATE_INO, /* for update ino list */
MAX_INO_ENTRY, /* max. list */
};
struct ino_entry {
struct list_head list; /* list head */
nid_t ino; /* inode number */
};
/* for the list of inodes to be GCed */
struct inode_entry {
struct list_head list; /* list head */
struct inode *inode; /* vfs inode pointer */
};
/* for the list of blockaddresses to be discarded */
struct discard_entry {
struct list_head list; /* list head */
block_t blkaddr; /* block address to be discarded */
int len; /* # of consecutive blocks of the discard */
};
/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
struct list_head list; /* list head */
struct inode *inode; /* vfs inode pointer */
block_t blkaddr; /* block address locating the last fsync */
block_t last_dentry; /* block address locating the last dentry */
block_t last_inode; /* block address locating the last inode */
};
#define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
#define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
#define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
#define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
#define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
#define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
#define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
#define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
{
int before = nats_in_cursum(rs);
rs->n_nats = cpu_to_le16(before + i);
return before;
}
static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
{
int before = sits_in_cursum(rs);
rs->n_sits = cpu_to_le16(before + i);
return before;
}
static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
int type)
{
if (type == NAT_JOURNAL)
return size <= MAX_NAT_JENTRIES(sum);
return size <= MAX_SIT_JENTRIES(sum);
}
/*
* ioctl commands
*/
#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
#define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
#define F2FS_IOCTL_MAGIC 0xf5
#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
#define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
#define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
#define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
#define F2FS_IOC_SET_ENCRYPTION_POLICY \
_IOR('f', 19, struct f2fs_encryption_policy)
#define F2FS_IOC_GET_ENCRYPTION_PWSALT \
_IOW('f', 20, __u8[16])
#define F2FS_IOC_GET_ENCRYPTION_POLICY \
_IOW('f', 21, struct f2fs_encryption_policy)
/*
* should be same as XFS_IOC_GOINGDOWN.
* Flags for going down operation used by FS_IOC_GOINGDOWN
*/
#define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
#define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
#define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
#define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
#define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
/*
* ioctl commands in 32 bit emulation
*/
#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
#define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
#endif
struct f2fs_defragment {
u64 start;
u64 len;
};
/*
* For INODE and NODE manager
*/
/* for directory operations */
struct f2fs_str {
unsigned char *name;
u32 len;
};
struct f2fs_filename {
const struct qstr *usr_fname;
struct f2fs_str disk_name;
f2fs_hash_t hash;
#ifdef CONFIG_F2FS_FS_ENCRYPTION
struct f2fs_str crypto_buf;
#endif
};
#define FSTR_INIT(n, l) { .name = n, .len = l }
#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
#define fname_name(p) ((p)->disk_name.name)
#define fname_len(p) ((p)->disk_name.len)
struct f2fs_dentry_ptr {
struct inode *inode;
const void *bitmap;
struct f2fs_dir_entry *dentry;
__u8 (*filename)[F2FS_SLOT_LEN];
int max;
};
static inline void make_dentry_ptr(struct inode *inode,
struct f2fs_dentry_ptr *d, void *src, int type)
{
d->inode = inode;
if (type == 1) {
struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
d->max = NR_DENTRY_IN_BLOCK;
d->bitmap = &t->dentry_bitmap;
d->dentry = t->dentry;
d->filename = t->filename;
} else {
struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
d->max = NR_INLINE_DENTRY;
d->bitmap = &t->dentry_bitmap;
d->dentry = t->dentry;
d->filename = t->filename;
}
}
/*
* XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
* as its node offset to distinguish from index node blocks.
* But some bits are used to mark the node block.
*/
#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
>> OFFSET_BIT_SHIFT)
enum {
ALLOC_NODE, /* allocate a new node page if needed */
LOOKUP_NODE, /* look up a node without readahead */
LOOKUP_NODE_RA, /*
* look up a node with readahead called
* by get_data_block.
*/
};
#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
/* vector size for gang look-up from extent cache that consists of radix tree */
#define EXT_TREE_VEC_SIZE 64
/* for in-memory extent cache entry */
#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
/* number of extent info in extent cache we try to shrink */
#define EXTENT_CACHE_SHRINK_NUMBER 128
struct extent_info {
unsigned int fofs; /* start offset in a file */
u32 blk; /* start block address of the extent */
unsigned int len; /* length of the extent */
};
struct extent_node {
struct rb_node rb_node; /* rb node located in rb-tree */
struct list_head list; /* node in global extent list of sbi */
struct extent_info ei; /* extent info */
};
struct extent_tree {
nid_t ino; /* inode number */
struct rb_root root; /* root of extent info rb-tree */
struct extent_node *cached_en; /* recently accessed extent node */
struct extent_info largest; /* largested extent info */
rwlock_t lock; /* protect extent info rb-tree */
atomic_t refcount; /* reference count of rb-tree */
unsigned int count; /* # of extent node in rb-tree*/
};
/*
* This structure is taken from ext4_map_blocks.
*
* Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
*/
#define F2FS_MAP_NEW (1 << BH_New)
#define F2FS_MAP_MAPPED (1 << BH_Mapped)
#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
F2FS_MAP_UNWRITTEN)
struct f2fs_map_blocks {
block_t m_pblk;
block_t m_lblk;
unsigned int m_len;
unsigned int m_flags;
};
/* for flag in get_data_block */
#define F2FS_GET_BLOCK_READ 0
#define F2FS_GET_BLOCK_DIO 1
#define F2FS_GET_BLOCK_FIEMAP 2
#define F2FS_GET_BLOCK_BMAP 3
/*
* i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
*/
#define FADVISE_COLD_BIT 0x01
#define FADVISE_LOST_PINO_BIT 0x02
#define FADVISE_ENCRYPT_BIT 0x04
#define FADVISE_ENC_NAME_BIT 0x08
#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
/* Encryption algorithms */
#define F2FS_ENCRYPTION_MODE_INVALID 0
#define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
#define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
#define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
#define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
#include "f2fs_crypto.h"
#define DEF_DIR_LEVEL 0
struct f2fs_inode_info {
struct inode vfs_inode; /* serve a vfs inode */
unsigned long i_flags; /* keep an inode flags for ioctl */
unsigned char i_advise; /* use to give file attribute hints */
unsigned char i_dir_level; /* use for dentry level for large dir */
unsigned int i_current_depth; /* use only in directory structure */
unsigned int i_pino; /* parent inode number */
umode_t i_acl_mode; /* keep file acl mode temporarily */
/* Use below internally in f2fs*/
unsigned long flags; /* use to pass per-file flags */
struct rw_semaphore i_sem; /* protect fi info */
atomic_t dirty_pages; /* # of dirty pages */
f2fs_hash_t chash; /* hash value of given file name */
unsigned int clevel; /* maximum level of given file name */
nid_t i_xattr_nid; /* node id that contains xattrs */
unsigned long long xattr_ver; /* cp version of xattr modification */
struct list_head dirty_list; /* linked in global dirty list */
struct list_head inmem_pages; /* inmemory pages managed by f2fs */
struct mutex inmem_lock; /* lock for inmemory pages */
struct extent_tree *extent_tree; /* cached extent_tree entry */
#ifdef CONFIG_F2FS_FS_ENCRYPTION
/* Encryption params */
struct f2fs_crypt_info *i_crypt_info;
#endif
};
static inline void get_extent_info(struct extent_info *ext,
struct f2fs_extent i_ext)
{
ext->fofs = le32_to_cpu(i_ext.fofs);
ext->blk = le32_to_cpu(i_ext.blk);
ext->len = le32_to_cpu(i_ext.len);
}
static inline void set_raw_extent(struct extent_info *ext,
struct f2fs_extent *i_ext)
{
i_ext->fofs = cpu_to_le32(ext->fofs);
i_ext->blk = cpu_to_le32(ext->blk);
i_ext->len = cpu_to_le32(ext->len);
}
static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
u32 blk, unsigned int len)
{
ei->fofs = fofs;
ei->blk = blk;
ei->len = len;
}
static inline bool __is_extent_same(struct extent_info *ei1,
struct extent_info *ei2)
{
return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
ei1->len == ei2->len);
}
static inline bool __is_extent_mergeable(struct extent_info *back,
struct extent_info *front)
{
return (back->fofs + back->len == front->fofs &&
back->blk + back->len == front->blk);
}
static inline bool __is_back_mergeable(struct extent_info *cur,
struct extent_info *back)
{
return __is_extent_mergeable(back, cur);
}
static inline bool __is_front_mergeable(struct extent_info *cur,
struct extent_info *front)
{
return __is_extent_mergeable(cur, front);
}
static inline void __try_update_largest_extent(struct extent_tree *et,
struct extent_node *en)
{
if (en->ei.len > et->largest.len)
et->largest = en->ei;
}
struct f2fs_nm_info {
block_t nat_blkaddr; /* base disk address of NAT */
nid_t max_nid; /* maximum possible node ids */
nid_t available_nids; /* maximum available node ids */
nid_t next_scan_nid; /* the next nid to be scanned */
unsigned int ram_thresh; /* control the memory footprint */
unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
/* NAT cache management */
struct radix_tree_root nat_root;/* root of the nat entry cache */
struct radix_tree_root nat_set_root;/* root of the nat set cache */
struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
struct list_head nat_entries; /* cached nat entry list (clean) */
unsigned int nat_cnt; /* the # of cached nat entries */
unsigned int dirty_nat_cnt; /* total num of nat entries in set */
/* free node ids management */
struct radix_tree_root free_nid_root;/* root of the free_nid cache */
struct list_head free_nid_list; /* a list for free nids */
spinlock_t free_nid_list_lock; /* protect free nid list */
unsigned int fcnt; /* the number of free node id */
struct mutex build_lock; /* lock for build free nids */
/* for checkpoint */
char *nat_bitmap; /* NAT bitmap pointer */
int bitmap_size; /* bitmap size */
};
/*
* this structure is used as one of function parameters.
* all the information are dedicated to a given direct node block determined
* by the data offset in a file.
*/
struct dnode_of_data {
struct inode *inode; /* vfs inode pointer */
struct page *inode_page; /* its inode page, NULL is possible */
struct page *node_page; /* cached direct node page */
nid_t nid; /* node id of the direct node block */
unsigned int ofs_in_node; /* data offset in the node page */
bool inode_page_locked; /* inode page is locked or not */
bool node_changed; /* is node block changed */
block_t data_blkaddr; /* block address of the node block */
};
static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
struct page *ipage, struct page *npage, nid_t nid)
{
memset(dn, 0, sizeof(*dn));
dn->inode = inode;
dn->inode_page = ipage;
dn->node_page = npage;
dn->nid = nid;
}
/*
* For SIT manager
*
* By default, there are 6 active log areas across the whole main area.
* When considering hot and cold data separation to reduce cleaning overhead,
* we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
* respectively.
* In the current design, you should not change the numbers intentionally.
* Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
* logs individually according to the underlying devices. (default: 6)
* Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
* data and 8 for node logs.
*/
#define NR_CURSEG_DATA_TYPE (3)
#define NR_CURSEG_NODE_TYPE (3)
#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
enum {
CURSEG_HOT_DATA = 0, /* directory entry blocks */
CURSEG_WARM_DATA, /* data blocks */
CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
CURSEG_HOT_NODE, /* direct node blocks of directory files */
CURSEG_WARM_NODE, /* direct node blocks of normal files */
CURSEG_COLD_NODE, /* indirect node blocks */
NO_CHECK_TYPE,
CURSEG_DIRECT_IO, /* to use for the direct IO path */
};
struct flush_cmd {
struct completion wait;
struct llist_node llnode;
int ret;
};
struct flush_cmd_control {
struct task_struct *f2fs_issue_flush; /* flush thread */
wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
struct llist_head issue_list; /* list for command issue */
struct llist_node *dispatch_list; /* list for command dispatch */
};
struct f2fs_sm_info {
struct sit_info *sit_info; /* whole segment information */
struct free_segmap_info *free_info; /* free segment information */
struct dirty_seglist_info *dirty_info; /* dirty segment information */
struct curseg_info *curseg_array; /* active segment information */
block_t seg0_blkaddr; /* block address of 0'th segment */
block_t main_blkaddr; /* start block address of main area */
block_t ssa_blkaddr; /* start block address of SSA area */
unsigned int segment_count; /* total # of segments */
unsigned int main_segments; /* # of segments in main area */
unsigned int reserved_segments; /* # of reserved segments */
unsigned int ovp_segments; /* # of overprovision segments */
/* a threshold to reclaim prefree segments */
unsigned int rec_prefree_segments;
/* for small discard management */
struct list_head discard_list; /* 4KB discard list */
int nr_discards; /* # of discards in the list */
int max_discards; /* max. discards to be issued */
/* for batched trimming */
unsigned int trim_sections; /* # of sections to trim */
struct list_head sit_entry_set; /* sit entry set list */
unsigned int ipu_policy; /* in-place-update policy */
unsigned int min_ipu_util; /* in-place-update threshold */
unsigned int min_fsync_blocks; /* threshold for fsync */
/* for flush command control */
struct flush_cmd_control *cmd_control_info;
};
/*
* For superblock
*/
/*
* COUNT_TYPE for monitoring
*
* f2fs monitors the number of several block types such as on-writeback,
* dirty dentry blocks, dirty node blocks, and dirty meta blocks.
*/
enum count_type {
F2FS_WRITEBACK,
F2FS_DIRTY_DENTS,
F2FS_DIRTY_DATA,
F2FS_DIRTY_NODES,
F2FS_DIRTY_META,
F2FS_INMEM_PAGES,
NR_COUNT_TYPE,
};
/*
* The below are the page types of bios used in submit_bio().
* The available types are:
* DATA User data pages. It operates as async mode.
* NODE Node pages. It operates as async mode.
* META FS metadata pages such as SIT, NAT, CP.
* NR_PAGE_TYPE The number of page types.
* META_FLUSH Make sure the previous pages are written
* with waiting the bio's completion
* ... Only can be used with META.
*/
#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
enum page_type {
DATA,
NODE,
META,
NR_PAGE_TYPE,
META_FLUSH,
INMEM, /* the below types are used by tracepoints only. */
INMEM_DROP,
IPU,
OPU,
};
struct f2fs_io_info {
struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
block_t blk_addr; /* block address to be written */
struct page *page; /* page to be written */
struct page *encrypted_page; /* encrypted page */
};
#define is_read_io(rw) (((rw) & 1) == READ)
struct f2fs_bio_info {
struct f2fs_sb_info *sbi; /* f2fs superblock */
struct bio *bio; /* bios to merge */
sector_t last_block_in_bio; /* last block number */
struct f2fs_io_info fio; /* store buffered io info. */
struct rw_semaphore io_rwsem; /* blocking op for bio */
};
enum inode_type {
DIR_INODE, /* for dirty dir inode */
FILE_INODE, /* for dirty regular/symlink inode */
NR_INODE_TYPE,
};
/* for inner inode cache management */
struct inode_management {
struct radix_tree_root ino_root; /* ino entry array */
spinlock_t ino_lock; /* for ino entry lock */
struct list_head ino_list; /* inode list head */
unsigned long ino_num; /* number of entries */
};
/* For s_flag in struct f2fs_sb_info */
enum {
SBI_IS_DIRTY, /* dirty flag for checkpoint */
SBI_IS_CLOSE, /* specify unmounting */
SBI_NEED_FSCK, /* need fsck.f2fs to fix */
SBI_POR_DOING, /* recovery is doing or not */
};
struct f2fs_sb_info {
struct super_block *sb; /* pointer to VFS super block */
struct proc_dir_entry *s_proc; /* proc entry */
struct f2fs_super_block *raw_super; /* raw super block pointer */
int valid_super_block; /* valid super block no */
int s_flag; /* flags for sbi */
/* for node-related operations */
struct f2fs_nm_info *nm_info; /* node manager */
struct inode *node_inode; /* cache node blocks */
/* for segment-related operations */
struct f2fs_sm_info *sm_info; /* segment manager */
/* for bio operations */
struct f2fs_bio_info read_io; /* for read bios */
struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
/* for checkpoint */
struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
struct inode *meta_inode; /* cache meta blocks */
struct mutex cp_mutex; /* checkpoint procedure lock */
struct rw_semaphore cp_rwsem; /* blocking FS operations */
struct rw_semaphore node_write; /* locking node writes */
struct mutex writepages; /* mutex for writepages() */
wait_queue_head_t cp_wait;
long cp_expires, cp_interval; /* next expected periodic cp */
struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
/* for orphan inode, use 0'th array */
unsigned int max_orphans; /* max orphan inodes */
/* for inode management */
struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
/* for extent tree cache */
struct radix_tree_root extent_tree_root;/* cache extent cache entries */
struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
struct list_head extent_list; /* lru list for shrinker */
spinlock_t extent_lock; /* locking extent lru list */
atomic_t total_ext_tree; /* extent tree count */
atomic_t total_zombie_tree; /* extent zombie tree count */
atomic_t total_ext_node; /* extent info count */
/* basic filesystem units */
unsigned int log_sectors_per_block; /* log2 sectors per block */
unsigned int log_blocksize; /* log2 block size */
unsigned int blocksize; /* block size */
unsigned int root_ino_num; /* root inode number*/
unsigned int node_ino_num; /* node inode number*/
unsigned int meta_ino_num; /* meta inode number*/
unsigned int log_blocks_per_seg; /* log2 blocks per segment */
unsigned int blocks_per_seg; /* blocks per segment */
unsigned int segs_per_sec; /* segments per section */
unsigned int secs_per_zone; /* sections per zone */
unsigned int total_sections; /* total section count */
unsigned int total_node_count; /* total node block count */
unsigned int total_valid_node_count; /* valid node block count */
unsigned int total_valid_inode_count; /* valid inode count */
int active_logs; /* # of active logs */
int dir_level; /* directory level */
block_t user_block_count; /* # of user blocks */
block_t total_valid_block_count; /* # of valid blocks */
block_t alloc_valid_block_count; /* # of allocated blocks */
block_t discard_blks; /* discard command candidats */
block_t last_valid_block_count; /* for recovery */
u32 s_next_generation; /* for NFS support */
atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
struct f2fs_mount_info mount_opt; /* mount options */
/* for cleaning operations */
struct mutex gc_mutex; /* mutex for GC */
struct f2fs_gc_kthread *gc_thread; /* GC thread */
unsigned int cur_victim_sec; /* current victim section num */
/* maximum # of trials to find a victim segment for SSR and GC */
unsigned int max_victim_search;
/*
* for stat information.
* one is for the LFS mode, and the other is for the SSR mode.
*/
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info *stat_info; /* FS status information */
unsigned int segment_count[2]; /* # of allocated segments */
unsigned int block_count[2]; /* # of allocated blocks */
atomic_t inplace_count; /* # of inplace update */
atomic64_t total_hit_ext; /* # of lookup extent cache */
atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
atomic64_t read_hit_largest; /* # of hit largest extent node */
atomic64_t read_hit_cached; /* # of hit cached extent node */
atomic_t inline_xattr; /* # of inline_xattr inodes */
atomic_t inline_inode; /* # of inline_data inodes */
atomic_t inline_dir; /* # of inline_dentry inodes */
int bg_gc; /* background gc calls */
unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
#endif
unsigned int last_victim[2]; /* last victim segment # */
spinlock_t stat_lock; /* lock for stat operations */
/* For sysfs suppport */
struct kobject s_kobj;
struct completion s_kobj_unregister;
/* For shrinker support */
struct list_head s_list;
struct mutex umount_mutex;
unsigned int shrinker_run_no;
};
/*
* Inline functions
*/
static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
return container_of(inode, struct f2fs_inode_info, vfs_inode);
}
static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
{
return F2FS_SB(inode->i_sb);
}
static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
{
return F2FS_I_SB(mapping->host);
}
static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
{
return F2FS_M_SB(page->mapping);
}
static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
return (struct f2fs_super_block *)(sbi->raw_super);
}
static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_checkpoint *)(sbi->ckpt);
}
static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
return (struct f2fs_node *)page_address(page);
}
static inline struct f2fs_inode *F2FS_INODE(struct page *page)
{
return &((struct f2fs_node *)page_address(page))->i;
}
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_nm_info *)(sbi->nm_info);
}
static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_sm_info *)(sbi->sm_info);
}
static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
return (struct sit_info *)(SM_I(sbi)->sit_info);
}
static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}
static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}
static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->meta_inode->i_mapping;
}
static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->node_inode->i_mapping;
}
static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
{
return sbi->s_flag & (0x01 << type);
}
static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
sbi->s_flag |= (0x01 << type);
}
static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
sbi->s_flag &= ~(0x01 << type);
}
static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
return le64_to_cpu(cp->checkpoint_ver);
}
static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
return ckpt_flags & f;
}
static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
ckpt_flags |= f;
cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}
static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
ckpt_flags &= (~f);
cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}
static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
{
down_read(&sbi->cp_rwsem);
}
static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
{
up_read(&sbi->cp_rwsem);
}
static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
{
f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
}
static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
{
up_write(&sbi->cp_rwsem);
}
static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
{
int reason = CP_SYNC;
if (test_opt(sbi, FASTBOOT))
reason = CP_FASTBOOT;
if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
reason = CP_UMOUNT;
return reason;
}
static inline bool __remain_node_summaries(int reason)
{
return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
}
static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
{
return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
}
/*
* Check whether the given nid is within node id range.
*/
static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
{
if (unlikely(nid < F2FS_ROOT_INO(sbi)))
return -EINVAL;
if (unlikely(nid >= NM_I(sbi)->max_nid))
return -EINVAL;
return 0;
}
#define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
/*
* Check whether the inode has blocks or not
*/
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
if (F2FS_I(inode)->i_xattr_nid)
return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
else
return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
}
static inline bool f2fs_has_xattr_block(unsigned int ofs)
{
return ofs == XATTR_NODE_OFFSET;
}
static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
struct inode *inode, blkcnt_t count)
{
block_t valid_block_count;
spin_lock(&sbi->stat_lock);
valid_block_count =
sbi->total_valid_block_count + (block_t)count;
if (unlikely(valid_block_count > sbi->user_block_count)) {
spin_unlock(&sbi->stat_lock);
return false;
}
inode->i_blocks += count;
sbi->total_valid_block_count = valid_block_count;
sbi->alloc_valid_block_count += (block_t)count;
spin_unlock(&sbi->stat_lock);
return true;
}
static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
struct inode *inode,
blkcnt_t count)
{
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
f2fs_bug_on(sbi, inode->i_blocks < count);
inode->i_blocks -= count;
sbi->total_valid_block_count -= (block_t)count;
spin_unlock(&sbi->stat_lock);
}
static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
atomic_inc(&sbi->nr_pages[count_type]);
set_sbi_flag(sbi, SBI_IS_DIRTY);
}
static inline void inode_inc_dirty_pages(struct inode *inode)
{
atomic_inc(&F2FS_I(inode)->dirty_pages);
inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
}
static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
atomic_dec(&sbi->nr_pages[count_type]);
}
static inline void inode_dec_dirty_pages(struct inode *inode)
{
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
atomic_dec(&F2FS_I(inode)->dirty_pages);
dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
}
static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
{
return atomic_read(&sbi->nr_pages[count_type]);
}
static inline int get_dirty_pages(struct inode *inode)
{
return atomic_read(&F2FS_I(inode)->dirty_pages);
}
static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
{
unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
return ((get_pages(sbi, block_type) + pages_per_sec - 1)
>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
}
static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_block_count;
}
static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
/* return NAT or SIT bitmap */
if (flag == NAT_BITMAP)
return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
else if (flag == SIT_BITMAP)
return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
return 0;
}
static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
}
static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
int offset;
if (__cp_payload(sbi) > 0) {
if (flag == NAT_BITMAP)
return &ckpt->sit_nat_version_bitmap;
else
return (unsigned char *)ckpt + F2FS_BLKSIZE;
} else {
offset = (flag == NAT_BITMAP) ?
le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
return &ckpt->sit_nat_version_bitmap + offset;
}
}
static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr;
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_version = cur_cp_version(ckpt);
start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
/*
* odd numbered checkpoint should at cp segment 0
* and even segment must be at cp segment 1
*/
if (!(ckpt_version & 1))
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
struct inode *inode)
{
block_t valid_block_count;
unsigned int valid_node_count;
spin_lock(&sbi->stat_lock);
valid_block_count = sbi->total_valid_block_count + 1;
if (unlikely(valid_block_count > sbi->user_block_count)) {
spin_unlock(&sbi->stat_lock);
return false;
}
valid_node_count = sbi->total_valid_node_count + 1;
if (unlikely(valid_node_count > sbi->total_node_count)) {
spin_unlock(&sbi->stat_lock);
return false;
}
if (inode)
inode->i_blocks++;
sbi->alloc_valid_block_count++;
sbi->total_valid_node_count++;
sbi->total_valid_block_count++;
spin_unlock(&sbi->stat_lock);
return true;
}
static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
struct inode *inode)
{
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, !sbi->total_valid_block_count);
f2fs_bug_on(sbi, !sbi->total_valid_node_count);
f2fs_bug_on(sbi, !inode->i_blocks);
inode->i_blocks--;
sbi->total_valid_node_count--;
sbi->total_valid_block_count--;
spin_unlock(&sbi->stat_lock);
}
static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_node_count;
}
static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
sbi->total_valid_inode_count++;
spin_unlock(&sbi->stat_lock);
}
static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
{
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
sbi->total_valid_inode_count--;
spin_unlock(&sbi->stat_lock);
}
static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_inode_count;
}
static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
pgoff_t index, bool for_write)
{
if (!for_write)
return grab_cache_page(mapping, index);
return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
}
static inline void f2fs_copy_page(struct page *src, struct page *dst)
{
char *src_kaddr = kmap(src);
char *dst_kaddr = kmap(dst);
memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
kunmap(dst);
kunmap(src);
}
static inline void f2fs_put_page(struct page *page, int unlock)
{
if (!page)
return;
if (unlock) {
f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
unlock_page(page);
}
page_cache_release(page);
}
static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
if (dn->node_page)
f2fs_put_page(dn->node_page, 1);
if (dn->inode_page && dn->node_page != dn->inode_page)
f2fs_put_page(dn->inode_page, 0);
dn->node_page = NULL;
dn->inode_page = NULL;
}
static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
size_t size)
{
return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
}
static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
gfp_t flags)
{
void *entry;
entry = kmem_cache_alloc(cachep, flags);
if (!entry)
entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
return entry;
}
static inline struct bio *f2fs_bio_alloc(int npages)
{
struct bio *bio;
/* No failure on bio allocation */
bio = bio_alloc(GFP_NOIO, npages);
if (!bio)
bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
return bio;
}
static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)
{
while (radix_tree_insert(root, index, item))
cond_resched();
}
#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
static inline bool IS_INODE(struct page *page)
{
struct f2fs_node *p = F2FS_NODE(page);
return RAW_IS_INODE(p);
}
static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}
static inline block_t datablock_addr(struct page *node_page,
unsigned int offset)
{
struct f2fs_node *raw_node;
__le32 *addr_array;
raw_node = F2FS_NODE(node_page);
addr_array = blkaddr_in_node(raw_node);
return le32_to_cpu(addr_array[offset]);
}
static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
return mask & *addr;
}
static inline void f2fs_set_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
*addr |= mask;
}
static inline void f2fs_clear_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
*addr &= ~mask;
}
static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr |= mask;
return ret;
}
static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr &= ~mask;
return ret;
}
static inline void f2fs_change_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
*addr ^= mask;
}
/* used for f2fs_inode_info->flags */
enum {
FI_NEW_INODE, /* indicate newly allocated inode */
FI_DIRTY_INODE, /* indicate inode is dirty or not */
FI_DIRTY_DIR, /* indicate directory has dirty pages */
FI_INC_LINK, /* need to increment i_nlink */
FI_ACL_MODE, /* indicate acl mode */
FI_NO_ALLOC, /* should not allocate any blocks */
FI_FREE_NID, /* free allocated nide */
FI_UPDATE_DIR, /* should update inode block for consistency */
FI_DELAY_IPUT, /* used for the recovery */
FI_NO_EXTENT, /* not to use the extent cache */
FI_INLINE_XATTR, /* used for inline xattr */
FI_INLINE_DATA, /* used for inline data*/
FI_INLINE_DENTRY, /* used for inline dentry */
FI_APPEND_WRITE, /* inode has appended data */
FI_UPDATE_WRITE, /* inode has in-place-update data */
FI_NEED_IPU, /* used for ipu per file */
FI_ATOMIC_FILE, /* indicate atomic file */
FI_VOLATILE_FILE, /* indicate volatile file */
FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
FI_DROP_CACHE, /* drop dirty page cache */
FI_DATA_EXIST, /* indicate data exists */
FI_INLINE_DOTS, /* indicate inline dot dentries */
FI_DO_DEFRAG, /* indicate defragment is running */
FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
};
static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
{
if (!test_bit(flag, &fi->flags))
set_bit(flag, &fi->flags);
}
static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
{
return test_bit(flag, &fi->flags);
}
static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
if (test_bit(flag, &fi->flags))
clear_bit(flag, &fi->flags);
}
static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
{
fi->i_acl_mode = mode;
set_inode_flag(fi, FI_ACL_MODE);
}
static inline void get_inline_info(struct f2fs_inode_info *fi,
struct f2fs_inode *ri)
{
if (ri->i_inline & F2FS_INLINE_XATTR)
set_inode_flag(fi, FI_INLINE_XATTR);
if (ri->i_inline & F2FS_INLINE_DATA)
set_inode_flag(fi, FI_INLINE_DATA);
if (ri->i_inline & F2FS_INLINE_DENTRY)
set_inode_flag(fi, FI_INLINE_DENTRY);
if (ri->i_inline & F2FS_DATA_EXIST)
set_inode_flag(fi, FI_DATA_EXIST);
if (ri->i_inline & F2FS_INLINE_DOTS)
set_inode_flag(fi, FI_INLINE_DOTS);
}
static inline void set_raw_inline(struct f2fs_inode_info *fi,
struct f2fs_inode *ri)
{
ri->i_inline = 0;
if (is_inode_flag_set(fi, FI_INLINE_XATTR))
ri->i_inline |= F2FS_INLINE_XATTR;
if (is_inode_flag_set(fi, FI_INLINE_DATA))
ri->i_inline |= F2FS_INLINE_DATA;
if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
ri->i_inline |= F2FS_INLINE_DENTRY;
if (is_inode_flag_set(fi, FI_DATA_EXIST))
ri->i_inline |= F2FS_DATA_EXIST;
if (is_inode_flag_set(fi, FI_INLINE_DOTS))
ri->i_inline |= F2FS_INLINE_DOTS;
}
static inline int f2fs_has_inline_xattr(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
}
static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
{
if (f2fs_has_inline_xattr(&fi->vfs_inode))
return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
return DEF_ADDRS_PER_INODE;
}
static inline void *inline_xattr_addr(struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
F2FS_INLINE_XATTR_ADDRS]);
}
static inline int inline_xattr_size(struct inode *inode)
{
if (f2fs_has_inline_xattr(inode))
return F2FS_INLINE_XATTR_ADDRS << 2;
else
return 0;
}
static inline int f2fs_has_inline_data(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
}
static inline void f2fs_clear_inline_inode(struct inode *inode)
{
clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
}
static inline int f2fs_exist_data(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
}
static inline int f2fs_has_inline_dots(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
}
static inline bool f2fs_is_atomic_file(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
}
static inline bool f2fs_is_volatile_file(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
}
static inline bool f2fs_is_first_block_written(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
}
static inline bool f2fs_is_drop_cache(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
}
static inline void *inline_data_addr(struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
return (void *)&(ri->i_addr[1]);
}
static inline int f2fs_has_inline_dentry(struct inode *inode)
{
return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
}
static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
{
if (!f2fs_has_inline_dentry(dir))
kunmap(page);
}
static inline int is_file(struct inode *inode, int type)
{
return F2FS_I(inode)->i_advise & type;
}
static inline void set_file(struct inode *inode, int type)
{
F2FS_I(inode)->i_advise |= type;
}
static inline void clear_file(struct inode *inode, int type)
{
F2FS_I(inode)->i_advise &= ~type;
}
static inline int f2fs_readonly(struct super_block *sb)
{
return sb->s_flags & MS_RDONLY;
}
static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
{
return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
}
static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
{
set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
sbi->sb->s_flags |= MS_RDONLY;
}
static inline bool is_dot_dotdot(const struct qstr *str)
{
if (str->len == 1 && str->name[0] == '.')
return true;
if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
return true;
return false;
}
static inline bool f2fs_may_extent_tree(struct inode *inode)
{
mode_t mode = inode->i_mode;
if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
return false;
return S_ISREG(mode);
}
static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
{
void *ret;
ret = kmalloc(size, flags | __GFP_NOWARN);
if (!ret)
ret = __vmalloc(size, flags, PAGE_KERNEL);
return ret;
}
static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
{
void *ret;
ret = kzalloc(size, flags | __GFP_NOWARN);
if (!ret)
ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
return ret;
}
#define get_inode_mode(i) \
((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
(F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
/* get offset of first page in next direct node */
#define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
/*
* file.c
*/
int f2fs_sync_file(struct file *, loff_t, loff_t, int);
void truncate_data_blocks(struct dnode_of_data *);
int truncate_blocks(struct inode *, u64, bool);
int f2fs_truncate(struct inode *, bool);
int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
int f2fs_setattr(struct dentry *, struct iattr *);
int truncate_hole(struct inode *, pgoff_t, pgoff_t);
int truncate_data_blocks_range(struct dnode_of_data *, int);
long f2fs_ioctl(struct file *, unsigned int, unsigned long);
long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
/*
* inode.c
*/
void f2fs_set_inode_flags(struct inode *);
struct inode *f2fs_iget(struct super_block *, unsigned long);
int try_to_free_nats(struct f2fs_sb_info *, int);
void update_inode(struct inode *, struct page *);
void update_inode_page(struct inode *);
int f2fs_write_inode(struct inode *, struct writeback_control *);
void f2fs_evict_inode(struct inode *);
void handle_failed_inode(struct inode *);
/*
* namei.c
*/
struct dentry *f2fs_get_parent(struct dentry *child);
/*
* dir.c
*/
extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
void set_de_type(struct f2fs_dir_entry *, umode_t);
struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
unsigned int, struct f2fs_str *);
void do_make_empty_dir(struct inode *, struct inode *,
struct f2fs_dentry_ptr *);
struct page *init_inode_metadata(struct inode *, struct inode *,
const struct qstr *, struct page *);
void update_parent_metadata(struct inode *, struct inode *, unsigned int);
int room_for_filename(const void *, int, int);
void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
struct page **);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
struct page *, struct inode *);
int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
const struct qstr *, f2fs_hash_t , unsigned int);
int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
umode_t);
void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
struct inode *);
int f2fs_do_tmpfile(struct inode *, struct inode *);
bool f2fs_empty_dir(struct inode *);
static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
inode, inode->i_ino, inode->i_mode);
}
/*
* super.c
*/
int f2fs_commit_super(struct f2fs_sb_info *, bool);
loff_t max_file_size(unsigned bits);
int f2fs_sync_fs(struct super_block *, int);
extern __printf(3, 4)
void f2fs_msg(struct super_block *, const char *, const char *, ...);
/*
* hash.c
*/
f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
/*
* node.c
*/
struct dnode_of_data;
struct node_info;
bool available_free_memory(struct f2fs_sb_info *, int);
int need_dentry_mark(struct f2fs_sb_info *, nid_t);
bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
int truncate_inode_blocks(struct inode *, pgoff_t);
int truncate_xattr_node(struct inode *, struct page *);
int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
int remove_inode_page(struct inode *);
struct page *new_inode_page(struct inode *);
struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
void ra_node_page(struct f2fs_sb_info *, nid_t);
struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_node_page_ra(struct page *, int);
void sync_inode_page(struct dnode_of_data *);
int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
bool alloc_nid(struct f2fs_sb_info *, nid_t *);
void alloc_nid_done(struct f2fs_sb_info *, nid_t);
void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
int try_to_free_nids(struct f2fs_sb_info *, int);
void recover_inline_xattr(struct inode *, struct page *);
void recover_xattr_data(struct inode *, struct page *, block_t);
int recover_inode_page(struct f2fs_sb_info *, struct page *);
int restore_node_summary(struct f2fs_sb_info *, unsigned int,
struct f2fs_summary_block *);
void flush_nat_entries(struct f2fs_sb_info *);
int build_node_manager(struct f2fs_sb_info *);
void destroy_node_manager(struct f2fs_sb_info *);
int __init create_node_manager_caches(void);
void destroy_node_manager_caches(void);
/*
* segment.c
*/
void register_inmem_page(struct inode *, struct page *);
int commit_inmem_pages(struct inode *, bool);
void f2fs_balance_fs(struct f2fs_sb_info *);
void f2fs_balance_fs_bg(struct f2fs_sb_info *);
int f2fs_issue_flush(struct f2fs_sb_info *);
int create_flush_cmd_control(struct f2fs_sb_info *);
void destroy_flush_cmd_control(struct f2fs_sb_info *);
void invalidate_blocks(struct f2fs_sb_info *, block_t);
bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
void release_discard_addrs(struct f2fs_sb_info *);
bool discard_next_dnode(struct f2fs_sb_info *, block_t);
int npages_for_summary_flush(struct f2fs_sb_info *, bool);
void allocate_new_segments(struct f2fs_sb_info *);
int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
void update_meta_page(struct f2fs_sb_info *, void *, block_t);
void write_meta_page(struct f2fs_sb_info *, struct page *);
void write_node_page(unsigned int, struct f2fs_io_info *);
void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
void rewrite_data_page(struct f2fs_io_info *);
void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
block_t, block_t, unsigned char, bool);
void allocate_data_block(struct f2fs_sb_info *, struct page *,
block_t, block_t *, struct f2fs_summary *, int);
void f2fs_wait_on_page_writeback(struct page *, enum page_type);
void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
void write_data_summaries(struct f2fs_sb_info *, block_t);
void write_node_summaries(struct f2fs_sb_info *, block_t);
int lookup_journal_in_cursum(struct f2fs_summary_block *,
int, unsigned int, int);
void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
int build_segment_manager(struct f2fs_sb_info *);
void destroy_segment_manager(struct f2fs_sb_info *);
int __init create_segment_manager_caches(void);
void destroy_segment_manager_caches(void);
/*
* checkpoint.c
*/
struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
void release_ino_entry(struct f2fs_sb_info *);
bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
int acquire_orphan_inode(struct f2fs_sb_info *);
void release_orphan_inode(struct f2fs_sb_info *);
void add_orphan_inode(struct f2fs_sb_info *, nid_t);
void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
int recover_orphan_inodes(struct f2fs_sb_info *);
int get_valid_checkpoint(struct f2fs_sb_info *);
void update_dirty_page(struct inode *, struct page *);
void add_dirty_dir_inode(struct inode *);
void remove_dirty_inode(struct inode *);
int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
void init_ino_entry_info(struct f2fs_sb_info *);
int __init create_checkpoint_caches(void);
void destroy_checkpoint_caches(void);
/*
* data.c
*/
void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
int f2fs_submit_page_bio(struct f2fs_io_info *);
void f2fs_submit_page_mbio(struct f2fs_io_info *);
void set_data_blkaddr(struct dnode_of_data *);
int reserve_new_block(struct dnode_of_data *);
int f2fs_get_block(struct dnode_of_data *, pgoff_t);
int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
struct page *find_data_page(struct inode *, pgoff_t);
struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
int do_write_data_page(struct f2fs_io_info *);
int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
int f2fs_release_page(struct page *, gfp_t);
/*
* gc.c
*/
int start_gc_thread(struct f2fs_sb_info *);
void stop_gc_thread(struct f2fs_sb_info *);
block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
int f2fs_gc(struct f2fs_sb_info *, bool);
void build_gc_manager(struct f2fs_sb_info *);
/*
* recovery.c
*/
int recover_fsync_data(struct f2fs_sb_info *);
bool space_for_roll_forward(struct f2fs_sb_info *);
/*
* debug.c
*/
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info {
struct list_head stat_list;
struct f2fs_sb_info *sbi;
int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
int main_area_segs, main_area_sections, main_area_zones;
unsigned long long hit_largest, hit_cached, hit_rbtree;
unsigned long long hit_total, total_ext;
int ext_tree, zombie_tree, ext_node;
int ndirty_node, ndirty_meta;
int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
int nats, dirty_nats, sits, dirty_sits, fnids;
int total_count, utilization;
int bg_gc, inmem_pages, wb_pages;
int inline_xattr, inline_inode, inline_dir;
unsigned int valid_count, valid_node_count, valid_inode_count;
unsigned int bimodal, avg_vblocks;
int util_free, util_valid, util_invalid;
int rsvd_segs, overp_segs;
int dirty_count, node_pages, meta_pages;
int prefree_count, call_count, cp_count;
int tot_segs, node_segs, data_segs, free_segs, free_secs;
int bg_node_segs, bg_data_segs;
int tot_blks, data_blks, node_blks;
int bg_data_blks, bg_node_blks;
int curseg[NR_CURSEG_TYPE];
int cursec[NR_CURSEG_TYPE];
int curzone[NR_CURSEG_TYPE];
unsigned int segment_count[2];
unsigned int block_count[2];
unsigned int inplace_count;
unsigned long long base_mem, cache_mem, page_mem;
};
static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_stat_info *)sbi->stat_info;
}
#define stat_inc_cp_count(si) ((si)->cp_count++)
#define stat_inc_call_count(si) ((si)->call_count++)
#define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
#define stat_inc_inline_xattr(inode) \
do { \
if (f2fs_has_inline_xattr(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
} while (0)
#define stat_dec_inline_xattr(inode) \
do { \
if (f2fs_has_inline_xattr(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
} while (0)
#define stat_inc_inline_inode(inode) \
do { \
if (f2fs_has_inline_data(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
} while (0)
#define stat_dec_inline_inode(inode) \
do { \
if (f2fs_has_inline_data(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
} while (0)
#define stat_inc_inline_dir(inode) \
do { \
if (f2fs_has_inline_dentry(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
} while (0)
#define stat_dec_inline_dir(inode) \
do { \
if (f2fs_has_inline_dentry(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
} while (0)
#define stat_inc_seg_type(sbi, curseg) \
((sbi)->segment_count[(curseg)->alloc_type]++)
#define stat_inc_block_count(sbi, curseg) \
((sbi)->block_count[(curseg)->alloc_type]++)
#define stat_inc_inplace_blocks(sbi) \
(atomic_inc(&(sbi)->inplace_count))
#define stat_inc_seg_count(sbi, type, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
(si)->tot_segs++; \
if (type == SUM_TYPE_DATA) { \
si->data_segs++; \
si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
} else { \
si->node_segs++; \
si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
} \
} while (0)
#define stat_inc_tot_blk_count(si, blks) \
(si->tot_blks += (blks))
#define stat_inc_data_blk_count(sbi, blks, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->data_blks += (blks); \
si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
} while (0)
#define stat_inc_node_blk_count(sbi, blks, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->node_blks += (blks); \
si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
} while (0)
int f2fs_build_stats(struct f2fs_sb_info *);
void f2fs_destroy_stats(struct f2fs_sb_info *);
int __init f2fs_create_root_stats(void);
void f2fs_destroy_root_stats(void);
#else
#define stat_inc_cp_count(si)
#define stat_inc_call_count(si)
#define stat_inc_bggc_count(si)
#define stat_inc_dirty_inode(sbi, type)
#define stat_dec_dirty_inode(sbi, type)
#define stat_inc_total_hit(sb)
#define stat_inc_rbtree_node_hit(sb)
#define stat_inc_largest_node_hit(sbi)
#define stat_inc_cached_node_hit(sbi)
#define stat_inc_inline_xattr(inode)
#define stat_dec_inline_xattr(inode)
#define stat_inc_inline_inode(inode)
#define stat_dec_inline_inode(inode)
#define stat_inc_inline_dir(inode)
#define stat_dec_inline_dir(inode)
#define stat_inc_seg_type(sbi, curseg)
#define stat_inc_block_count(sbi, curseg)
#define stat_inc_inplace_blocks(sbi)
#define stat_inc_seg_count(sbi, type, gc_type)
#define stat_inc_tot_blk_count(si, blks)
#define stat_inc_data_blk_count(sbi, blks, gc_type)
#define stat_inc_node_blk_count(sbi, blks, gc_type)
static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
static inline int __init f2fs_create_root_stats(void) { return 0; }
static inline void f2fs_destroy_root_stats(void) { }
#endif
extern const struct file_operations f2fs_dir_operations;
extern const struct file_operations f2fs_file_operations;
extern const struct inode_operations f2fs_file_inode_operations;
extern const struct address_space_operations f2fs_dblock_aops;
extern const struct address_space_operations f2fs_node_aops;
extern const struct address_space_operations f2fs_meta_aops;
extern const struct inode_operations f2fs_dir_inode_operations;
extern const struct inode_operations f2fs_symlink_inode_operations;
extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
extern const struct inode_operations f2fs_special_inode_operations;
extern struct kmem_cache *inode_entry_slab;
/*
* inline.c
*/
bool f2fs_may_inline_data(struct inode *);
bool f2fs_may_inline_dentry(struct inode *);
void read_inline_data(struct page *, struct page *);
bool truncate_inline_inode(struct page *, u64);
int f2fs_read_inline_data(struct inode *, struct page *);
int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
int f2fs_convert_inline_inode(struct inode *);
int f2fs_write_inline_data(struct inode *, struct page *);
bool recover_inline_data(struct inode *, struct page *);
struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
struct f2fs_filename *, struct page **);
struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
nid_t, umode_t);
void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
struct inode *, struct inode *);
bool f2fs_empty_inline_dir(struct inode *);
int f2fs_read_inline_dir(struct file *, struct dir_context *,
struct f2fs_str *);
int f2fs_inline_data_fiemap(struct inode *,
struct fiemap_extent_info *, __u64, __u64);
/*
* shrinker.c
*/
unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
void f2fs_join_shrinker(struct f2fs_sb_info *);
void f2fs_leave_shrinker(struct f2fs_sb_info *);
/*
* extent_cache.c
*/
unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
unsigned int f2fs_destroy_extent_node(struct inode *);
void f2fs_destroy_extent_tree(struct inode *);
bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
void f2fs_update_extent_cache(struct dnode_of_data *);
void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
pgoff_t, block_t, unsigned int);
void init_extent_cache_info(struct f2fs_sb_info *);
int __init create_extent_cache(void);
void destroy_extent_cache(void);
/*
* crypto support
*/
static inline int f2fs_encrypted_inode(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
return file_is_encrypt(inode);
#else
return 0;
#endif
}
static inline void f2fs_set_encrypted_inode(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
file_set_encrypt(inode);
#endif
}
static inline bool f2fs_bio_encrypted(struct bio *bio)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
return unlikely(bio->bi_private != NULL);
#else
return false;
#endif
}
static inline int f2fs_sb_has_crypto(struct super_block *sb)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
#else
return 0;
#endif
}
static inline bool f2fs_may_encrypt(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
mode_t mode = inode->i_mode;
return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
#else
return 0;
#endif
}
/* crypto_policy.c */
int f2fs_is_child_context_consistent_with_parent(struct inode *,
struct inode *);
int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
/* crypt.c */
extern struct kmem_cache *f2fs_crypt_info_cachep;
bool f2fs_valid_contents_enc_mode(uint32_t);
uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
struct page *f2fs_encrypt(struct inode *, struct page *);
int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
int f2fs_decrypt_one(struct inode *, struct page *);
void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
/* crypto_key.c */
void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
int _f2fs_get_encryption_info(struct inode *inode);
/* crypto_fname.c */
bool f2fs_valid_filenames_enc_mode(uint32_t);
u32 f2fs_fname_crypto_round_up(u32, u32);
int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
const struct f2fs_str *, struct f2fs_str *);
int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
struct f2fs_str *);
#ifdef CONFIG_F2FS_FS_ENCRYPTION
void f2fs_restore_and_release_control_page(struct page **);
void f2fs_restore_control_page(struct page *);
int __init f2fs_init_crypto(void);
int f2fs_crypto_initialize(void);
void f2fs_exit_crypto(void);
int f2fs_has_encryption_key(struct inode *);
static inline int f2fs_get_encryption_info(struct inode *inode)
{
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
if (!ci ||
(ci->ci_keyring_key &&
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
(1 << KEY_FLAG_REVOKED) |
(1 << KEY_FLAG_DEAD)))))
return _f2fs_get_encryption_info(inode);
return 0;
}
void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
int lookup, struct f2fs_filename *);
void f2fs_fname_free_filename(struct f2fs_filename *);
#else
static inline void f2fs_restore_and_release_control_page(struct page **p) { }
static inline void f2fs_restore_control_page(struct page *p) { }
static inline int __init f2fs_init_crypto(void) { return 0; }
static inline void f2fs_exit_crypto(void) { }
static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
static inline int f2fs_fname_setup_filename(struct inode *dir,
const struct qstr *iname,
int lookup, struct f2fs_filename *fname)
{
memset(fname, 0, sizeof(struct f2fs_filename));
fname->usr_fname = iname;
fname->disk_name.name = (unsigned char *)iname->name;
fname->disk_name.len = iname->len;
return 0;
}
static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
#endif
#endif