summaryrefslogblamecommitdiff
path: root/fs/ecryptfs/crypto.c
blob: 7196f50fe152f630f8d5b839fdfa32e3d2c4a5fd (plain) (tree)
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194































































































                                                                              
                              




                                                 
 
                                                   
                                         




                                                                      
                                                                        

                                                                               

                                 
                                                
         



                                                     



                  










                                                                          
                                









                                                               




























































                                                                               
                                                   











                                                                          
                                                       

                                                       








                                                                  
                                                                        
































































                                                                              




                                                 












                                                                     

                                                                      







                                                                           
                                                                  













































































































































































































































































































                                                                                
                                                       














































































                                                                               




                                                 



                                                               

                                                                      







                                                                           
                                                                       



































































                                                                             
                            















                                                                            






                                                                               

                                              


                                                                       
                                                        

                         



                                                                  







































































































































































































































































































































































                                                                                
                                


                           



                                                                           

                         
                              



                                                                  

                                                                                
                      



                                                              























































































































                                                                               
                                                                        





























































































































































                                                                               
                                                                        





























































































































                                                                             
                                                                  

                                      





                                                                     
                                                                             
                                         

                                               
                            

               

                                                 

                                                                             
                                                                                

                         







                                                                                
                                                                             
                                                             

                         





                                                                           
                                               
                                                                     

                                                                                
                                                                               





                             
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
 * Copyright (C) 2004-2006 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;

	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
	sg_init_one(&sg, (u8 *)src, len);
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"allocate crypto context; rc = [%d]\n",
					rc);
			goto out;
		}
		crypt_stat->hash_tfm = desc.tfm;
	}
	crypto_hash_init(&desc);
	crypto_hash_update(&desc, &sg, len);
	crypto_hash_final(&desc, dst);
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
out:
	return rc;
}

int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
					   char *cipher_name,
					   char *chaining_modifier)
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
	if (!(*algified_name)) {
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @offset: Offset of the page whose's iv we are to derive
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
			      pgoff_t offset)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
}

/**
 * ecryptfs_destruct_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	if (crypt_stat->tfm)
		crypto_free_blkcipher(crypt_stat->tfm);
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

void ecryptfs_destruct_mount_crypt_stat(
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->global_auth_tok_key)
		key_put(mount_crypt_stat->global_auth_tok_key);
	if (mount_crypt_stat->global_key_tfm)
		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
		if (sg) {
			sg[i].page = pg;
			sg[i].offset = offset;
		}
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
			if (sg)
				sg[i].length = remainder_of_page;
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
			if (sg)
				sg[i].length = size;
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
	       || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
				       ECRYPTFS_STRUCT_INITIALIZED));
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
	return rc;
}

static void
ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
					 int *byte_offset,
					 struct ecryptfs_crypt_stat *crypt_stat,
					 unsigned long extent_num)
{
	unsigned long lower_extent_num;
	int extents_occupied_by_headers_at_front;
	int bytes_occupied_by_headers_at_front;
	int extent_offset;
	int extents_per_page;

	bytes_occupied_by_headers_at_front =
		( crypt_stat->header_extent_size
		  * crypt_stat->num_header_extents_at_front );
	extents_occupied_by_headers_at_front =
		( bytes_occupied_by_headers_at_front
		  / crypt_stat->extent_size );
	lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
	(*lower_page_idx) = lower_extent_num / extents_per_page;
	extent_offset = lower_extent_num % extents_per_page;
	(*byte_offset) = extent_offset * crypt_stat->extent_size;
	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
			"[%d]\n", crypt_stat->header_extent_size);
	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
			"num_header_extents_at_front = [%d]\n",
			crypt_stat->num_header_extents_at_front);
	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
			"front = [%d]\n", extents_occupied_by_headers_at_front);
	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
			lower_extent_num);
	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
			extents_per_page);
	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
			(*lower_page_idx));
	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
			extent_offset);
	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
			(*byte_offset));
}

static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
				   struct page *lower_page,
				   struct inode *lower_inode,
				   int byte_offset_in_page, int bytes_to_write)
{
	int rc = 0;

	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
		rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
						ctx->param.lower_file,
						byte_offset_in_page,
						bytes_to_write);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error calling lower "
					"commit; rc = [%d]\n", rc);
			goto out;
		}
	} else {
		rc = ecryptfs_writepage_and_release_lower_page(lower_page,
							       lower_inode,
							       ctx->param.wbc);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error calling lower "
					"writepage(); rc = [%d]\n", rc);
			goto out;
		}
	}
out:
	return rc;
}

static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
				 struct page **lower_page,
				 struct inode *lower_inode,
				 unsigned long lower_page_idx,
				 int byte_offset_in_page)
{
	int rc = 0;

	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
		/* TODO: Limit this to only the data extents that are
		 * needed */
		rc = ecryptfs_get_lower_page(lower_page, lower_inode,
					     ctx->param.lower_file,
					     lower_page_idx,
					     byte_offset_in_page,
					     (PAGE_CACHE_SIZE
					      - byte_offset_in_page));
		if (rc) {
			ecryptfs_printk(
				KERN_ERR, "Error attempting to grab, map, "
				"and prepare_write lower page with index "
				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
			goto out;
		}
	} else {
		rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
						      lower_inode,
						      lower_page_idx);
		if (rc) {
			ecryptfs_printk(
				KERN_ERR, "Error attempting to grab and map "
				"lower page with index [0x%.16x]; rc = [%d]\n",
				lower_page_idx, rc);
			goto out;
		}
	}
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page
 * @ctx: The context of the page
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * The actual operations performed on each page depends on the
 * contents of the ecryptfs_page_crypt_context struct.
 *
 * Returns zero on success; negative on error
 */
int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
{
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	unsigned long base_extent;
	unsigned long extent_offset = 0;
	unsigned long lower_page_idx = 0;
	unsigned long prior_lower_page_idx = 0;
	struct page *lower_page;
	struct inode *lower_inode;
	struct ecryptfs_inode_info *inode_info;
	struct ecryptfs_crypt_stat *crypt_stat;
	int rc = 0;
	int lower_byte_offset = 0;
	int orig_byte_offset = 0;
	int num_extents_per_page;
#define ECRYPTFS_PAGE_STATE_UNREAD    0
#define ECRYPTFS_PAGE_STATE_READ      1
#define ECRYPTFS_PAGE_STATE_MODIFIED  2
#define ECRYPTFS_PAGE_STATE_WRITTEN   3
	int page_state;

	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
	crypt_stat = &inode_info->crypt_stat;
	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
						 ctx->param.lower_file);
		if (rc)
			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
					"page at index [0x%.16x]\n",
					ctx->page->index);
		goto out;
	}
	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
	base_extent = (ctx->page->index * num_extents_per_page);
	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
	while (extent_offset < num_extents_per_page) {
		ecryptfs_extent_to_lwr_pg_idx_and_offset(
			&lower_page_idx, &lower_byte_offset, crypt_stat,
			(base_extent + extent_offset));
		if (prior_lower_page_idx != lower_page_idx
		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
			rc = ecryptfs_write_out_page(ctx, lower_page,
						     lower_inode,
						     orig_byte_offset,
						     (PAGE_CACHE_SIZE
						      - orig_byte_offset));
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error attempting "
						"to write out page; rc = [%d]"
						"\n", rc);
				goto out;
			}
			page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
		}
		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
			rc = ecryptfs_read_in_page(ctx, &lower_page,
						   lower_inode, lower_page_idx,
						   lower_byte_offset);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error attempting "
						"to read in lower page with "
						"index [0x%.16x]; rc = [%d]\n",
						lower_page_idx, rc);
				goto out;
			}
			orig_byte_offset = lower_byte_offset;
			prior_lower_page_idx = lower_page_idx;
			page_state = ECRYPTFS_PAGE_STATE_READ;
		}
		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
			 || page_state == ECRYPTFS_PAGE_STATE_READ));
		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
					(base_extent + extent_offset));
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"derive IV for extent [0x%.16x]; "
					"rc = [%d]\n",
					(base_extent + extent_offset), rc);
			goto out;
		}
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
					"with iv:\n");
			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
					"encryption:\n");
			ecryptfs_dump_hex((char *)
					  (page_address(ctx->page)
					   + (extent_offset
					      * crypt_stat->extent_size)), 8);
		}
		rc = ecryptfs_encrypt_page_offset(
			crypt_stat, lower_page, lower_byte_offset, ctx->page,
			(extent_offset * crypt_stat->extent_size),
			crypt_stat->extent_size, extent_iv);
		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
				"rc = [%d]\n",
				(base_extent + extent_offset), rc);
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
					"encryption:\n");
			ecryptfs_dump_hex((char *)(page_address(lower_page)
						   + lower_byte_offset), 8);
		}
		page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
		extent_offset++;
	}
	BUG_ON(orig_byte_offset != 0);
	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
				     (lower_byte_offset
				      + crypt_stat->extent_size));
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error attempting to write out "
				"page; rc = [%d]\n", rc);
				goto out;
	}
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
 * @file: The ecryptfs file
 * @page: The page in ecryptfs to decrypt
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
int ecryptfs_decrypt_page(struct file *file, struct page *page)
{
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	unsigned long base_extent;
	unsigned long extent_offset = 0;
	unsigned long lower_page_idx = 0;
	unsigned long prior_lower_page_idx = 0;
	struct page *lower_page;
	char *lower_page_virt = NULL;
	struct inode *lower_inode;
	struct ecryptfs_crypt_stat *crypt_stat;
	int rc = 0;
	int byte_offset;
	int num_extents_per_page;
	int page_state;

	crypt_stat = &(ecryptfs_inode_to_private(
			       page->mapping->host)->crypt_stat);
	lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
		rc = ecryptfs_do_readpage(file, page, page->index);
		if (rc)
			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
					"page at index [0x%.16x]\n",
					page->index);
		goto out;
	}
	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
	base_extent = (page->index * num_extents_per_page);
	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
					   GFP_KERNEL);
	if (!lower_page_virt) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
				"lower page(s)\n");
		goto out;
	}
	lower_page = virt_to_page(lower_page_virt);
	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
	while (extent_offset < num_extents_per_page) {
		ecryptfs_extent_to_lwr_pg_idx_and_offset(
			&lower_page_idx, &byte_offset, crypt_stat,
			(base_extent + extent_offset));
		if (prior_lower_page_idx != lower_page_idx
		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
			rc = ecryptfs_do_readpage(file, lower_page,
						  lower_page_idx);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error reading "
						"lower encrypted page; rc = "
						"[%d]\n", rc);
				goto out;
			}
			prior_lower_page_idx = lower_page_idx;
			page_state = ECRYPTFS_PAGE_STATE_READ;
		}
		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
					(base_extent + extent_offset));
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"derive IV for extent [0x%.16x]; rc = "
					"[%d]\n",
					(base_extent + extent_offset), rc);
			goto out;
		}
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
					"with iv:\n");
			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
					"decryption:\n");
			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
		}
		rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
						  (extent_offset
						   * crypt_stat->extent_size),
						  lower_page, byte_offset,
						  crypt_stat->extent_size,
						  extent_iv);
		if (rc != crypt_stat->extent_size) {
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"decrypt extent [0x%.16x]\n",
					(base_extent + extent_offset));
			goto out;
		}
		rc = 0;
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
					"decryption:\n");
			ecryptfs_dump_hex((char *)(page_address(page)
						   + byte_offset), 8);
		}
		extent_offset++;
	}
out:
	if (lower_page_virt)
		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
	return rc;
}

/**
 * decrypt_scatterlist
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;

	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
				rc);
		goto out;
	}
	rc = size;
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page_offset
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

	src_sg.page = src_page;
	src_sg.offset = src_offset;
	src_sg.length = size;
	dst_sg.page = dst_page;
	dst_sg.offset = dst_offset;
	dst_sg.length = size;
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

	src_sg.page = src_page;
	src_sg.offset = src_offset;
	src_sg.length = size;
	dst_sg.page = dst_page;
	dst_sg.offset = dst_offset;
	dst_sg.length = size;
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
 * @crypt_stat: Uninitilized crypt stats structure
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
	char *full_alg_name;
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
			"key_size_bits = [%d]\n",
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
		goto out;
	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
						 CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		goto out;
	}
	crypto_blkcipher_set_flags(crypt_stat->tfm,
				   (ECRYPTFS_DEFAULT_CHAINING_MODE
				    | CRYPTO_TFM_REQ_WEAK_KEY));
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	rc = 0;
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
		crypt_stat->header_extent_size =
			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
	} else
		crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
	crypt_stat->num_header_extents_at_front = 1;
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
		ECRYPTFS_SET_FLAG(crypt_stat->flags,
				  ECRYPTFS_SECURITY_WARNING);
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

/**
 * ecryptfs_set_default_crypt_stat_vals
 * @crypt_stat
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
 * @ecryptfs_dentry
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
/* Associate an authentication token(s) with the file */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
	int rc = 0;
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
	int cipher_name_len;

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
	/* See if there are mount crypt options */
	if (mount_crypt_stat->global_auth_tok) {
		ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
				"file using mount_crypt_stat\n");
		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
		       mount_crypt_stat->global_auth_tok_sig,
		       ECRYPTFS_SIG_SIZE_HEX);
		cipher_name_len =
		    strlen(mount_crypt_stat->global_default_cipher_name);
		memcpy(crypt_stat->cipher,
		       mount_crypt_stat->global_default_cipher_name,
		       cipher_name_len);
		crypt_stat->cipher[cipher_name_len] = '\0';
		crypt_stat->key_size =
			mount_crypt_stat->global_default_cipher_key_size;
		ecryptfs_generate_new_key(crypt_stat);
	} else
		/* We should not encounter this scenario since we
		 * should detect lack of global_auth_tok at mount time
		 * TODO: Applies to 0.1 release only; remove in future
		 * release */
		BUG();
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
	return rc;
}

/**
 * contains_ecryptfs_marker - check for the ecryptfs marker
 * @data: The data block in which to check
 *
 * Returns one if marker found; zero if not found
 */
int contains_ecryptfs_marker(char *data)
{
	u32 m_1, m_2;

	memcpy(&m_1, data, 4);
	m_1 = be32_to_cpu(m_1);
	memcpy(&m_2, (data + 4), 4);
	m_2 = be32_to_cpu(m_2);
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
		return 1;
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
	return 0;
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
	{0x00000002, ECRYPTFS_ENCRYPTED}
};

/**
 * ecryptfs_process_flags
 * @crypt_stat
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

	memcpy(&flags, page_virt, 4);
	flags = be32_to_cpu(flags);
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
			ECRYPTFS_SET_FLAG(crypt_stat->flags,
					  ecryptfs_flag_map[i].local_flag);
		} else
			ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
					    ecryptfs_flag_map[i].local_flag);
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
	m_1 = cpu_to_be32(m_1);
	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = cpu_to_be32(m_2);
	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
		     size_t *written)
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
					ecryptfs_flag_map[i].local_flag))
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
	flags = cpu_to_be32(flags);
	memcpy(page_virt, &flags, 4);
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
	u16 cipher_code;
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
 * @str: The string representing the cipher name
 *
 * Returns zero on no match, or the cipher code on match
 */
u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
	int i;
	u16 code = 0;
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

	if (strcmp(crypt_stat->cipher, "aes") == 0) {
		switch (crypt_stat->key_size) {
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

/**
 * ecryptfs_read_header_region
 * @data
 * @dentry
 * @nd
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_read_header_region(char *data, struct dentry *dentry,
				struct vfsmount *mnt)
{
	struct file *lower_file;
	mm_segment_t oldfs;
	int rc;

	if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
					   O_RDONLY))) {
		printk(KERN_ERR
		       "Error opening lower_file to read header region\n");
		goto out;
	}
	lower_file->f_pos = 0;
	oldfs = get_fs();
	set_fs(get_ds());
	/* For releases 0.1 and 0.2, all of the header information
	 * fits in the first data extent-sized region. */
	rc = lower_file->f_op->read(lower_file, (char __user *)data,
			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
	set_fs(oldfs);
	if ((rc = ecryptfs_close_lower_file(lower_file))) {
		printk(KERN_ERR "Error closing lower_file\n");
		goto out;
	}
	rc = 0;
out:
	return rc;
}

static void
write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
		      size_t *written)
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

	header_extent_size = (u32)crypt_stat->header_extent_size;
	num_header_extents_at_front =
		(u16)crypt_stat->num_header_extents_at_front;
	header_extent_size = cpu_to_be32(header_extent_size);
	memcpy(virt, &header_extent_size, 4);
	virt += 4;
	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
	memcpy(virt, &num_header_extents_at_front, 2);
	(*written) = 6;
}

struct kmem_cache *ecryptfs_header_cache_0;
struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;

/**
 * ecryptfs_write_headers_virt
 * @page_virt
 * @crypt_stat
 * @ecryptfs_dentry
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
int ecryptfs_write_headers_virt(char *page_virt,
				struct ecryptfs_crypt_stat *crypt_stat,
				struct dentry *ecryptfs_dentry)
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
	offset += written;
	write_header_metadata((page_virt + offset), crypt_stat, &written);
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
					      PAGE_CACHE_SIZE - offset);
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
	return rc;
}

/**
 * ecryptfs_write_headers
 * @lower_file: The lower file struct, which was returned from dentry_open
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
			   struct file *lower_file)
{
	mm_segment_t oldfs;
	struct ecryptfs_crypt_stat *crypt_stat;
	char *page_virt;
	int current_header_page;
	int header_pages;
	int rc = 0;

	crypt_stat = &ecryptfs_inode_to_private(
		ecryptfs_dentry->d_inode)->crypt_stat;
	if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
				       ECRYPTFS_ENCRYPTED))) {
		if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
					 ECRYPTFS_KEY_VALID)) {
			ecryptfs_printk(KERN_DEBUG, "Key is "
					"invalid; bailing out\n");
			rc = -EINVAL;
			goto out;
		}
	} else {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING,
				"Called with crypt_stat->encrypted == 0\n");
		goto out;
	}
	/* Released in this function */
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, GFP_USER);
	if (!page_virt) {
		ecryptfs_printk(KERN_ERR, "Out of memory\n");
		rc = -ENOMEM;
		goto out;
	}
	memset(page_virt, 0, PAGE_CACHE_SIZE);
	rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
					 ecryptfs_dentry);
	if (unlikely(rc)) {
		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		goto out_free;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Writing key packet set to underlying file\n");
	lower_file->f_pos = 0;
	oldfs = get_fs();
	set_fs(get_ds());
	ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
			"write() w/ header page; lower_file->f_pos = "
			"[0x%.16x]\n", lower_file->f_pos);
	lower_file->f_op->write(lower_file, (char __user *)page_virt,
				PAGE_CACHE_SIZE, &lower_file->f_pos);
	header_pages = ((crypt_stat->header_extent_size
			 * crypt_stat->num_header_extents_at_front)
			/ PAGE_CACHE_SIZE);
	memset(page_virt, 0, PAGE_CACHE_SIZE);
	current_header_page = 1;
	while (current_header_page < header_pages) {
		ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
				"write() w/ zero'd page; lower_file->f_pos = "
				"[0x%.16x]\n", lower_file->f_pos);
		lower_file->f_op->write(lower_file, (char __user *)page_virt,
					PAGE_CACHE_SIZE, &lower_file->f_pos);
		current_header_page++;
	}
	set_fs(oldfs);
	ecryptfs_printk(KERN_DEBUG,
			"Done writing key packet set to underlying file.\n");
out_free:
	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
out:
	return rc;
}

static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
				 char *virt, int *bytes_read)
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

	memcpy(&header_extent_size, virt, 4);
	header_extent_size = be32_to_cpu(header_extent_size);
	virt += 4;
	memcpy(&num_header_extents_at_front, virt, 2);
	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
	crypt_stat->header_extent_size = (int)header_extent_size;
	crypt_stat->num_header_extents_at_front =
		(int)num_header_extents_at_front;
	(*bytes_read) = 6;
	if ((crypt_stat->header_extent_size
	     * crypt_stat->num_header_extents_at_front)
	    < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
				"[%d]\n", crypt_stat->header_extent_size);
	}
	return rc;
}

/**
 * set_default_header_data
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
	crypt_stat->header_extent_size = 4096;
	crypt_stat->num_header_extents_at_front = 1;
}

/**
 * ecryptfs_read_headers_virt
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
				      struct dentry *ecryptfs_dentry)
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
	rc = contains_ecryptfs_marker(page_virt + offset);
	if (rc == 0) {
		rc = -EINVAL;
		goto out;
	}
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
					   &bytes_read);
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
 * ecryptfs_read_headers
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
			  struct file *lower_file)
{
	int rc = 0;
	char *page_virt = NULL;
	mm_segment_t oldfs;
	ssize_t bytes_read;
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;

	/* Read the first page from the underlying file */
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
	if (!page_virt) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
		goto out;
	}
	lower_file->f_pos = 0;
	oldfs = get_fs();
	set_fs(get_ds());
	bytes_read = lower_file->f_op->read(lower_file,
					    (char __user *)page_virt,
					    ECRYPTFS_DEFAULT_EXTENT_SIZE,
					    &lower_file->f_pos);
	set_fs(oldfs);
	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
		rc = -EINVAL;
		goto out;
	}
	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
					ecryptfs_dentry);
	if (rc) {
		ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
				"found\n");
		rc = -EINVAL;
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
	}
	return rc;
}

/**
 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of encoded filename; negative if error
 */
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **encoded_name)
{
	int error = 0;

	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*encoded_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to encrypt and encode the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*encoded_name), (void *)name, length);
	(*encoded_name)[length] = '\0';
	error = length + 1;
out:
	return error;
}

/**
 * ecryptfs_decode_filename - converts the cipher text name to plaintext
 * @crypt_stat: The crypt_stat struct associated with the file
 * @name: The filename in cipher text
 * @length: The length of the cipher text name
 * @decrypted_name: The plaintext name
 *
 * Decodes and decrypts the filename.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of decoded filename; negative if error
 */
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **decrypted_name)
{
	int error = 0;

	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*decrypted_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to decode and decrypt the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*decrypted_name), (void *)name, length);
	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
	error = length;
out:
	return error;
}

/**
 * ecryptfs_process_cipher - Perform cipher initialization.
 * @key_tfm: Crypto context for key material, set by this function
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
int
ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
			size_t *key_size)
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
	char *full_alg_name;
	int rc;

	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
		rc = -EINVAL;
		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
		goto out;
	}
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
		       "[%s]; rc = [%d]\n", cipher_name, rc);
		goto out;
	}
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
	get_random_bytes(dummy_key, *key_size);
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
	if (rc) {
		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}