/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/statfs.h>
#include <linux/compat.h>
#include <linux/bit_spinlock.h>
#include <linux/xattr.h>
#include <linux/posix_acl.h>
#include <linux/falloc.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/mount.h>
#include "compat.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "ioctl.h"
#include "print-tree.h"
#include "ordered-data.h"
#include "xattr.h"
#include "tree-log.h"
#include "volumes.h"
#include "compression.h"
#include "locking.h"
#include "free-space-cache.h"
#include "inode-map.h"
struct btrfs_iget_args {
u64 ino;
struct btrfs_root *root;
};
static const struct inode_operations btrfs_dir_inode_operations;
static const struct inode_operations btrfs_symlink_inode_operations;
static const struct inode_operations btrfs_dir_ro_inode_operations;
static const struct inode_operations btrfs_special_inode_operations;
static const struct inode_operations btrfs_file_inode_operations;
static const struct address_space_operations btrfs_aops;
static const struct address_space_operations btrfs_symlink_aops;
static const struct file_operations btrfs_dir_file_operations;
static struct extent_io_ops btrfs_extent_io_ops;
static struct kmem_cache *btrfs_inode_cachep;
struct kmem_cache *btrfs_trans_handle_cachep;
struct kmem_cache *btrfs_transaction_cachep;
struct kmem_cache *btrfs_path_cachep;
struct kmem_cache *btrfs_free_space_cachep;
#define S_SHIFT 12
static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
[S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
[S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
};
static int btrfs_setsize(struct inode *inode, loff_t newsize);
static int btrfs_truncate(struct inode *inode);
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
static noinline int cow_file_range(struct inode *inode,
struct page *locked_page,
u64 start, u64 end, int *page_started,
unsigned long *nr_written, int unlock);
static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode);
static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *dir,
const struct qstr *qstr)
{
int err;
err = btrfs_init_acl(trans, inode, dir);
if (!err)
err = btrfs_xattr_security_init(trans, inode, dir, qstr);
return err;
}
/*
* this does all the hard work for inserting an inline extent into
* the btree. The caller should have done a btrfs_drop_extents so that
* no overlapping inline items exist in the btree
*/
static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
u64 start, size_t size, size_t compressed_size,
int compress_type,
struct page **compressed_pages)
{
struct btrfs_key key;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct page *page = NULL;
char *kaddr;
unsigned long ptr;
struct btrfs_file_extent_item *ei;
int err = 0;
int ret;
size_t cur_size = size;
size_t datasize;
unsigned long offset;
if (compressed_size && compressed_pages)
cur_size = compressed_size;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
key.objectid = btrfs_ino(inode);
key.offset = start;
btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
datasize = btrfs_file_extent_calc_inline_size(cur_size);
inode_add_bytes(inode, size);
ret = btrfs_insert_empty_item(trans, root, path, &key,
datasize);
if (ret) {
err = ret;
goto fail;
}
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
btrfs_set_file_extent_encryption(leaf, ei, 0);
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
btrfs_set_file_extent_ram_bytes(leaf, ei, size);
ptr = btrfs_file_extent_inline_start(ei);
if (compress_type != BTRFS_COMPRESS_NONE) {
struct page *cpage;
int i = 0;
while (compressed_size > 0) {
cpage = compressed_pages[i];
cur_size = min_t(unsigned long, compressed_size,
PAGE_CACHE_SIZE);
kaddr = kmap_atomic(cpage);
write_extent_buffer(leaf, kaddr, ptr, cur_size);
kunmap_atomic(kaddr);
i++;
ptr += cur_size;
compressed_size -= cur_size;
}
btrfs_set_file_extent_compression(leaf, ei,
compress_type);
} else {
page = find_get_page(inode->i_mapping,
start >> PAGE_CACHE_SHIFT);
btrfs_set_file_extent_compression(leaf, ei, 0);
kaddr = kmap_atomic(page);
offset = start & (PAGE_CACHE_SIZE - 1);
write_extent_buffer(leaf, kaddr + offset, ptr, size);
kunmap_atomic(kaddr);
page_cache_release(page);
}
btrfs_mark_buffer_dirty(leaf);
btrfs_free_path(path);
/*
* we're an inline extent, so nobody can
* extend the file past i_size without locking
* a page we already have locked.
*
* We must do any isize and inode updates
* before we unlock the pages. Otherwise we
* could end up racing with unlink.
*/
BTRFS_I(inode)->disk_i_size = inode->i_size;
ret = btrfs_update_inode(trans, root, inode);
return ret;
fail:
btrfs_free_path(path);
return err;
}
/*
* conditionally insert an inline extent into the file. This
* does the checks required to make sure the data is small enough
* to fit as an inline extent.
*/
static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode, u64 start, u64 end,
size_t compressed_size, int compress_type,
struct page **compressed_pages)
{
u64 isize = i_size_read(inode);
u64 actual_end = min(end + 1, isize);
u64 inline_len = actual_end - start;
u64 aligned_end = (end + root->sectorsize - 1) &
~((u64)root->sectorsize - 1);
u64 hint_byte;
u64 data_len = inline_len;
int ret;
if (compressed_size)
data_len = compressed_size;
if (start > 0 ||
actual_end >= PAGE_CACHE_SIZE ||
data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
(!compressed_size &&
(actual_end & (root->sectorsize - 1)) == 0) ||
end + 1 < isize ||
data_len > root->fs_info->max_inline) {
return 1;
}
ret = btrfs_drop_extents(trans, inode, start, aligned_end,
&hint_byte, 1);
if (ret)
return ret;
if (isize > actual_end)
inline_len = min_t(u64, isize, actual_end);
ret = insert_inline_extent(trans, root, inode, start,
inline_len, compressed_size,
compress_type, compressed_pages);
if (ret && ret != -ENOSPC) {
btrfs_abort_transaction(trans, root, ret);
return ret;
} else if (ret == -ENOSPC) {
return 1;
}
btrfs_delalloc_release_metadata(inode, end + 1 - start);
btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
return 0;
}
struct async_extent {
u64 start;
u64 ram_size;
u64 compressed_size;
struct page **pages;
unsigned long nr_pages;
int compress_type;
struct list_head list;
};
struct async_cow {
struct inode *inode;
struct btrfs_root *root;
struct page *locked_page;
u64 start;
u64 end;
struct list_head extents;
struct btrfs_work work;
};
static noinline int add_async_extent(struct async_cow *cow,
u64 start, u64 ram_size,
u64 compressed_size,
struct page **pages,
unsigned long nr_pages,
int compress_type)
{
struct async_extent *async_extent;
async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
BUG_ON(!async_extent); /* -ENOMEM */
async_extent->start = start;
async_extent->ram_size = ram_size;
async_extent->compressed_size = compressed_size;
async_extent->pages = pages;
async_extent->nr_pages = nr_pages;
async_extent->compress_type = compress_type;
list_add_tail(&async_extent->list, &cow->extents);
return 0;
}
/*
* we create compressed extents in two phases. The first
* phase compresses a range of pages that have already been
* locked (both pages and state bits are locked).
*
* This is done inside an ordered work queue, and the compression
* is spread across many cpus. The actual IO submission is step
* two, and the ordered work queue takes care of making sure that
* happens in the same order things were put onto the queue by
* writepages and friends.
*
* If this code finds it can't get good compression, it puts an
* entry onto the work queue to write the uncompressed bytes. This
* makes sure that both compressed inodes and uncompressed inodes
* are written in the same order that the flusher thread sent them
* down.
*/
static noinline int compress_file_range(struct inode *inode,
struct page *locked_page,
u64 start, u64 end,
struct async_cow *async_cow,
int *num_added)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
u64 num_bytes;
u64 blocksize = root->sectorsize;
u64 actual_end;
u64 isize = i_size_read(inode);
int ret = 0;
struct page **pages = NULL;
unsigned long nr_pages;
unsigned long nr_pages_ret = 0;
unsigned long total_compressed = 0;
unsigned long total_in = 0;
unsigned long max_compressed = 128 * 1024;
unsigned long max_uncompressed = 128 * 1024;
int i;
int will_compress;
int compress_type = root->fs_info->compress_type;
/* if this is a small write inside eof, kick off a defrag */
if ((end - start + 1) < 16 * 1024 &&
(start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
btrfs_add_inode_defrag(NULL, inode);
actual_end = min_t(u64, isize, end + 1);
again:
will_compress = 0;
nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
/*
* we don't want to send crud past the end of i_size through
* compression, that's just a waste of CPU time. So, if the
* end of the file is before the start of our current
* requested range of bytes, we bail out to the uncompressed
* cleanup code that can deal with all of this.
*
* It isn't really the fastest way to fix things, but this is a
* very uncommon corner.
*/
if (actual_end <= start)
goto cleanup_and_bail_uncompressed;
total_compressed = actual_end - start;
/* we want to make sure that amount of ram required to uncompress
* an extent is reasonable, so we limit the total size in ram
* of a compressed extent to 128k. This is a crucial number
* because it also controls how easily we can spread reads across
* cpus for decompression.
*
* We also want to make sure the amount of IO required to do
* a random read is reasonably small, so we limit the size of
* a compressed extent to 128k.
*/
total_compressed = min(total_compressed, max_uncompressed);
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
num_bytes = max(blocksize, num_bytes);
total_in = 0;
ret = 0;
/*
* we do compression for mount -o compress and when the
* inode has not been flagged as nocompress. This flag can
* change at any time if we discover bad compression ratios.
*/
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
(btrfs_test_opt(root, COMPRESS) ||
(BTRFS_I(inode)->force_compress) ||
(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
WARN_ON(pages);
pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
if (!pages) {
/* just bail out to the uncompressed code */
goto cont;
}
if (BTRFS_I(inode)->force_compress)
compress_type = BTRFS_I(inode)->force_compress;
ret = btrfs_compress_pages(compress_type,
inode->i_mapping, start,
total_compressed, pages,
nr_pages, &nr_pages_ret,
&total_in,
&total_compressed,
max_compressed);
if (!ret) {
unsigned long offset = total_compressed &
(PAGE_CACHE_SIZE - 1);
struct page *page = pages[nr_pages_ret - 1];
char *kaddr;
/* zero the tail end of the last page, we might be
* sending it down to disk
*/
if (offset) {
kaddr = kmap_atomic(page);
memset(kaddr + offset, 0,
PAGE_CACHE_SIZE - offset);
kunmap_atomic(kaddr);
}
will_compress = 1;
}
}
cont:
if (start == 0) {
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto cleanup_and_out;
}
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
/* lets try to make an inline extent */
if (ret || total_in < (actual_end - start)) {
/* we didn't compress the entire range, try
* to make an uncompressed inline extent.
*/
ret = cow_file_range_inline(trans, root, inode,
start, end, 0, 0, NULL);
} else {
/* try making a compressed inline extent */
ret = cow_file_range_inline(trans, root, inode,
start, end,
total_compressed,
compress_type, pages);
}
if (ret <= 0) {
/*
* inline extent creation worked or returned error,
* we don't need to create any more async work items.
* Unlock and free up our temp pages.
*/
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
start, end, NULL,
EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
EXTENT_CLEAR_DELALLOC |
EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
btrfs_end_transaction(trans, root);
goto free_pages_out;
}
btrfs_end_transaction(trans, root);
}
if (will_compress) {
/*
* we aren't doing an inline extent round the compressed size
* up to a block size boundary so the allocator does sane
* things
*/
total_compressed = (total_compressed + blocksize - 1) &
~(blocksize - 1);
/*
* one last check to make sure the compression is really a
* win, compare the page count read with the blocks on disk
*/
total_in = (total_in + PAGE_CACHE_SIZE - 1) &
~(PAGE_CACHE_SIZE - 1);
if (total_compressed >= total_in) {
will_compress = 0;
} else {
num_bytes = total_in;
}
}
if (!will_compress && pages) {
/*
* the compression code ran but failed to make things smaller,
* free any pages it allocated and our page pointer array
*/
for (i = 0; i < nr_pages_ret; i++) {
WARN_ON(pages[i]->mapping);
page_cache_release(pages[i]);
}
kfree(pages);
pages = NULL;
total_compressed = 0;
nr_pages_ret = 0;
/* flag the file so we don't compress in the future */
if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
!(BTRFS_I(inode)->force_compress)) {
BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
}
}
if (will_compress) {
*num_added += 1;
/* the async work queues will take care of doing actual
* allocation on disk for these compressed pages,
* and will submit them to the elevator.
*/
add_async_extent(async_cow, start, num_bytes,
total_compressed, pages, nr_pages_ret,
compress_type);
if (start + num_bytes < end) {
start += num_bytes;
pages = NULL;
cond_resched();
goto again;
}
} else {
cleanup_and_bail_uncompressed:
/*
* No compression, but we still need to write the pages in
* the file we've been given so far. redirty the locked
* page if it corresponds to our extent and set things up
* for the async work queue to run cow_file_range to do
* the normal delalloc dance
*/
if (page_offset(locked_page) >= start &&
page_offset(locked_page) <= end) {
__set_page_dirty_nobuffers(locked_page);
/* unlocked later on in the async handlers */
}
add_async_extent(async_cow, start, end - start + 1,
0, NULL, 0, BTRFS_COMPRESS_NONE);
*num_added += 1;
}
out:
return ret;
free_pages_out:
for (i = 0; i < nr_pages_ret; i++) {
WARN_ON(pages[i]->mapping);
page_cache_release(pages[i]);
}
kfree(pages);
goto out;
cleanup_and_out:
extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
start, end, NULL,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_DIRTY |
EXTENT_CLEAR_DELALLOC |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
if (!trans || IS_ERR(trans))
btrfs_error(root->fs_info, ret, "Failed to join transaction");
else
btrfs_abort_transaction(trans, root, ret);
goto free_pages_out;
}
/*
* phase two of compressed writeback. This is the ordered portion
* of the code, which only gets called in the order the work was
* queued. We walk all the async extents created by compress_file_range
* and send them down to the disk.
*/
static noinline int submit_compressed_extents(struct inode *inode,
struct async_cow *async_cow)
{
struct async_extent *async_extent;
u64 alloc_hint = 0;
struct btrfs_trans_handle *trans;
struct btrfs_key ins;
struct extent_map *em;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_io_tree *io_tree;
int ret = 0;
if (list_empty(&async_cow->extents))
return 0;
while (!list_empty(&async_cow->extents)) {
async_extent = list_entry(async_cow->extents.next,
struct async_extent, list);
list_del(&async_extent->list);
io_tree = &BTRFS_I(inode)->io_tree;
retry:
/* did the compression code fall back to uncompressed IO? */
if (!async_extent->pages) {
int page_started = 0;
unsigned long nr_written = 0;
lock_extent(io_tree, async_extent->start,
async_extent->start +
async_extent->ram_size - 1);
/* allocate blocks */
ret = cow_file_range(inode, async_cow->locked_page,
async_extent->start,
async_extent->start +
async_extent->ram_size - 1,
&page_started, &nr_written, 0);
/* JDM XXX */
/*
* if page_started, cow_file_range inserted an
* inline extent and took care of all the unlocking
* and IO for us. Otherwise, we need to submit
* all those pages down to the drive.
*/
if (!page_started && !ret)
extent_write_locked_range(io_tree,
inode, async_extent->start,
async_extent->start +
async_extent->ram_size - 1,
btrfs_get_extent,
WB_SYNC_ALL);
kfree(async_extent);
cond_resched();
continue;
}
lock_extent(io_tree, async_extent->start,
async_extent->start + async_extent->ram_size - 1);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
} else {
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
ret = btrfs_reserve_extent(trans, root,
async_extent->compressed_size,
async_extent->compressed_size,
0, alloc_hint, &ins, 1);
if (ret)
btrfs_abort_transaction(trans, root, ret);
btrfs_end_transaction(trans, root);
}
if (ret) {
int i;
for (i = 0; i < async_extent->nr_pages; i++) {
WARN_ON(async_extent->pages[i]->mapping);
page_cache_release(async_extent->pages[i]);
}
kfree(async_extent->pages);
async_extent->nr_pages = 0;
async_extent->pages = NULL;
unlock_extent(io_tree, async_extent->start,
async_extent->start +
async_extent->ram_size - 1);
if (ret == -ENOSPC)
goto retry;
goto out_free; /* JDM: Requeue? */
}
/*
* here we're doing allocation and writeback of the
* compressed pages
*/
btrfs_drop_extent_cache(inode, async_extent->start,
async_extent->start +
async_extent->ram_size - 1, 0);
em = alloc_extent_map();
BUG_ON(!em); /* -ENOMEM */
em->start = async_extent->start;
em->len = async_extent->ram_size;
em->orig_start = em->start;
em->block_start = ins.objectid;
em->block_len = ins.offset;
em->bdev = root->fs_info->fs_devices->latest_bdev;
em->compress_type = async_extent->compress_type;
set_bit(EXTENT_FLAG_PINNED, &em->flags);
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
while (1) {
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
if (ret != -EEXIST) {
free_extent_map(em);
break;
}
btrfs_drop_extent_cache(inode, async_extent->start,
async_extent->start +
async_extent->ram_size - 1, 0);
}
ret = btrfs_add_ordered_extent_compress(inode,
async_extent->start,
ins.objectid,
async_extent->ram_size,
ins.offset,
BTRFS_ORDERED_COMPRESSED,
async_extent->compress_type);
BUG_ON(ret); /* -ENOMEM */
/*
* clear dirty, set writeback and unlock the pages.
*/
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
async_extent->start,
async_extent->start +
async_extent->ram_size - 1,
NULL, EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
ret = btrfs_submit_compressed_write(inode,
async_extent->start,
async_extent->ram_size,
ins.objectid,
ins.offset, async_extent->pages,
async_extent->nr_pages);
BUG_ON(ret); /* -ENOMEM */
alloc_hint = ins.objectid + ins.offset;
kfree(async_extent);
cond_resched();
}
ret = 0;
out:
return ret;
out_free:
kfree(async_extent);
goto out;
}
static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
u64 num_bytes)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_map *em;
u64 alloc_hint = 0;
read_lock(&em_tree->lock);
em = search_extent_mapping(em_tree, start, num_bytes);
if (em) {
/*
* if block start isn't an actual block number then find the
* first block in this inode and use that as a hint. If that
* block is also bogus then just don't worry about it.
*/
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
free_extent_map(em);
em = search_extent_mapping(em_tree, 0, 0);
if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
alloc_hint = em->block_start;
if (em)
free_extent_map(em);
} else {
alloc_hint = em->block_start;
free_extent_map(em);
}
}
read_unlock(&em_tree->lock);
return alloc_hint;
}
/*
* when extent_io.c finds a delayed allocation range in the file,
* the call backs end up in this code. The basic idea is to
* allocate extents on disk for the range, and create ordered data structs
* in ram to track those extents.
*
* locked_page is the page that writepage had locked already. We use
* it to make sure we don't do extra locks or unlocks.
*
* *page_started is set to one if we unlock locked_page and do everything
* required to start IO on it. It may be clean and already done with
* IO when we return.
*/
static noinline int cow_file_range(struct inode *inode,
struct page *locked_page,
u64 start, u64 end, int *page_started,
unsigned long *nr_written,
int unlock)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
u64 alloc_hint = 0;
u64 num_bytes;
unsigned long ram_size;
u64 disk_num_bytes;
u64 cur_alloc_size;
u64 blocksize = root->sectorsize;
struct btrfs_key ins;
struct extent_map *em;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
int ret = 0;
BUG_ON(btrfs_is_free_space_inode(inode));
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
start, end, locked_page,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
return PTR_ERR(trans);
}
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
num_bytes = max(blocksize, num_bytes);
disk_num_bytes = num_bytes;
ret = 0;
/* if this is a small write inside eof, kick off defrag */
if (num_bytes < 64 * 1024 &&
(start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
btrfs_add_inode_defrag(trans, inode);
if (start == 0) {
/* lets try to make an inline extent */
ret = cow_file_range_inline(trans, root, inode,
start, end, 0, 0, NULL);
if (ret == 0) {
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
start, end, NULL,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
*nr_written = *nr_written +
(end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
*page_started = 1;
goto out;
} else if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto out_unlock;
}
}
BUG_ON(disk_num_bytes >
btrfs_super_total_bytes(root->fs_info->super_copy));
alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
while (disk_num_bytes > 0) {
unsigned long op;
cur_alloc_size = disk_num_bytes;
ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
root->sectorsize, 0, alloc_hint,
&ins, 1);
if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto out_unlock;
}
em = alloc_extent_map();
BUG_ON(!em); /* -ENOMEM */
em->start = start;
em->orig_start = em->start;
ram_size = ins.offset;
em->len = ins.offset;
em->block_start = ins.objectid;
em->block_len = ins.offset;
em->bdev = root->fs_info->fs_devices->latest_bdev;
set_bit(EXTENT_FLAG_PINNED, &em->flags);
while (1) {
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
if (ret != -EEXIST) {
free_extent_map(em);
break;
}
btrfs_drop_extent_cache(inode, start,
start + ram_size - 1, 0);
}
cur_alloc_size = ins.offset;
ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
ram_size, cur_alloc_size, 0);
BUG_ON(ret); /* -ENOMEM */
if (root->root_key.objectid ==
BTRFS_DATA_RELOC_TREE_OBJECTID) {
ret = btrfs_reloc_clone_csums(inode, start,
cur_alloc_size);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_unlock;
}
}
if (disk_num_bytes < cur_alloc_size)
break;
/* we're not doing compressed IO, don't unlock the first
* page (which the caller expects to stay locked), don't
* clear any dirty bits and don't set any writeback bits
*
* Do set the Private2 bit so we know this page was properly
* setup for writepage
*/
op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
EXTENT_SET_PRIVATE2;
extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
start, start + ram_size - 1,
locked_page, op);
disk_num_bytes -= cur_alloc_size;
num_bytes -= cur_alloc_size;
alloc_hint = ins.objectid + ins.offset;
start += cur_alloc_size;
}
ret = 0;
out:
btrfs_end_transaction(trans, root);
return ret;
out_unlock:
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
start, end, locked_page,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
goto out;
}
/*
* work queue call back to started compression on a file and pages
*/
static noinline void async_cow_start(struct btrfs_work *work)
{
struct async_cow *async_cow;
int num_added = 0;
async_cow = container_of(work, struct async_cow, work);
compress_file_range(async_cow->inode, async_cow->locked_page,
async_cow->start, async_cow->end, async_cow,
&num_added);
if (num_added == 0) {
btrfs_add_delayed_iput(async_cow->inode);
async_cow->inode = NULL;
}
}
/*
* work queue call back to submit previously compressed pages
*/
static noinline void async_cow_submit(struct btrfs_work *work)
{
struct async_cow *async_cow;
struct btrfs_root *root;
unsigned long nr_pages;
async_cow = container_of(work, struct async_cow, work);
root = async_cow->root;
nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
PAGE_CACHE_SHIFT;
if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
5 * 1024 * 1024 &&
waitqueue_active(&root->fs_info->async_submit_wait))
wake_up(&root->fs_info->async_submit_wait);
if (async_cow->inode)
submit_compressed_extents(async_cow->inode, async_cow);
}
static noinline void async_cow_free(struct btrfs_work *work)
{
struct async_cow *async_cow;
async_cow = container_of(work, struct async_cow, work);
if (async_cow->inode)
btrfs_add_delayed_iput(async_cow->inode);
kfree(async_cow);
}
static int cow_file_range_async(struct inode *inode, struct page *locked_page,
u64 start, u64 end, int *page_started,
unsigned long *nr_written)
{
struct async_cow *async_cow;
struct btrfs_root *root = BTRFS_I(inode)->root;
unsigned long nr_pages;
u64 cur_end;
int limit = 10 * 1024 * 1024;
clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1, 0, NULL, GFP_NOFS);
while (start < end) {
async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
BUG_ON(!async_cow); /* -ENOMEM */
async_cow->inode = igrab(inode);
async_cow->root = root;
async_cow->locked_page = locked_page;
async_cow->start = start;
if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
cur_end = end;
else
cur_end = min(end, start + 512 * 1024 - 1);
async_cow->end = cur_end;
INIT_LIST_HEAD(&async_cow->extents);
async_cow->work.func = async_cow_start;
async_cow->work.ordered_func = async_cow_submit;
async_cow->work.ordered_free = async_cow_free;
async_cow->work.flags = 0;
nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
PAGE_CACHE_SHIFT;
atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
btrfs_queue_worker(&root->fs_info->delalloc_workers,
&async_cow->work);
if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
wait_event(root->fs_info->async_submit_wait,
(atomic_read(&root->fs_info->async_delalloc_pages) <
limit));
}
while (atomic_read(&root->fs_info->async_submit_draining) &&
atomic_read(&root->fs_info->async_delalloc_pages)) {
wait_event(root->fs_info->async_submit_wait,
(atomic_read(&root->fs_info->async_delalloc_pages) ==
0));
}
*nr_written += nr_pages;
start = cur_end + 1;
}
*page_started = 1;
return 0;
}
static noinline int csum_exist_in_range(struct btrfs_root *root,
u64 bytenr, u64 num_bytes)
{
int ret;
struct btrfs_ordered_sum *sums;
LIST_HEAD(list);
ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
bytenr + num_bytes - 1, &list, 0);
if (ret == 0 && list_empty(&list))
return 0;
while (!list_empty(&list)) {
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
list_del(&sums->list);
kfree(sums);
}
return 1;
}
/*
* when nowcow writeback call back. This checks for snapshots or COW copies
* of the extents that exist in the file, and COWs the file as required.
*
* If no cow copies or snapshots exist, we write directly to the existing
* blocks on disk
*/
static noinline int run_delalloc_nocow(struct inode *inode,
struct page *locked_page,
u64 start, u64 end, int *page_started, int force,
unsigned long *nr_written)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct btrfs_key found_key;
u64 cow_start;
u64 cur_offset;
u64 extent_end;
u64 extent_offset;
u64 disk_bytenr;
u64 num_bytes;
int extent_type;
int ret, err;
int type;
int nocow;
int check_prev = 1;
bool nolock;
u64 ino = btrfs_ino(inode);
path = btrfs_alloc_path();
if (!path) {
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
start, end, locked_page,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
return -ENOMEM;
}
nolock = btrfs_is_free_space_inode(inode);
if (nolock)
trans = btrfs_join_transaction_nolock(root);
else
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
start, end, locked_page,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
btrfs_free_path(path);
return PTR_ERR(trans);
}
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
cow_start = (u64)-1;
cur_offset = start;
while (1) {
ret = btrfs_lookup_file_extent(trans, root, path, ino,
cur_offset, 0);
if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto error;
}
if (ret > 0 && path->slots[0] > 0 && check_prev) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key,
path->slots[0] - 1);
if (found_key.objectid == ino &&
found_key.type == BTRFS_EXTENT_DATA_KEY)
path->slots[0]--;
}
check_prev = 0;
next_slot:
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto error;
}
if (ret > 0)
break;
leaf = path->nodes[0];
}
nocow = 0;
disk_bytenr = 0;
num_bytes = 0;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid > ino ||
found_key.type > BTRFS_EXTENT_DATA_KEY ||
found_key.offset > end)
break;
if (found_key.offset > cur_offset) {
extent_end = found_key.offset;
extent_type = 0;
goto out_check;
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type == BTRFS_FILE_EXTENT_REG ||
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
extent_offset = btrfs_file_extent_offset(leaf, fi);
extent_end = found_key.offset +
btrfs_file_extent_num_bytes(leaf, fi);
if (extent_end <= start) {
path->slots[0]++;
goto next_slot;
}
if (disk_bytenr == 0)
goto out_check;
if (btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi))
goto out_check;
if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
goto out_check;
if (btrfs_extent_readonly(root, disk_bytenr))
goto out_check;
if (btrfs_cross_ref_exist(trans, root, ino,
found_key.offset -
extent_offset, disk_bytenr))
goto out_check;
disk_bytenr += extent_offset;
disk_bytenr += cur_offset - found_key.offset;
num_bytes = min(end + 1, extent_end) - cur_offset;
/*
* force cow if csum exists in the range.
* this ensure that csum for a given extent are
* either valid or do not exist.
*/
if (csum_exist_in_range(root, disk_bytenr, num_bytes))
goto out_check;
nocow = 1;
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
extent_end = found_key.offset +
btrfs_file_extent_inline_len(leaf, fi);
extent_end = ALIGN(extent_end, root->sectorsize);
} else {
BUG_ON(1);
}
out_check:
if (extent_end <= start) {
path->slots[0]++;
goto next_slot;
}
if (!nocow) {
if (cow_start == (u64)-1)
cow_start = cur_offset;
cur_offset = extent_end;
if (cur_offset > end)
break;
path->slots[0]++;
goto next_slot;
}
btrfs_release_path(path);
if (cow_start != (u64)-1) {
ret = cow_file_range(inode, locked_page, cow_start,
found_key.offset - 1, page_started,
nr_written, 1);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto error;
}
cow_start = (u64)-1;
}
if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
struct extent_map *em;
struct extent_map_tree *em_tree;
em_tree = &BTRFS_I(inode)->extent_tree;
em = alloc_extent_map();
BUG_ON(!em); /* -ENOMEM */
em->start = cur_offset;
em->orig_start = em->start;
em->len = num_bytes;
em->block_len = num_bytes;
em->block_start = disk_bytenr;
em->bdev = root->fs_info->fs_devices->latest_bdev;
set_bit(EXTENT_FLAG_PINNED, &em->flags);
while (1) {
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
if (ret != -EEXIST) {
free_extent_map(em);
break;
}
btrfs_drop_extent_cache(inode, em->start,
em->start + em->len - 1, 0);
}
type = BTRFS_ORDERED_PREALLOC;
} else {
type = BTRFS_ORDERED_NOCOW;
}
ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
num_bytes, num_bytes, type);
BUG_ON(ret); /* -ENOMEM */
if (root->root_key.objectid ==
BTRFS_DATA_RELOC_TREE_OBJECTID) {
ret = btrfs_reloc_clone_csums(inode, cur_offset,
num_bytes);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto error;
}
}
extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
cur_offset, cur_offset + num_bytes - 1,
locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
EXTENT_SET_PRIVATE2);
cur_offset = extent_end;
if (cur_offset > end)
break;
}
btrfs_release_path(path);
if (cur_offset <= end && cow_start == (u64)-1) {
cow_start = cur_offset;
cur_offset = end;
}
if (cow_start != (u64)-1) {
ret = cow_file_range(inode, locked_page, cow_start, end,
page_started, nr_written, 1);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto error;
}
}
error:
if (nolock) {
err = btrfs_end_transaction_nolock(trans, root);
} else {
err = btrfs_end_transaction(trans, root);
}
if (!ret)
ret = err;
if (ret && cur_offset < end)
extent_clear_unlock_delalloc(inode,
&BTRFS_I(inode)->io_tree,
cur_offset, end, locked_page,
EXTENT_CLEAR_UNLOCK_PAGE |
EXTENT_CLEAR_UNLOCK |
EXTENT_CLEAR_DELALLOC |
EXTENT_CLEAR_DIRTY |
EXTENT_SET_WRITEBACK |
EXTENT_END_WRITEBACK);
btrfs_free_path(path);
return ret;
}
/*
* extent_io.c call back to do delayed allocation processing
*/
static int run_delalloc_range(struct inode *inode, struct page *locked_page,
u64 start, u64 end, int *page_started,
unsigned long *nr_written)
{
int ret;
struct btrfs_root *root = BTRFS_I(inode)->root;
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
ret = run_delalloc_nocow(inode, locked_page, start, end,
page_started, 1, nr_written);
} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
ret = run_delalloc_nocow(inode, locked_page, start, end,
page_started, 0, nr_written);
} else if (!btrfs_test_opt(root, COMPRESS) &&
!(BTRFS_I(inode)->force_compress) &&
!(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
ret = cow_file_range(inode, locked_page, start, end,
page_started, nr_written, 1);
} else {
set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags);
ret = cow_file_range_async(inode, locked_page, start, end,
page_started, nr_written);
}
return ret;
}
static void btrfs_split_extent_hook(struct inode *inode,
struct extent_state *orig, u64 split)
{
/* not delalloc, ignore it */
if (!(orig->state & EXTENT_DELALLOC))
return;
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents++;
spin_unlock(&BTRFS_I(inode)->lock);
}
/*
* extent_io.c merge_extent_hook, used to track merged delayed allocation
* extents so we can keep track of new extents that are just merged onto old
* extents, such as when we are doing sequential writes, so we can properly
* account for the metadata space we'll need.
*/
static void btrfs_merge_extent_hook(struct inode *inode,
struct extent_state *new,
struct extent_state *other)
{
/* not delalloc, ignore it */
if (!(other->state & EXTENT_DELALLOC))
return;
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents--;
spin_unlock(&BTRFS_I(inode)->lock);
}
/*
* extent_io.c set_bit_hook, used to track delayed allocation
* bytes in this file, and to maintain the list of inodes that
* have pending delalloc work to be done.
*/
static void btrfs_set_bit_hook(struct inode *inode,
struct extent_state *state, int *bits)
{
/*
* set_bit and clear bit hooks normally require _irqsave/restore
* but in this case, we are only testing for the DELALLOC
* bit, which is only set or cleared with irqs on
*/
if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 len = state->end + 1 - state->start;
bool do_list = !btrfs_is_free_space_inode(inode);
if (*bits & EXTENT_FIRST_DELALLOC) {
*bits &= ~EXTENT_FIRST_DELALLOC;
} else {
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents++;
spin_unlock(&BTRFS_I(inode)->lock);
}
spin_lock(&root->fs_info->delalloc_lock);
BTRFS_I(inode)->delalloc_bytes += len;
root->fs_info->delalloc_bytes += len;
if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
&root->fs_info->delalloc_inodes);
}
spin_unlock(&root->fs_info->delalloc_lock);
}
}
/*
* extent_io.c clear_bit_hook, see set_bit_hook for why
*/
static void btrfs_clear_bit_hook(struct inode *inode,
struct extent_state *state, int *bits)
{
/*
* set_bit and clear bit hooks normally require _irqsave/restore
* but in this case, we are only testing for the DELALLOC
* bit, which is only set or cleared with irqs on
*/
if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 len = state->end + 1 - state->start;
bool do_list = !btrfs_is_free_space_inode(inode);
if (*bits & EXTENT_FIRST_DELALLOC) {
*bits &= ~EXTENT_FIRST_DELALLOC;
} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents--;
spin_unlock(&BTRFS_I(inode)->lock);
}
if (*bits & EXTENT_DO_ACCOUNTING)
btrfs_delalloc_release_metadata(inode, len);
if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
&& do_list)
btrfs_free_reserved_data_space(inode, len);
spin_lock(&root->fs_info->delalloc_lock);
root->fs_info->delalloc_bytes -= len;
BTRFS_I(inode)->delalloc_bytes -= len;
if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
list_del_init(&BTRFS_I(inode)->delalloc_inodes);
}
spin_unlock(&root->fs_info->delalloc_lock);
}
}
/*
* extent_io.c merge_bio_hook, this must check the chunk tree to make sure
* we don't create bios that span stripes or chunks
*/
int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
size_t size, struct bio *bio,
unsigned long bio_flags)
{
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
struct btrfs_mapping_tree *map_tree;
u64 logical = (u64)bio->bi_sector << 9;
u64 length = 0;
u64 map_length;
int ret;
if (bio_flags & EXTENT_BIO_COMPRESSED)
return 0;
length = bio->bi_size;
map_tree = &root->fs_info->mapping_tree;
map_length = length;
ret = btrfs_map_block(map_tree, READ, logical,
&map_length, NULL, 0);
/* Will always return 0 or 1 with map_multi == NULL */
BUG_ON(ret < 0);
if (map_length < length + size)
return 1;
return 0;
}
/*
* in order to insert checksums into the metadata in large chunks,
* we wait until bio submission time. All the pages in the bio are
* checksummed and sums are attached onto the ordered extent record.
*
* At IO completion time the cums attached on the ordered extent record
* are inserted into the btree
*/
static int __btrfs_submit_bio_start(struct inode *inode, int rw,
struct bio *bio, int mirror_num,
unsigned long bio_flags,
u64 bio_offset)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
BUG_ON(ret); /* -ENOMEM */
return 0;
}
/*
* in order to insert checksums into the metadata in large chunks,
* we wait until bio submission time. All the pages in the bio are
* checksummed and sums are attached onto the ordered extent record.
*
* At IO completion time the cums attached on the ordered extent record
* are inserted into the btree
*/
static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 bio_offset)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
return btrfs_map_bio(root, rw, bio, mirror_num, 1);
}
/*
* extent_io.c submission hook. This does the right thing for csum calculation
* on write, or reading the csums from the tree before a read
*/
static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 bio_offset)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
int skip_sum;
int metadata = 0;
skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
if (btrfs_is_free_space_inode(inode))
metadata = 2;
if (!(rw & REQ_WRITE)) {
ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
if (ret)
return ret;
if (bio_flags & EXTENT_BIO_COMPRESSED) {
return btrfs_submit_compressed_read(inode, bio,
mirror_num, bio_flags);
} else if (!skip_sum) {
ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
if (ret)
return ret;
}
goto mapit;
} else if (!skip_sum) {
/* csum items have already been cloned */
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
goto mapit;
/* we're doing a write, do the async checksumming */
return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
inode, rw, bio, mirror_num,
bio_flags, bio_offset,
__btrfs_submit_bio_start,
__btrfs_submit_bio_done);
}
mapit:
return btrfs_map_bio(root, rw, bio, mirror_num, 0);
}
/*
* given a list of ordered sums record them in the inode. This happens
* at IO completion time based on sums calculated at bio submission time.
*/
static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
struct inode *inode, u64 file_offset,
struct list_head *list)
{
struct btrfs_ordered_sum *sum;
list_for_each_entry(sum, list, list) {
btrfs_csum_file_blocks(trans,
BTRFS_I(inode)->root->fs_info->csum_root, sum);
}
return 0;
}
int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
struct extent_state **cached_state)
{
if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
WARN_ON(1);
return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
cached_state, GFP_NOFS);
}
/* see btrfs_writepage_start_hook for details on why this is required */
struct btrfs_writepage_fixup {
struct page *page;
struct btrfs_work work;
};
static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
{
struct btrfs_writepage_fixup *fixup;
struct btrfs_ordered_extent *ordered;
struct extent_state *cached_state = NULL;
struct page *page;
struct inode *inode;
u64 page_start;
u64 page_end;
int ret;
fixup = container_of(work, struct btrfs_writepage_fixup, work);
page = fixup->page;
again:
lock_page(page);
if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
ClearPageChecked(page);
goto out_page;
}
inode = page->mapping->host;
page_start = page_offset(page);
page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
&cached_state);
/* already ordered? We're done */
if (PagePrivate2(page))
goto out;
ordered = btrfs_lookup_ordered_extent(inode, page_start);
if (ordered) {
unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
page_end, &cached_state, GFP_NOFS);
unlock_page(page);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
goto again;
}
ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
if (ret) {
mapping_set_error(page->mapping, ret);
end_extent_writepage(page, ret, page_start, page_end);
ClearPageChecked(page);
goto out;
}
btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
ClearPageChecked(page);
set_page_dirty(page);
out:
unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
&cached_state, GFP_NOFS);
out_page:
unlock_page(page);
page_cache_release(page);
kfree(fixup);
}
/*
* There are a few paths in the higher layers of the kernel that directly
* set the page dirty bit without asking the filesystem if it is a
* good idea. This causes problems because we want to make sure COW
* properly happens and the data=ordered rules are followed.
*
* In our case any range that doesn't have the ORDERED bit set
* hasn't been properly setup for IO. We kick off an async process
* to fix it up. The async helper will wait for ordered extents, set
* the delalloc bit and make it safe to write the page.
*/
static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
{
struct inode *inode = page->mapping->host;
struct btrfs_writepage_fixup *fixup;
struct btrfs_root *root = BTRFS_I(inode)->root;
/* this page is properly in the ordered list */
if (TestClearPagePrivate2(page))
return 0;
if (PageChecked(page))
return -EAGAIN;
fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
if (!fixup)
return -EAGAIN;
SetPageChecked(page);
page_cache_get(page);
fixup->work.func = btrfs_writepage_fixup_worker;
fixup->page = page;
btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
return -EBUSY;
}
static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
struct inode *inode, u64 file_pos,
u64 disk_bytenr, u64 disk_num_bytes,
u64 num_bytes, u64 ram_bytes,
u8 compression, u8 encryption,
u16 other_encoding, int extent_type)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_file_extent_item *fi;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key ins;
u64 hint;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
/*
* we may be replacing one extent in the tree with another.
* The new extent is pinned in the extent map, and we don't want
* to drop it from the cache until it is completely in the btree.
*
* So, tell btrfs_drop_extents to leave this extent in the cache.
* the caller is expected to unpin it and allow it to be merged
* with the others.
*/
ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
&hint, 0);
if (ret)
goto out;
ins.objectid = btrfs_ino(inode);
ins.offset = file_pos;
ins.type = BTRFS_EXTENT_DATA_KEY;
ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
if (ret)
goto out;
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_type(leaf, fi, extent_type);
btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
btrfs_set_file_extent_offset(leaf, fi, 0);
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
btrfs_set_file_extent_compression(leaf, fi, compression);
btrfs_set_file_extent_encryption(leaf, fi, encryption);
btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
btrfs_unlock_up_safe(path, 1);
btrfs_set_lock_blocking(leaf);
btrfs_mark_buffer_dirty(leaf);
inode_add_bytes(inode, num_bytes);
ins.objectid = disk_bytenr;
ins.offset = disk_num_bytes;
ins.type = BTRFS_EXTENT_ITEM_KEY;
ret = btrfs_alloc_reserved_file_extent(trans, root,
root->root_key.objectid,
btrfs_ino(inode), file_pos, &ins);
out:
btrfs_free_path(path);
return ret;
}
/*
* helper function for btrfs_finish_ordered_io, this
* just reads in some of the csum leaves to prime them into ram
* before we start the transaction. It limits the amount of btree
* reads required while inside the transaction.
*/
/* as ordered data IO finishes, this gets called so we can finish
* an ordered extent if the range of bytes in the file it covers are
* fully written.
*/
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
{
struct inode *inode = ordered_extent->inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans = NULL;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_state *cached_state = NULL;
int compress_type = 0;
int ret;
bool nolock;
nolock = btrfs_is_free_space_inode(inode);
if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
ret = -EIO;
goto out;
}
if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
if (!ret) {
if (nolock)
trans = btrfs_join_transaction_nolock(root);
else
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
ret = btrfs_update_inode_fallback(trans, root, inode);
if (ret) /* -ENOMEM or corruption */
btrfs_abort_transaction(trans, root, ret);
}
goto out;
}
lock_extent_bits(io_tree, ordered_extent->file_offset,
ordered_extent->file_offset + ordered_extent->len - 1,
0, &cached_state);
if (nolock)
trans = btrfs_join_transaction_nolock(root);
else
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out_unlock;
}
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
compress_type = ordered_extent->compress_type;
if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
BUG_ON(compress_type);
ret = btrfs_mark_extent_written(trans, inode,
ordered_extent->file_offset,
ordered_extent->file_offset +
ordered_extent->len);
} else {
BUG_ON(root == root->fs_info->tree_root);
ret = insert_reserved_file_extent(trans, inode,
ordered_extent->file_offset,
ordered_extent->start,
ordered_extent->disk_len,
ordered_extent->len,
ordered_extent->len,
compress_type, 0, 0,
BTRFS_FILE_EXTENT_REG);
unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
ordered_extent->file_offset,
ordered_extent->len);
}
if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto out_unlock;
}
add_pending_csums(trans, inode, ordered_extent->file_offset,
&ordered_extent->list);
ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
ret = btrfs_update_inode_fallback(trans, root, inode);
if (ret) { /* -ENOMEM or corruption */
btrfs_abort_transaction(trans, root, ret);
goto out_unlock;
}
}
ret = 0;
out_unlock:
unlock_extent_cached(io_tree, ordered_extent->file_offset,
ordered_extent->file_offset +
ordered_extent->len - 1, &cached_state, GFP_NOFS);
out:
if (root != root->fs_info->tree_root)
btrfs_delalloc_release_metadata(inode, ordered_extent->len);
if (trans) {
if (nolock)
btrfs_end_transaction_nolock(trans, root);
else
btrfs_end_transaction(trans, root);
}
if (ret)
clear_extent_uptodate(io_tree, ordered_extent->file_offset,
ordered_extent->file_offset +
ordered_extent->len - 1, NULL, GFP_NOFS);
/*
* This needs to be dont to make sure anybody waiting knows we are done
* upating everything for this ordered extent.
*/
btrfs_remove_ordered_extent(inode, ordered_extent);
/* once for us */
btrfs_put_ordered_extent(ordered_extent);
/* once for the tree */
btrfs_put_ordered_extent(ordered_extent);
return ret;
}
static void finish_ordered_fn(struct btrfs_work *work)
{
struct btrfs_ordered_extent *ordered_extent;
ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
btrfs_finish_ordered_io(ordered_extent);
}
static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
struct extent_state *state, int uptodate)
{
struct inode *inode = page->mapping->host;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ordered_extent *ordered_extent = NULL;
struct btrfs_workers *workers;
trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
ClearPagePrivate2(page);
if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
end - start + 1, uptodate))
return 0;
ordered_extent->work.func = finish_ordered_fn;
ordered_extent->work.flags = 0;
if (btrfs_is_free_space_inode(inode))
workers = &root->fs_info->endio_freespace_worker;
else
workers = &root->fs_info->endio_write_workers;
btrfs_queue_worker(workers, &ordered_extent->work);
return 0;
}
/*
* when reads are done, we need to check csums to verify the data is correct
* if there's a match, we allow the bio to finish. If not, the code in
* extent_io.c will try to find good copies for us.
*/
static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
struct extent_state *state, int mirror)
{
size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
struct inode *inode = page->mapping->host;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
char *kaddr;
u64 private = ~(u32)0;
int ret;
struct btrfs_root *root = BTRFS_I(inode)->root;
u32 csum = ~(u32)0;
if (PageChecked(page)) {
ClearPageChecked(page);
goto good;
}
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
goto good;
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
GFP_NOFS);
return 0;
}
if (state && state->start == start) {
private = state->private;
ret = 0;
} else {
ret = get_state_private(io_tree, start, &private);
}
kaddr = kmap_atomic(page);
if (ret)
goto zeroit;
csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
btrfs_csum_final(csum, (char *)&csum);
if (csum != private)
goto zeroit;
kunmap_atomic(kaddr);
good:
return 0;
zeroit:
printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
"private %llu\n",
(unsigned long long)btrfs_ino(page->mapping->host),
(unsigned long long)start, csum,
(unsigned long long)private);
memset(kaddr + offset, 1, end - start + 1);
flush_dcache_page(page);
kunmap_atomic(kaddr);
if (private == 0)
return 0;
return -EIO;
}
struct delayed_iput {
struct list_head list;
struct inode *inode;
};
/* JDM: If this is fs-wide, why can't we add a pointer to
* btrfs_inode instead and avoid the allocation? */
void btrfs_add_delayed_iput(struct inode *inode)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
struct delayed_iput *delayed;
if (atomic_add_unless(&inode->i_count, -1, 1))
return;
delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
delayed->inode = inode;
spin_lock(&fs_info->delayed_iput_lock);
list_add_tail(&delayed->list, &fs_info->delayed_iputs);
spin_unlock(&fs_info->delayed_iput_lock);
}
void btrfs_run_delayed_iputs(struct btrfs_root *root)
{
LIST_HEAD(list);
struct btrfs_fs_info *fs_info = root->fs_info;
struct delayed_iput *delayed;
int empty;
spin_lock(&fs_info->delayed_iput_lock);
empty = list_empty(&fs_info->delayed_iputs);
spin_unlock(&fs_info->delayed_iput_lock);
if (empty)
return;
down_read(&root->fs_info->cleanup_work_sem);
spin_lock(&fs_info->delayed_iput_lock);
list_splice_init(&fs_info->delayed_iputs, &list);
spin_unlock(&fs_info->delayed_iput_lock);
while (!list_empty(&list)) {
delayed = list_entry(list.next, struct delayed_iput, list);
list_del(&delayed->list);
iput(delayed->inode);
kfree(delayed);
}
up_read(&root->fs_info->cleanup_work_sem);
}
enum btrfs_orphan_cleanup_state {
ORPHAN_CLEANUP_STARTED = 1,
ORPHAN_CLEANUP_DONE = 2,
};
/*
* This is called in transaction commit time. If there are no orphan
* files in the subvolume, it removes orphan item and frees block_rsv
* structure.
*/
void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_rsv *block_rsv;
int ret;
if (atomic_read(&root->orphan_inodes) ||
root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
return;
spin_lock(&root->orphan_lock);
if (atomic_read(&root->orphan_inodes)) {
spin_unlock(&root->orphan_lock);
return;
}
if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
spin_unlock(&root->orphan_lock);
return;
}
block_rsv = root->orphan_block_rsv;
root->orphan_block_rsv = NULL;
spin_unlock(&root->orphan_lock);
if (root->orphan_item_inserted &&
btrfs_root_refs(&root->root_item) > 0) {
ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
root->root_key.objectid);
BUG_ON(ret);
root->orphan_item_inserted = 0;
}
if (block_rsv) {
WARN_ON(block_rsv->size > 0);
btrfs_free_block_rsv(root, block_rsv);
}
}
/*
* This creates an orphan entry for the given inode in case something goes
* wrong in the middle of an unlink/truncate.
*
* NOTE: caller of this function should reserve 5 units of metadata for
* this function.
*/
int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_block_rsv *block_rsv = NULL;
int reserve = 0;
int insert = 0;
int ret;
if (!root->orphan_block_rsv) {
block_rsv = btrfs_alloc_block_rsv(root);
if (!block_rsv)
return -ENOMEM;
}
spin_lock(&root->orphan_lock);
if (!root->orphan_block_rsv) {
root->orphan_block_rsv = block_rsv;
} else if (block_rsv) {
btrfs_free_block_rsv(root, block_rsv);
block_rsv = NULL;
}
if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
&BTRFS_I(inode)->runtime_flags)) {
#if 0
/*
* For proper ENOSPC handling, we should do orphan
* cleanup when mounting. But this introduces backward
* compatibility issue.
*/
if (!xchg(&root->orphan_item_inserted, 1))
insert = 2;
else
insert = 1;
#endif
insert = 1;
atomic_dec(&root->orphan_inodes);
}
if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
&BTRFS_I(inode)->runtime_flags))
reserve = 1;
spin_unlock(&root->orphan_lock);
/* grab metadata reservation from transaction handle */
if (reserve) {
ret = btrfs_orphan_reserve_metadata(trans, inode);
BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
}
/* insert an orphan item to track this unlinked/truncated file */
if (insert >= 1) {
ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
if (ret && ret != -EEXIST) {
clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
&BTRFS_I(inode)->runtime_flags);
btrfs_abort_transaction(trans, root, ret);
return ret;
}
ret = 0;
}
/* insert an orphan item to track subvolume contains orphan files */
if (insert >= 2) {
ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
root->root_key.objectid);
if (ret && ret != -EEXIST) {
btrfs_abort_transaction(trans, root, ret);
return ret;
}
}
return 0;
}
/*
* We have done the truncate/delete so we can go ahead and remove the orphan
* item for this particular inode.
*/
int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
int delete_item = 0;
int release_rsv = 0;
int ret = 0;
spin_lock(&root->orphan_lock);
if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
&BTRFS_I(inode)->runtime_flags))
delete_item = 1;
if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
&BTRFS_I(inode)->runtime_flags))
release_rsv = 1;
spin_unlock(&root->orphan_lock);
if (trans && delete_item) {
ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
}
if (release_rsv) {
btrfs_orphan_release_metadata(inode);
atomic_dec(&root->orphan_inodes);
}
return 0;
}
/*
* this cleans up any orphans that may be left on the list from the last use
* of this root.
*/
int btrfs_orphan_cleanup(struct btrfs_root *root)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key, found_key;
struct btrfs_trans_handle *trans;
struct inode *inode;
u64 last_objectid = 0;
int ret = 0, nr_unlink = 0, nr_truncate = 0;
if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
return 0;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
path->reada = -1;
key.objectid = BTRFS_ORPHAN_OBJECTID;
btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
/*
* if ret == 0 means we found what we were searching for, which
* is weird, but possible, so only screw with path if we didn't
* find the key and see if we have stuff that matches
*/
if (ret > 0) {
ret = 0;
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
/* pull out the item */
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
/* make sure the item matches what we want */
if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
break;
if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
break;
/* release the path since we're done with it */
btrfs_release_path(path);
/*
* this is where we are basically btrfs_lookup, without the
* crossing root thing. we store the inode number in the
* offset of the orphan item.
*/
if (found_key.offset == last_objectid) {
printk(KERN_ERR "btrfs: Error removing orphan entry, "
"stopping orphan cleanup\n");
ret = -EINVAL;
goto out;
}
last_objectid = found_key.offset;
found_key.objectid = found_key.offset;
found_key.type = BTRFS_INODE_ITEM_KEY;
found_key.offset = 0;
inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
ret = PTR_RET(inode);
if (ret && ret != -ESTALE)
goto out;
if (ret == -ESTALE && root == root->fs_info->tree_root) {
struct btrfs_root *dead_root;
struct btrfs_fs_info *fs_info = root->fs_info;
int is_dead_root = 0;
/*
* this is an orphan in the tree root. Currently these
* could come from 2 sources:
* a) a snapshot deletion in progress
* b) a free space cache inode
* We need to distinguish those two, as the snapshot
* orphan must not get deleted.
* find_dead_roots already ran before us, so if this
* is a snapshot deletion, we should find the root
* in the dead_roots list
*/
spin_lock(&fs_info->trans_lock);
list_for_each_entry(dead_root, &fs_info->dead_roots,
root_list) {
if (dead_root->root_key.objectid ==
found_key.objectid) {
is_dead_root = 1;
break;
}
}
spin_unlock(&fs_info->trans_lock);
if (is_dead_root) {
/* prevent this orphan from being found again */
key.offset = found_key.objectid - 1;
continue;
}
}
/*
* Inode is already gone but the orphan item is still there,
* kill the orphan item.
*/
if (ret == -ESTALE) {
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
printk(KERN_ERR "auto deleting %Lu\n",
found_key.objectid);
ret = btrfs_del_orphan_item(trans, root,
found_key.objectid);
BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
btrfs_end_transaction(trans, root);
continue;
}
/*
* add this inode to the orphan list so btrfs_orphan_del does
* the proper thing when we hit it
*/
set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
&BTRFS_I(inode)->runtime_flags);
/* if we have links, this was a truncate, lets do that */
if (inode->i_nlink) {
if (!S_ISREG(inode->i_mode)) {
WARN_ON(1);
iput(inode);
continue;
}
nr_truncate++;
ret = btrfs_truncate(inode);
} else {
nr_unlink++;
}
/* this will do delete_inode and everything for us */
iput(inode);
if (ret)
goto out;
}
/* release the path since we're done with it */
btrfs_release_path(path);
root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
if (root->orphan_block_rsv)
btrfs_block_rsv_release(root, root->orphan_block_rsv,
(u64)-1);
if (root->orphan_block_rsv || root->orphan_item_inserted) {
trans = btrfs_join_transaction(root);
if (!IS_ERR(trans))
btrfs_end_transaction(trans, root);
}
if (nr_unlink)
printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
if (nr_truncate)
printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
out:
if (ret)
printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
btrfs_free_path(path);
return ret;
}
/*
* very simple check to peek ahead in the leaf looking for xattrs. If we
* don't find any xattrs, we know there can't be any acls.
*
* slot is the slot the inode is in, objectid is the objectid of the inode
*/
static noinline int acls_after_inode_item(struct extent_buffer *leaf,
int slot, u64 objectid)
{
u32 nritems = btrfs_header_nritems(leaf);
struct btrfs_key found_key;
int scanned = 0;
slot++;
while (slot < nritems) {
btrfs_item_key_to_cpu(leaf, &found_key, slot);
/* we found a different objectid, there must not be acls */
if (found_key.objectid != objectid)
return 0;
/* we found an xattr, assume we've got an acl */
if (found_key.type == BTRFS_XATTR_ITEM_KEY)
return 1;
/*
* we found a key greater than an xattr key, there can't
* be any acls later on
*/
if (found_key.type > BTRFS_XATTR_ITEM_KEY)
return 0;
slot++;
scanned++;
/*
* it goes inode, inode backrefs, xattrs, extents,
* so if there are a ton of hard links to an inode there can
* be a lot of backrefs. Don't waste time searching too hard,
* this is just an optimization
*/
if (scanned >= 8)
break;
}
/* we hit the end of the leaf before we found an xattr or
* something larger than an xattr. We have to assume the inode
* has acls
*/
return 1;
}
/*
* read an inode from the btree into the in-memory inode
*/
static void btrfs_read_locked_inode(struct inode *inode)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_inode_item *inode_item;
struct btrfs_timespec *tspec;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_key location;
int maybe_acls;
u32 rdev;
int ret;
bool filled = false;
ret = btrfs_fill_inode(inode, &rdev);
if (!ret)
filled = true;
path = btrfs_alloc_path();
if (!path)
goto make_bad;
path->leave_spinning = 1;
memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
if (ret)
goto make_bad;
leaf = path->nodes[0];
if (filled)
goto cache_acl;
inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item);
inode->i_mode = btrfs_inode_mode(leaf, inode_item);
set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
inode->i_uid = btrfs_inode_uid(leaf, inode_item);
inode->i_gid = btrfs_inode_gid(leaf, inode_item);
btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
tspec = btrfs_inode_atime(inode_item);
inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
tspec = btrfs_inode_mtime(inode_item);
inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
tspec = btrfs_inode_ctime(inode_item);
inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
inode->i_version = btrfs_inode_sequence(leaf, inode_item);
inode->i_generation = BTRFS_I(inode)->generation;
inode->i_rdev = 0;
rdev = btrfs_inode_rdev(leaf, inode_item);
BTRFS_I(inode)->index_cnt = (u64)-1;
BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
cache_acl:
/*
* try to precache a NULL acl entry for files that don't have
* any xattrs or acls
*/
maybe_acls = acls_after_inode_item(leaf, path->slots[0],
btrfs_ino(inode));
if (!maybe_acls)
cache_no_acl(inode);
btrfs_free_path(path);
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
inode->i_mapping->a_ops = &btrfs_aops;
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
inode->i_fop = &btrfs_file_operations;
inode->i_op = &btrfs_file_inode_operations;
break;
case S_IFDIR:
inode->i_fop = &btrfs_dir_file_operations;
if (root == root->fs_info->tree_root)
inode->i_op = &btrfs_dir_ro_inode_operations;
else
inode->i_op = &btrfs_dir_inode_operations;
break;
case S_IFLNK:
inode->i_op = &btrfs_symlink_inode_operations;
inode->i_mapping->a_ops = &btrfs_symlink_aops;
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
break;
default:
inode->i_op = &btrfs_special_inode_operations;
init_special_inode(inode, inode->i_mode, rdev);
break;
}
btrfs_update_iflags(inode);
return;
make_bad:
btrfs_free_path(path);
make_bad_inode(inode);
}
/*
* given a leaf and an inode, copy the inode fields into the leaf
*/
static void fill_inode_item(struct btrfs_trans_handle *trans,
struct extent_buffer *leaf,
struct btrfs_inode_item *item,
struct inode *inode)
{
btrfs_set_inode_uid(leaf, item, inode->i_uid);
btrfs_set_inode_gid(leaf, item, inode->i_gid);
btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
btrfs_set_inode_mode(leaf, item, inode->i_mode);
btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
inode->i_atime.tv_sec);
btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
inode->i_atime.tv_nsec);
btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
inode->i_mtime.tv_sec);
btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
inode->i_mtime.tv_nsec);
btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
inode->i_ctime.tv_sec);
btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
inode->i_ctime.tv_nsec);
btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
btrfs_set_inode_sequence(leaf, item, inode->i_version);
btrfs_set_inode_transid(leaf, item, trans->transid);
btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
btrfs_set_inode_block_group(leaf, item, 0);
}
/*
* copy everything in the in-memory inode into the btree.
*/
static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode)
{
struct btrfs_inode_item *inode_item;
struct btrfs_path *path;
struct extent_buffer *leaf;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
1);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto failed;
}
btrfs_unlock_up_safe(path, 1);
leaf = path->nodes[0];
inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item);
fill_inode_item(trans, leaf, inode_item, inode);
btrfs_mark_buffer_dirty(leaf);
btrfs_set_inode_last_trans(trans, inode);
ret = 0;
failed:
btrfs_free_path(path);
return ret;
}
/*
* copy everything in the in-memory inode into the btree.
*/
noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode)
{
int ret;
/*
* If the inode is a free space inode, we can deadlock during commit
* if we put it into the delayed code.
*
* The data relocation inode should also be directly updated
* without delay
*/
if (!btrfs_is_free_space_inode(inode)
&& root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
btrfs_update_root_times(trans, root);
ret = btrfs_delayed_update_inode(trans, root, inode);
if (!ret)
btrfs_set_inode_last_trans(trans, inode);
return ret;
}
return btrfs_update_inode_item(trans, root, inode);
}
static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode)
{
int ret;
ret = btrfs_update_inode(trans, root, inode);
if (ret == -ENOSPC)
return btrfs_update_inode_item(trans, root, inode);
return ret;
}
/*
* unlink helper that gets used here in inode.c and in the tree logging
* recovery code. It remove a link in a directory with a given name, and
* also drops the back refs in the inode to the directory
*/
static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, struct inode *inode,
const char *name, int name_len)
{
struct btrfs_path *path;
int ret = 0;
struct extent_buffer *leaf;
struct btrfs_dir_item *di;
struct btrfs_key key;
u64 index;
u64 ino = btrfs_ino(inode);
u64 dir_ino = btrfs_ino(dir);
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
path->leave_spinning = 1;
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
name, name_len, -1);
if (IS_ERR(di)) {
ret = PTR_ERR(di);
goto err;
}
if (!di) {
ret = -ENOENT;
goto err;
}
leaf = path->nodes[0];
btrfs_dir_item_key_to_cpu(leaf, di, &key);
ret = btrfs_delete_one_dir_name(trans, root, path, di);
if (ret)
goto err;
btrfs_release_path(path);
ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
dir_ino, &index);
if (ret) {
printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
"inode %llu parent %llu\n", name_len, name,
(unsigned long long)ino, (unsigned long long)dir_ino);
btrfs_abort_transaction(trans, root, ret);
goto err;
}
ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto err;
}
ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
inode, dir_ino);
if (ret != 0 && ret != -ENOENT) {
btrfs_abort_transaction(trans, root, ret);
goto err;
}
ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
dir, index);
if (ret == -ENOENT)
ret = 0;
err:
btrfs_free_path(path);
if (ret)
goto out;
btrfs_i_size_write(dir, dir->i_size - name_len * 2);
inode_inc_iversion(inode);
inode_inc_iversion(dir);
inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
ret = btrfs_update_inode(trans, root, dir);
out:
return ret;
}
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, struct inode *inode,
const char *name, int name_len)
{
int ret;
ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
if (!ret) {
btrfs_drop_nlink(inode);
ret = btrfs_update_inode(trans, root, inode);
}
return ret;
}
/* helper to check if there is any shared block in the path */
static int check_path_shared(struct btrfs_root *root,
struct btrfs_path *path)
{
struct extent_buffer *eb;
int level;
u64 refs = 1;
for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
int ret;
if (!path->nodes[level])
break;
eb = path->nodes[level];
if (!btrfs_block_can_be_shared(root, eb))
continue;
ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
&refs, NULL);
if (refs > 1)
return 1;
}
return 0;
}
/*
* helper to start transaction for unlink and rmdir.
*
* unlink and rmdir are special in btrfs, they do not always free space.
* so in enospc case, we should make sure they will free space before
* allowing them to use the global metadata reservation.
*/
static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
struct dentry *dentry)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_path *path;
struct btrfs_inode_ref *ref;
struct btrfs_dir_item *di;
struct inode *inode = dentry->d_inode;
u64 index;
int check_link = 1;
int err = -ENOSPC;
int ret;
u64 ino = btrfs_ino(inode);
u64 dir_ino = btrfs_ino(dir);
/*
* 1 for the possible orphan item
* 1 for the dir item
* 1 for the dir index
* 1 for the inode ref
* 1 for the inode ref in the tree log
* 2 for the dir entries in the log
* 1 for the inode
*/
trans = btrfs_start_transaction(root, 8);
if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
return trans;
if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
return ERR_PTR(-ENOSPC);
/* check if there is someone else holds reference */
if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
return ERR_PTR(-ENOSPC);
if (atomic_read(&inode->i_count) > 2)
return ERR_PTR(-ENOSPC);
if (xchg(&root->fs_info->enospc_unlink, 1))
return ERR_PTR(-ENOSPC);
path = btrfs_alloc_path();
if (!path) {
root->fs_info->enospc_unlink = 0;
return ERR_PTR(-ENOMEM);
}
/* 1 for the orphan item */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
btrfs_free_path(path);
root->fs_info->enospc_unlink = 0;
return trans;
}
path->skip_locking = 1;
path->search_commit_root = 1;
ret = btrfs_lookup_inode(trans, root, path,
&BTRFS_I(dir)->location, 0);
if (ret < 0) {
err = ret;
goto out;
}
if (ret == 0) {
if (check_path_shared(root, path))
goto out;
} else {
check_link = 0;
}
btrfs_release_path(path);
ret = btrfs_lookup_inode(trans, root, path,
&BTRFS_I(inode)->location, 0);
if (ret < 0) {
err = ret;
goto out;
}
if (ret == 0) {
if (check_path_shared(root, path))
goto out;
} else {
check_link = 0;
}
btrfs_release_path(path);
if (ret == 0 && S_ISREG(inode->i_mode)) {
ret = btrfs_lookup_file_extent(trans, root, path,
ino, (u64)-1, 0);
if (ret < 0) {
err = ret;
goto out;
}
BUG_ON(ret == 0); /* Corruption */
if (check_path_shared(root, path))
goto out;
btrfs_release_path(path);
}
if (!check_link) {
err = 0;
goto out;
}
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
dentry->d_name.name, dentry->d_name.len, 0);
if (IS_ERR(di)) {
err = PTR_ERR(di);
goto out;
}
if (di) {
if (check_path_shared(root, path))
goto out;
} else {
err = 0;
goto out;
}
btrfs_release_path(path);
ref = btrfs_lookup_inode_ref(trans, root, path,
dentry->d_name.name, dentry->d_name.len,
ino, dir_ino, 0);
if (IS_ERR(ref)) {
err = PTR_ERR(ref);
goto out;
}
BUG_ON(!ref); /* Logic error */
if (check_path_shared(root, path))
goto out;
index = btrfs_inode_ref_index(path->nodes[0], ref);
btrfs_release_path(path);
/*
* This is a commit root search, if we can lookup inode item and other
* relative items in the commit root, it means the transaction of
* dir/file creation has been committed, and the dir index item that we
* delay to insert has also been inserted into the commit root. So
* we needn't worry about the delayed insertion of the dir index item
* here.
*/
di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
dentry->d_name.name, dentry->d_name.len, 0);
if (IS_ERR(di)) {
err = PTR_ERR(di);
goto out;
}
BUG_ON(ret == -ENOENT);
if (check_path_shared(root, path))
goto out;
err = 0;
out:
btrfs_free_path(path);
/* Migrate the orphan reservation over */
if (!err)
err = btrfs_block_rsv_migrate(trans->block_rsv,
&root->fs_info->global_block_rsv,
trans->bytes_reserved);
if (err) {
btrfs_end_transaction(trans, root);
root->fs_info->enospc_unlink = 0;
return ERR_PTR(err);
}
trans->block_rsv = &root->fs_info->global_block_rsv;
return trans;
}
static void __unlink_end_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
if (trans->block_rsv == &root->fs_info->global_block_rsv) {
btrfs_block_rsv_release(root, trans->block_rsv,
trans->bytes_reserved);
trans->block_rsv = &root->fs_info->trans_block_rsv;
BUG_ON(!root->fs_info->enospc_unlink);
root->fs_info->enospc_unlink = 0;
}
btrfs_end_transaction(trans, root);
}
static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
{
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_trans_handle *trans;
struct inode *inode = dentry->d_inode;
int ret;
unsigned long nr = 0;
trans = __unlink_start_trans(dir, dentry);
if (IS_ERR(trans))
return PTR_ERR(trans);
btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
dentry->d_name.name, dentry->d_name.len);
if (ret)
goto out;
if (inode->i_nlink == 0) {
ret = btrfs_orphan_add(trans, inode);
if (ret)
goto out;
}
out:
nr = trans->blocks_used;
__unlink_end_trans(trans, root);
btrfs_btree_balance_dirty(root, nr);
return ret;
}
int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, u64 objectid,
const char *name, int name_len)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_dir_item *di;
struct btrfs_key key;
u64 index;
int ret;
u64 dir_ino = btrfs_ino(dir);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
name, name_len, -1);
if (IS_ERR_OR_NULL(di)) {
if (!di)
ret = -ENOENT;
else
ret = PTR_ERR(di);
goto out;
}
leaf = path->nodes[0];
btrfs_dir_item_key_to_cpu(leaf, di, &key);
WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
ret = btrfs_delete_one_dir_name(trans, root, path, di);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out;
}
btrfs_release_path(path);
ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
objectid, root->root_key.objectid,
dir_ino, &index, name, name_len);
if (ret < 0) {
if (ret != -ENOENT) {
btrfs_abort_transaction(trans, root, ret);
goto out;
}
di = btrfs_search_dir_index_item(root, path, dir_ino,
name, name_len);
if (IS_ERR_OR_NULL(di)) {
if (!di)
ret = -ENOENT;
else
ret = PTR_ERR(di);
btrfs_abort_transaction(trans, root, ret);
goto out;
}
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
btrfs_release_path(path);
index = key.offset;
}
btrfs_release_path(path);
ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out;
}
btrfs_i_size_write(dir, dir->i_size - name_len * 2);
inode_inc_iversion(dir);
dir->i_mtime = dir->i_ctime = CURRENT_TIME;
ret = btrfs_update_inode_fallback(trans, root, dir);
if (ret)
btrfs_abort_transaction(trans, root, ret);
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
int err = 0;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_trans_handle *trans;
unsigned long nr = 0;
if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
return -ENOTEMPTY;
trans = __unlink_start_trans(dir, dentry);
if (IS_ERR(trans))
return PTR_ERR(trans);
if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
err = btrfs_unlink_subvol(trans, root, dir,
BTRFS_I(inode)->location.objectid,
dentry->d_name.name,
dentry->d_name.len);
goto out;
}
err = btrfs_orphan_add(trans, inode);
if (err)
goto out;
/* now the directory is empty */
err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
dentry->d_name.name, dentry->d_name.len);
if (!err)
btrfs_i_size_write(inode, 0);
out:
nr = trans->blocks_used;
__unlink_end_trans(trans, root);
btrfs_btree_balance_dirty(root, nr);
return err;
}
/*
* this can truncate away extent items, csum items and directory items.
* It starts at a high offset and removes keys until it can't find
* any higher than new_size
*
* csum items that cross the new i_size are truncated to the new size
* as well.
*
* min_type is the minimum key type to truncate down to. If set to 0, this
* will kill all the items on this inode, including the INODE_ITEM_KEY.
*/
int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode,
u64 new_size, u32 min_type)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
struct btrfs_key found_key;
u64 extent_start = 0;
u64 extent_num_bytes = 0;
u64 extent_offset = 0;
u64 item_end = 0;
u64 mask = root->sectorsize - 1;
u32 found_type = (u8)-1;
int found_extent;
int del_item;
int pending_del_nr = 0;
int pending_del_slot = 0;
int extent_type = -1;
int ret;
int err = 0;
u64 ino = btrfs_ino(inode);
BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = -1;
if (root->ref_cows || root == root->fs_info->tree_root)
btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
/*
* This function is also used to drop the items in the log tree before
* we relog the inode, so if root != BTRFS_I(inode)->root, it means
* it is used to drop the loged items. So we shouldn't kill the delayed
* items.
*/
if (min_type == 0 && root == BTRFS_I(inode)->root)
btrfs_kill_delayed_inode_items(inode);
key.objectid = ino;
key.offset = (u64)-1;
key.type = (u8)-1;
search_again:
path->leave_spinning = 1;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0) {
err = ret;
goto out;
}
if (ret > 0) {
/* there are no items in the tree for us to truncate, we're
* done
*/
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
}
while (1) {
fi = NULL;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
found_type = btrfs_key_type(&found_key);
if (found_key.objectid != ino)
break;
if (found_type < min_type)
break;
item_end = found_key.offset;
if (found_type == BTRFS_EXTENT_DATA_KEY) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
item_end +=
btrfs_file_extent_num_bytes(leaf, fi);
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
item_end += btrfs_file_extent_inline_len(leaf,
fi);
}
item_end--;
}
if (found_type > min_type) {
del_item = 1;
} else {
if (item_end < new_size)
break;
if (found_key.offset >= new_size)
del_item = 1;
else
del_item = 0;
}
found_extent = 0;
/* FIXME, shrink the extent if the ref count is only 1 */
if (found_type != BTRFS_EXTENT_DATA_KEY)
goto delete;
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
u64 num_dec;
extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
if (!del_item) {
u64 orig_num_bytes =
btrfs_file_extent_num_bytes(leaf, fi);
extent_num_bytes = new_size -
found_key.offset + root->sectorsize - 1;
extent_num_bytes = extent_num_bytes &
~((u64)root->sectorsize - 1);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_num_bytes);
num_dec = (orig_num_bytes -
extent_num_bytes);
if (root->ref_cows && extent_start != 0)
inode_sub_bytes(inode, num_dec);
btrfs_mark_buffer_dirty(leaf);
} else {
extent_num_bytes =
btrfs_file_extent_disk_num_bytes(leaf,
fi);
extent_offset = found_key.offset -
btrfs_file_extent_offset(leaf, fi);
/* FIXME blocksize != 4096 */
num_dec = btrfs_file_extent_num_bytes(leaf, fi);
if (extent_start != 0) {
found_extent = 1;
if (root->ref_cows)
inode_sub_bytes(inode, num_dec);
}
}
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
/*
* we can't truncate inline items that have had
* special encodings
*/
if (!del_item &&
btrfs_file_extent_compression(leaf, fi) == 0 &&
btrfs_file_extent_encryption(leaf, fi) == 0 &&
btrfs_file_extent_other_encoding(leaf, fi) == 0) {
u32 size = new_size - found_key.offset;
if (root->ref_cows) {
inode_sub_bytes(inode, item_end + 1 -
new_size);
}
size =
btrfs_file_extent_calc_inline_size(size);
btrfs_truncate_item(trans, root, path,
size, 1);
} else if (root->ref_cows) {
inode_sub_bytes(inode, item_end + 1 -
found_key.offset);
}
}
delete:
if (del_item) {
if (!pending_del_nr) {
/* no pending yet, add ourselves */
pending_del_slot = path->slots[0];
pending_del_nr = 1;
} else if (pending_del_nr &&
path->slots[0] + 1 == pending_del_slot) {
/* hop on the pending chunk */
pending_del_nr++;
pending_del_slot = path->slots[0];
} else {
BUG();
}
} else {
break;
}
if (found_extent && (root->ref_cows ||
root == root->fs_info->tree_root)) {
btrfs_set_path_blocking(path);
ret = btrfs_free_extent(trans, root, extent_start,
extent_num_bytes, 0,
btrfs_header_owner(leaf),
ino, extent_offset, 0);
BUG_ON(ret);
}
if (found_type == BTRFS_INODE_ITEM_KEY)
break;
if (path->slots[0] == 0 ||
path->slots[0] != pending_del_slot) {
if (root->ref_cows &&
BTRFS_I(inode)->location.objectid !=
BTRFS_FREE_INO_OBJECTID) {
err = -EAGAIN;
goto out;
}
if (pending_del_nr) {
ret = btrfs_del_items(trans, root, path,
pending_del_slot,
pending_del_nr);
if (ret) {
btrfs_abort_transaction(trans,
root, ret);
goto error;
}
pending_del_nr = 0;
}
btrfs_release_path(path);
goto search_again;
} else {
path->slots[0]--;
}
}
out:
if (pending_del_nr) {
ret = btrfs_del_items(trans, root, path, pending_del_slot,
pending_del_nr);
if (ret)
btrfs_abort_transaction(trans, root, ret);
}
error:
btrfs_free_path(path);
return err;
}
/*
* taken from block_truncate_page, but does cow as it zeros out
* any bytes left in the last page in the file.
*/
static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
{
struct inode *inode = mapping->host;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_ordered_extent *ordered;
struct extent_state *cached_state = NULL;
char *kaddr;
u32 blocksize = root->sectorsize;
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
struct page *page;
gfp_t mask = btrfs_alloc_write_mask(mapping);
int ret = 0;
u64 page_start;
u64 page_end;
if ((offset & (blocksize - 1)) == 0)
goto out;
ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
if (ret)
goto out;
ret = -ENOMEM;
again:
page = find_or_create_page(mapping, index, mask);
if (!page) {
btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
goto out;
}
page_start = page_offset(page);
page_end = page_start + PAGE_CACHE_SIZE - 1;
if (!PageUptodate(page)) {
ret = btrfs_readpage(NULL, page);
lock_page(page);
if (page->mapping != mapping) {
unlock_page(page);
page_cache_release(page);
goto again;
}
if (!PageUptodate(page)) {
ret = -EIO;
goto out_unlock;
}
}
wait_on_page_writeback(page);
lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
set_page_extent_mapped(page);
ordered = btrfs_lookup_ordered_extent(inode, page_start);
if (ordered) {
unlock_extent_cached(io_tree, page_start, page_end,
&cached_state, GFP_NOFS);
unlock_page(page);
page_cache_release(page);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
goto again;
}
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
0, 0, &cached_state, GFP_NOFS);
ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
&cached_state);
if (ret) {
unlock_extent_cached(io_tree, page_start, page_end,
&cached_state, GFP_NOFS);
goto out_unlock;
}
ret = 0;
if (offset != PAGE_CACHE_SIZE) {
kaddr = kmap(page);
memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
flush_dcache_page(page);
kunmap(page);
}
ClearPageChecked(page);
set_page_dirty(page);
unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
GFP_NOFS);
out_unlock:
if (ret)
btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
unlock_page(page);
page_cache_release(page);
out:
return ret;
}
/*
* This function puts in dummy file extents for the area we're creating a hole
* for. So if we are truncating this file to a larger size we need to insert
* these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
* the range between oldsize and size
*/
int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_map *em = NULL;
struct extent_state *cached_state = NULL;
u64 mask = root->sectorsize - 1;
u64 hole_start = (oldsize + mask) & ~mask;
u64 block_end = (size + mask) & ~mask;
u64 last_byte;
u64 cur_offset;
u64 hole_size;
int err = 0;
if (size <= hole_start)
return 0;
while (1) {
struct btrfs_ordered_extent *ordered;
btrfs_wait_ordered_range(inode, hole_start,
block_end - hole_start);
lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
&cached_state);
ordered = btrfs_lookup_ordered_extent(inode, hole_start);
if (!ordered)
break;
unlock_extent_cached(io_tree, hole_start, block_end - 1,
&cached_state, GFP_NOFS);
btrfs_put_ordered_extent(ordered);
}
cur_offset = hole_start;
while (1) {
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
block_end - cur_offset, 0);
if (IS_ERR(em)) {
err = PTR_ERR(em);
break;
}
last_byte = min(extent_map_end(em), block_end);
last_byte = (last_byte + mask) & ~mask;
if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
u64 hint_byte = 0;
hole_size = last_byte - cur_offset;
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
break;
}
err = btrfs_drop_extents(trans, inode, cur_offset,
cur_offset + hole_size,
&hint_byte, 1);
if (err) {
btrfs_abort_transaction(trans, root, err);
btrfs_end_transaction(trans, root);
break;
}
err = btrfs_insert_file_extent(trans, root,
btrfs_ino(inode), cur_offset, 0,
0, hole_size, 0, hole_size,
0, 0, 0);
if (err) {
btrfs_abort_transaction(trans, root, err);
btrfs_end_transaction(trans, root);
break;
}
btrfs_drop_extent_cache(inode, hole_start,
last_byte - 1, 0);
btrfs_update_inode(trans, root, inode);
btrfs_end_transaction(trans, root);
}
free_extent_map(em);
em = NULL;
cur_offset = last_byte;
if (cur_offset >= block_end)
break;
}
free_extent_map(em);
unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
GFP_NOFS);
return err;
}
static int btrfs_setsize(struct inode *inode, loff_t newsize)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
loff_t oldsize = i_size_read(inode);
int ret;
if (newsize == oldsize)
return 0;
if (newsize > oldsize) {
truncate_pagecache(inode, oldsize, newsize);
ret = btrfs_cont_expand(inode, oldsize, newsize);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
i_size_write(inode, newsize);
btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
ret = btrfs_update_inode(trans, root, inode);
btrfs_end_transaction(trans, root);
} else {
/*
* We're truncating a file that used to have good data down to
* zero. Make sure it gets into the ordered flush list so that
* any new writes get down to disk quickly.
*/
if (newsize == 0)
set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
&BTRFS_I(inode)->runtime_flags);
/* we don't support swapfiles, so vmtruncate shouldn't fail */
truncate_setsize(inode, newsize);
ret = btrfs_truncate(inode);
}
return ret;
}
static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
int err;
if (btrfs_root_readonly(root))
return -EROFS;
err = inode_change_ok(inode, attr);
if (err)
return err;
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
err = btrfs_setsize(inode, attr->ia_size);
if (err)
return err;
}
if (attr->ia_valid) {
setattr_copy(inode, attr);
inode_inc_iversion(inode);
err = btrfs_dirty_inode(inode);
if (!err && attr->ia_valid & ATTR_MODE)
err = btrfs_acl_chmod(inode);
}
return err;
}
void btrfs_evict_inode(struct inode *inode)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_block_rsv *rsv, *global_rsv;
u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
unsigned long nr;
int ret;
trace_btrfs_inode_evict(inode);
truncate_inode_pages(&inode->i_data, 0);
if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
btrfs_is_free_space_inode(inode)))
goto no_delete;
if (is_bad_inode(inode)) {
btrfs_orphan_del(NULL, inode);
goto no_delete;
}
/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
btrfs_wait_ordered_range(inode, 0, (u64)-1);
if (root->fs_info->log_root_recovering) {
BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
&BTRFS_I(inode)->runtime_flags));
goto no_delete;
}
if (inode->i_nlink > 0) {
BUG_ON(btrfs_root_refs(&root->root_item) != 0);
goto no_delete;
}
rsv = btrfs_alloc_block_rsv(root);
if (!rsv) {
btrfs_orphan_del(NULL, inode);
goto no_delete;
}
rsv->size = min_size;
global_rsv = &root->fs_info->global_block_rsv;
btrfs_i_size_write(inode, 0);
/*
* This is a bit simpler than btrfs_truncate since
*
* 1) We've already reserved our space for our orphan item in the
* unlink.
* 2) We're going to delete the inode item, so we don't need to update
* it at all.
*
* So we just need to reserve some slack space in case we add bytes when
* doing the truncate.
*/
while (1) {
ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
/*
* Try and steal from the global reserve since we will
* likely not use this space anyway, we want to try as
* hard as possible to get this to work.
*/
if (ret)
ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
if (ret) {
printk(KERN_WARNING "Could not get space for a "
"delete, will truncate on mount %d\n", ret);
btrfs_orphan_del(NULL, inode);
btrfs_free_block_rsv(root, rsv);
goto no_delete;
}
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
btrfs_orphan_del(NULL, inode);
btrfs_free_block_rsv(root, rsv);
goto no_delete;
}
trans->block_rsv = rsv;
ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
if (ret != -EAGAIN)
break;
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
trans = NULL;
btrfs_btree_balance_dirty(root, nr);
}
btrfs_free_block_rsv(root, rsv);
if (ret == 0) {
trans->block_rsv = root->orphan_block_rsv;
ret = btrfs_orphan_del(trans, inode);
BUG_ON(ret);
}
trans->block_rsv = &root->fs_info->trans_block_rsv;
if (!(root == root->fs_info->tree_root ||
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
btrfs_return_ino(root, btrfs_ino(inode));
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty(root, nr);
no_delete:
clear_inode(inode);
return;
}
/*
* this returns the key found in the dir entry in the location pointer.
* If no dir entries were found, location->objectid is 0.
*/
static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
struct btrfs_key *location)
{
const char *name = dentry->d_name.name;
int namelen = dentry->d_name.len;
struct btrfs_dir_item *di;
struct btrfs_path *path;
struct btrfs_root *root = BTRFS_I(dir)->root;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
namelen, 0);
if (IS_ERR(di))
ret = PTR_ERR(di);
if (IS_ERR_OR_NULL(di))
goto out_err;
btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
out:
btrfs_free_path(path);
return ret;
out_err:
location->objectid = 0;
goto out;
}
/*
* when we hit a tree root in a directory, the btrfs part of the inode
* needs to be changed to reflect the root directory of the tree root. This
* is kind of like crossing a mount point.
*/
static int fixup_tree_root_location(struct btrfs_root *root,
struct inode *dir,
struct dentry *dentry,
struct btrfs_key *location,
struct btrfs_root **sub_root)
{
struct btrfs_path *path;
struct btrfs_root *new_root;
struct btrfs_root_ref *ref;
struct extent_buffer *leaf;
int ret;
int err = 0;
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
goto out;
}
err = -ENOENT;
ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
BTRFS_I(dir)->root->root_key.objectid,
location->objectid);
if (ret) {
if (ret < 0)
err = ret;
goto out;
}
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
goto out;
ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
(unsigned long)(ref + 1),
dentry->d_name.len);
if (ret)
goto out;
btrfs_release_path(path);
new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
if (IS_ERR(new_root)) {
err = PTR_ERR(new_root);
goto out;
}
if (btrfs_root_refs(&new_root->root_item) == 0) {
err = -ENOENT;
goto out;
}
*sub_root = new_root;
location->objectid = btrfs_root_dirid(&new_root->root_item);
location->type = BTRFS_INODE_ITEM_KEY;
location->offset = 0;
err = 0;
out:
btrfs_free_path(path);
return err;
}
static void inode_tree_add(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_inode *entry;
struct rb_node **p;
struct rb_node *parent;
u64 ino = btrfs_ino(inode);
again:
p = &root->inode_tree.rb_node;
parent = NULL;
if (inode_unhashed(inode))
return;
spin_lock(&root->inode_lock);
while (*p) {
parent = *p;
entry = rb_entry(parent, struct btrfs_inode, rb_node);
if (ino < btrfs_ino(&entry->vfs_inode))
p = &parent->rb_left;
else if (ino > btrfs_ino(&entry->vfs_inode))
p = &parent->rb_right;
else {
WARN_ON(!(entry->vfs_inode.i_state &
(I_WILL_FREE | I_FREEING)));
rb_erase(parent, &root->inode_tree);
RB_CLEAR_NODE(parent);
spin_unlock(&root->inode_lock);
goto again;
}
}
rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
spin_unlock(&root->inode_lock);
}
static void inode_tree_del(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
int empty = 0;
spin_lock(&root->inode_lock);
if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
empty = RB_EMPTY_ROOT(&root->inode_tree);
}
spin_unlock(&root->inode_lock);
/*
* Free space cache has inodes in the tree root, but the tree root has a
* root_refs of 0, so this could end up dropping the tree root as a
* snapshot, so we need the extra !root->fs_info->tree_root check to
* make sure we don't drop it.
*/
if (empty && btrfs_root_refs(&root->root_item) == 0 &&
root != root->fs_info->tree_root) {
synchronize_srcu(&root->fs_info->subvol_srcu);
spin_lock(&root->inode_lock);
empty = RB_EMPTY_ROOT(&root->inode_tree);
spin_unlock(&root->inode_lock);
if (empty)
btrfs_add_dead_root(root);
}
}
void btrfs_invalidate_inodes(struct btrfs_root *root)
{
struct rb_node *node;
struct rb_node *prev;
struct btrfs_inode *entry;
struct inode *inode;
u64 objectid = 0;
WARN_ON(btrfs_root_refs(&root->root_item) != 0);
spin_lock(&root->inode_lock);
again:
node = root->inode_tree.rb_node;
prev = NULL;
while (node) {
prev = node;
entry = rb_entry(node, struct btrfs_inode, rb_node);
if (objectid < btrfs_ino(&entry->vfs_inode))
node = node->rb_left;
else if (objectid > btrfs_ino(&entry->vfs_inode))
node = node->rb_right;
else
break;
}
if (!node) {
while (prev) {
entry = rb_entry(prev, struct btrfs_inode, rb_node);
if (objectid <= btrfs_ino(&entry->vfs_inode)) {
node = prev;
break;
}
prev = rb_next(prev);
}
}
while (node) {
entry = rb_entry(node, struct btrfs_inode, rb_node);
objectid = btrfs_ino(&entry->vfs_inode) + 1;
inode = igrab(&entry->vfs_inode);
if (inode) {
spin_unlock(&root->inode_lock);
if (atomic_read(&inode->i_count) > 1)
d_prune_aliases(inode);
/*
* btrfs_drop_inode will have it removed from
* the inode cache when its usage count
* hits zero.
*/
iput(inode);
cond_resched();
spin_lock(&root->inode_lock);
goto again;
}
if (cond_resched_lock(&root->inode_lock))
goto again;
node = rb_next(node);
}
spin_unlock(&root->inode_lock);
}
static int btrfs_init_locked_inode(struct inode *inode, void *p)
{
struct btrfs_iget_args *args = p;
inode->i_ino = args->ino;
BTRFS_I(inode)->root = args->root;
return 0;
}
static int btrfs_find_actor(struct inode *inode, void *opaque)
{
struct btrfs_iget_args *args = opaque;
return args->ino == btrfs_ino(inode) &&
args->root == BTRFS_I(inode)->root;
}
static struct inode *btrfs_iget_locked(struct super_block *s,
u64 objectid,
struct btrfs_root *root)
{
struct inode *inode;
struct btrfs_iget_args args;
args.ino = objectid;
args.root = root;
inode = iget5_locked(s, objectid, btrfs_find_actor,
btrfs_init_locked_inode,
(void *)&args);
return inode;
}
/* Get an inode object given its location and corresponding root.
* Returns in *is_new if the inode was read from disk
*/
struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
struct btrfs_root *root, int *new)
{
struct inode *inode;
inode = btrfs_iget_locked(s, location->objectid, root);
if (!inode)
return ERR_PTR(-ENOMEM);
if (inode->i_state & I_NEW) {
BTRFS_I(inode)->root = root;
memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
btrfs_read_locked_inode(inode);
if (!is_bad_inode(inode)) {
inode_tree_add(inode);
unlock_new_inode(inode);
if (new)
*new = 1;
} else {
unlock_new_inode(inode);
iput(inode);
inode = ERR_PTR(-ESTALE);
}
}
return inode;
}
static struct inode *new_simple_dir(struct super_block *s,
struct btrfs_key *key,
struct btrfs_root *root)
{
struct inode *inode = new_inode(s);
if (!inode)
return ERR_PTR(-ENOMEM);
BTRFS_I(inode)->root = root;
memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
inode->i_op = &btrfs_dir_ro_inode_operations;
inode->i_fop = &simple_dir_operations;
inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
return inode;
}
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
{
struct inode *inode;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *sub_root = root;
struct btrfs_key location;
int index;
int ret = 0;
if (dentry->d_name.len > BTRFS_NAME_LEN)
return ERR_PTR(-ENAMETOOLONG);
if (unlikely(d_need_lookup(dentry))) {
memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
kfree(dentry->d_fsdata);
dentry->d_fsdata = NULL;
/* This thing is hashed, drop it for now */
d_drop(dentry);
} else {
ret = btrfs_inode_by_name(dir, dentry, &location);
}
if (ret < 0)
return ERR_PTR(ret);
if (location.objectid == 0)
return NULL;
if (location.type == BTRFS_INODE_ITEM_KEY) {
inode = btrfs_iget(dir->i_sb, &location, root, NULL);
return inode;
}
BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
index = srcu_read_lock(&root->fs_info->subvol_srcu);
ret = fixup_tree_root_location(root, dir, dentry,
&location, &sub_root);
if (ret < 0) {
if (ret != -ENOENT)
inode = ERR_PTR(ret);
else
inode = new_simple_dir(dir->i_sb, &location, sub_root);
} else {
inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
}
srcu_read_unlock(&root->fs_info->subvol_srcu, index);
if (!IS_ERR(inode) && root != sub_root) {
down_read(&root->fs_info->cleanup_work_sem);
if (!(inode->i_sb->s_flags & MS_RDONLY))
ret = btrfs_orphan_cleanup(sub_root);
up_read(&root->fs_info->cleanup_work_sem);
if (ret)
inode = ERR_PTR(ret);
}
return inode;
}
static int btrfs_dentry_delete(const struct dentry *dentry)
{
struct btrfs_root *root;
struct inode *inode = dentry->d_inode;
if (!inode && !IS_ROOT(dentry))
inode = dentry->d_parent->d_inode;
if (inode) {
root = BTRFS_I(inode)->root;
if (btrfs_root_refs(&root->root_item) == 0)
return 1;
if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
return 1;
}
return 0;
}
static void btrfs_dentry_release(struct dentry *dentry)
{
if (dentry->d_fsdata)
kfree(dentry->d_fsdata);
}
static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct dentry *ret;
ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
if (unlikely(d_need_lookup(dentry))) {
spin_lock(&dentry->d_lock);
dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
spin_unlock(&dentry->d_lock);
}
return ret;
}
unsigned char btrfs_filetype_table[] = {
DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
};
static int btrfs_real_readdir(struct file *filp, void *dirent,
filldir_t filldir)
{
struct inode *inode = filp->f_dentry->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_item *item;
struct btrfs_dir_item *di;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_path *path;
struct list_head ins_list;
struct list_head del_list;
int ret;
struct extent_buffer *leaf;
int slot;
unsigned char d_type;
int over = 0;
u32 di_cur;
u32 di_total;
u32 di_len;
int key_type = BTRFS_DIR_INDEX_KEY;
char tmp_name[32];
char *name_ptr;
int name_len;
int is_curr = 0; /* filp->f_pos points to the current index? */
/* FIXME, use a real flag for deciding about the key type */
if (root->fs_info->tree_root == root)
key_type = BTRFS_DIR_ITEM_KEY;
/* special case for "." */
if (filp->f_pos == 0) {
over = filldir(dirent, ".", 1,
filp->f_pos, btrfs_ino(inode), DT_DIR);
if (over)
return 0;
filp->f_pos = 1;
}
/* special case for .., just use the back ref */
if (filp->f_pos == 1) {
u64 pino = parent_ino(filp->f_path.dentry);
over = filldir(dirent, "..", 2,
filp->f_pos, pino, DT_DIR);
if (over)
return 0;
filp->f_pos = 2;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
if (key_type == BTRFS_DIR_INDEX_KEY) {
INIT_LIST_HEAD(&ins_list);
INIT_LIST_HEAD(&del_list);
btrfs_get_delayed_items(inode, &ins_list, &del_list);
}
btrfs_set_key_type(&key, key_type);
key.offset = filp->f_pos;
key.objectid = btrfs_ino(inode);
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto err;
while (1) {
leaf = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto err;
else if (ret > 0)
break;
continue;
}
item = btrfs_item_nr(leaf, slot);
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid != key.objectid)
break;
if (btrfs_key_type(&found_key) != key_type)
break;
if (found_key.offset < filp->f_pos)
goto next;
if (key_type == BTRFS_DIR_INDEX_KEY &&
btrfs_should_delete_dir_index(&del_list,
found_key.offset))
goto next;
filp->f_pos = found_key.offset;
is_curr = 1;
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
di_cur = 0;
di_total = btrfs_item_size(leaf, item);
while (di_cur < di_total) {
struct btrfs_key location;
if (verify_dir_item(root, leaf, di))
break;
name_len = btrfs_dir_name_len(leaf, di);
if (name_len <= sizeof(tmp_name)) {
name_ptr = tmp_name;
} else {
name_ptr = kmalloc(name_len, GFP_NOFS);
if (!name_ptr) {
ret = -ENOMEM;
goto err;
}
}
read_extent_buffer(leaf, name_ptr,
(unsigned long)(di + 1), name_len);
d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
btrfs_dir_item_key_to_cpu(leaf, di, &location);
/* is this a reference to our own snapshot? If so
* skip it.
*
* In contrast to old kernels, we insert the snapshot's
* dir item and dir index after it has been created, so
* we won't find a reference to our own snapshot. We
* still keep the following code for backward
* compatibility.
*/
if (location.type == BTRFS_ROOT_ITEM_KEY &&
location.objectid == root->root_key.objectid) {
over = 0;
goto skip;
}
over = filldir(dirent, name_ptr, name_len,
found_key.offset, location.objectid,
d_type);
skip:
if (name_ptr != tmp_name)
kfree(name_ptr);
if (over)
goto nopos;
di_len = btrfs_dir_name_len(leaf, di) +
btrfs_dir_data_len(leaf, di) + sizeof(*di);
di_cur += di_len;
di = (struct btrfs_dir_item *)((char *)di + di_len);
}
next:
path->slots[0]++;
}
if (key_type == BTRFS_DIR_INDEX_KEY) {
if (is_curr)
filp->f_pos++;
ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
&ins_list);
if (ret)
goto nopos;
}
/* Reached end of directory/root. Bump pos past the last item. */
if (key_type == BTRFS_DIR_INDEX_KEY)
/*
* 32-bit glibc will use getdents64, but then strtol -
* so the last number we can serve is this.
*/
filp->f_pos = 0x7fffffff;
else
filp->f_pos++;
nopos:
ret = 0;
err:
if (key_type == BTRFS_DIR_INDEX_KEY)
btrfs_put_delayed_items(&ins_list, &del_list);
btrfs_free_path(path);
return ret;
}
int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
int ret = 0;
bool nolock = false;
if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
return 0;
if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
nolock = true;
if (wbc->sync_mode == WB_SYNC_ALL) {
if (nolock)
trans = btrfs_join_transaction_nolock(root);
else
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
if (nolock)
ret = btrfs_end_transaction_nolock(trans, root);
else
ret = btrfs_commit_transaction(trans, root);
}
return ret;
}
/*
* This is somewhat expensive, updating the tree every time the
* inode changes. But, it is most likely to find the inode in cache.
* FIXME, needs more benchmarking...there are no reasons other than performance
* to keep or drop this code.
*/
int btrfs_dirty_inode(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
int ret;
if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
return 0;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_update_inode(trans, root, inode);
if (ret && ret == -ENOSPC) {
/* whoops, lets try again with the full transaction */
btrfs_end_transaction(trans, root);
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_update_inode(trans, root, inode);
}
btrfs_end_transaction(trans, root);
if (BTRFS_I(inode)->delayed_node)
btrfs_balance_delayed_items(root);
return ret;
}
/*
* This is a copy of file_update_time. We need this so we can return error on
* ENOSPC for updating the inode in the case of file write and mmap writes.
*/
static int btrfs_update_time(struct inode *inode, struct timespec *now,
int flags)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
if (btrfs_root_readonly(root))
return -EROFS;
if (flags & S_VERSION)
inode_inc_iversion(inode);
if (flags & S_CTIME)
inode->i_ctime = *now;
if (flags & S_MTIME)
inode->i_mtime = *now;
if (flags & S_ATIME)
inode->i_atime = *now;
return btrfs_dirty_inode(inode);
}
/*
* find the highest existing sequence number in a directory
* and then set the in-memory index_cnt variable to reflect
* free sequence numbers
*/
static int btrfs_set_inode_index_count(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_key key, found_key;
struct btrfs_path *path;
struct extent_buffer *leaf;
int ret;
key.objectid = btrfs_ino(inode);
btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
key.offset = (u64)-1;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
/* FIXME: we should be able to handle this */
if (ret == 0)
goto out;
ret = 0;
/*
* MAGIC NUMBER EXPLANATION:
* since we search a directory based on f_pos we have to start at 2
* since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
* else has to start at 2
*/
if (path->slots[0] == 0) {
BTRFS_I(inode)->index_cnt = 2;
goto out;
}
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != btrfs_ino(inode) ||
btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
BTRFS_I(inode)->index_cnt = 2;
goto out;
}
BTRFS_I(inode)->index_cnt = found_key.offset + 1;
out:
btrfs_free_path(path);
return ret;
}
/*
* helper to find a free sequence number in a given directory. This current
* code is very simple, later versions will do smarter things in the btree
*/
int btrfs_set_inode_index(struct inode *dir, u64 *index)
{
int ret = 0;
if (BTRFS_I(dir)->index_cnt == (u64)-1) {
ret = btrfs_inode_delayed_dir_index_count(dir);
if (ret) {
ret = btrfs_set_inode_index_count(dir);
if (ret)
return ret;
}
}
*index = BTRFS_I(dir)->index_cnt;
BTRFS_I(dir)->index_cnt++;
return ret;
}
static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir,
const char *name, int name_len,
u64 ref_objectid, u64 objectid,
umode_t mode, u64 *index)
{
struct inode *inode;
struct btrfs_inode_item *inode_item;
struct btrfs_key *location;
struct btrfs_path *path;
struct btrfs_inode_ref *ref;
struct btrfs_key key[2];
u32 sizes[2];
unsigned long ptr;
int ret;
int owner;
path = btrfs_alloc_path();
if (!path)
return ERR_PTR(-ENOMEM);
inode = new_inode(root->fs_info->sb);
if (!inode) {
btrfs_free_path(path);
return ERR_PTR(-ENOMEM);
}
/*
* we have to initialize this early, so we can reclaim the inode
* number if we fail afterwards in this function.
*/
inode->i_ino = objectid;
if (dir) {
trace_btrfs_inode_request(dir);
ret = btrfs_set_inode_index(dir, index);
if (ret) {
btrfs_free_path(path);
iput(inode);
return ERR_PTR(ret);
}
}
/*
* index_cnt is ignored for everything but a dir,
* btrfs_get_inode_index_count has an explanation for the magic
* number
*/
BTRFS_I(inode)->index_cnt = 2;
BTRFS_I(inode)->root = root;
BTRFS_I(inode)->generation = trans->transid;
inode->i_generation = BTRFS_I(inode)->generation;
if (S_ISDIR(mode))
owner = 0;
else
owner = 1;
key[0].objectid = objectid;
btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
key[0].offset = 0;
key[1].objectid = objectid;
btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
key[1].offset = ref_objectid;
sizes[0] = sizeof(struct btrfs_inode_item);
sizes[1] = name_len + sizeof(*ref);
path->leave_spinning = 1;
ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
if (ret != 0)
goto fail;
inode_init_owner(inode, dir, mode);
inode_set_bytes(inode, 0);
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
sizeof(*inode_item));
fill_inode_item(trans, path->nodes[0], inode_item, inode);
ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
struct btrfs_inode_ref);
btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
ptr = (unsigned long)(ref + 1);
write_extent_buffer(path->nodes[0], name, ptr, name_len);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_free_path(path);
location = &BTRFS_I(inode)->location;
location->objectid = objectid;
location->offset = 0;
btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
btrfs_inherit_iflags(inode, dir);
if (S_ISREG(mode)) {
if (btrfs_test_opt(root, NODATASUM))
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
if (btrfs_test_opt(root, NODATACOW) ||
(BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
}
insert_inode_hash(inode);
inode_tree_add(inode);
trace_btrfs_inode_new(inode);
btrfs_set_inode_last_trans(trans, inode);
btrfs_update_root_times(trans, root);
return inode;
fail:
if (dir)
BTRFS_I(dir)->index_cnt--;
btrfs_free_path(path);
iput(inode);
return ERR_PTR(ret);
}
static inline u8 btrfs_inode_type(struct inode *inode)
{
return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
}
/*
* utility function to add 'inode' into 'parent_inode' with
* a give name and a given sequence number.
* if 'add_backref' is true, also insert a backref from the
* inode to the parent directory.
*/
int btrfs_add_link(struct btrfs_trans_handle *trans,
struct inode *parent_inode, struct inode *inode,
const char *name, int name_len, int add_backref, u64 index)
{
int ret = 0;
struct btrfs_key key;
struct btrfs_root *root = BTRFS_I(parent_inode)->root;
u64 ino = btrfs_ino(inode);
u64 parent_ino = btrfs_ino(parent_inode);
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
} else {
key.objectid = ino;
btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
key.offset = 0;
}
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
key.objectid, root->root_key.objectid,
parent_ino, index, name, name_len);
} else if (add_backref) {
ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
parent_ino, index);
}
/* Nothing to clean up yet */
if (ret)
return ret;
ret = btrfs_insert_dir_item(trans, root, name, name_len,
parent_inode, &key,
btrfs_inode_type(inode), index);
if (ret == -EEXIST)
goto fail_dir_item;
else if (ret) {
btrfs_abort_transaction(trans, root, ret);
return ret;
}
btrfs_i_size_write(parent_inode, parent_inode->i_size +
name_len * 2);
inode_inc_iversion(parent_inode);
parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
ret = btrfs_update_inode(trans, root, parent_inode);
if (ret)
btrfs_abort_transaction(trans, root, ret);
return ret;
fail_dir_item:
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
u64 local_index;
int err;
err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
key.objectid, root->root_key.objectid,
parent_ino, &local_index, name, name_len);
} else if (add_backref) {
u64 local_index;
int err;
err = btrfs_del_inode_ref(trans, root, name, name_len,
ino, parent_ino, &local_index);
}
return ret;
}
static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
struct inode *dir, struct dentry *dentry,
struct inode *inode, int backref, u64 index)
{
int err = btrfs_add_link(trans, dir, inode,
dentry->d_name.name, dentry->d_name.len,
backref, index);
if (err > 0)
err = -EEXIST;
return err;
}
static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct inode *inode = NULL;
int err;
int drop_inode = 0;
u64 objectid;
unsigned long nr = 0;
u64 index = 0;
if (!new_valid_dev(rdev))
return -EINVAL;
/*
* 2 for inode item and ref
* 2 for dir items
* 1 for xattr if selinux is on
*/
trans = btrfs_start_transaction(root, 5);
if (IS_ERR(trans))
return PTR_ERR(trans);
err = btrfs_find_free_ino(root, &objectid);
if (err)
goto out_unlock;
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
dentry->d_name.len, btrfs_ino(dir), objectid,
mode, &index);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out_unlock;
}
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
if (err) {
drop_inode = 1;
goto out_unlock;
}
/*
* If the active LSM wants to access the inode during
* d_instantiate it needs these. Smack checks to see
* if the filesystem supports xattrs by looking at the
* ops vector.
*/
inode->i_op = &btrfs_special_inode_operations;
err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
if (err)
drop_inode = 1;
else {
init_special_inode(inode, inode->i_mode, rdev);
btrfs_update_inode(trans, root, inode);
d_instantiate(dentry, inode);
}
out_unlock:
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty(root, nr);
if (drop_inode) {
inode_dec_link_count(inode);
iput(inode);
}
return err;
}
static int btrfs_create(struct inode *dir, struct dentry *dentry,
umode_t mode, bool excl)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct inode *inode = NULL;
int drop_inode = 0;
int err;
unsigned long nr = 0;
u64 objectid;
u64 index = 0;
/*
* 2 for inode item and ref
* 2 for dir items
* 1 for xattr if selinux is on
*/
trans = btrfs_start_transaction(root, 5);
if (IS_ERR(trans))
return PTR_ERR(trans);
err = btrfs_find_free_ino(root, &objectid);
if (err)
goto out_unlock;
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
dentry->d_name.len, btrfs_ino(dir), objectid,
mode, &index);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out_unlock;
}
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
if (err) {
drop_inode = 1;
goto out_unlock;
}
/*
* If the active LSM wants to access the inode during
* d_instantiate it needs these. Smack checks to see
* if the filesystem supports xattrs by looking at the
* ops vector.
*/
inode->i_fop = &btrfs_file_operations;
inode->i_op = &btrfs_file_inode_operations;
err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
if (err)
drop_inode = 1;
else {
inode->i_mapping->a_ops = &btrfs_aops;
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
d_instantiate(dentry, inode);
}
out_unlock:
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
if (drop_inode) {
inode_dec_link_count(inode);
iput(inode);
}
btrfs_btree_balance_dirty(root, nr);
return err;
}
static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *dentry)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct inode *inode = old_dentry->d_inode;
u64 index;
unsigned long nr = 0;
int err;
int drop_inode = 0;
/* do not allow sys_link's with other subvols of the same device */
if (root->objectid != BTRFS_I(inode)->root->objectid)
return -EXDEV;
if (inode->i_nlink == ~0U)
return -EMLINK;
err = btrfs_set_inode_index(dir, &index);
if (err)
goto fail;
/*
* 2 items for inode and inode ref
* 2 items for dir items
* 1 item for parent inode
*/
trans = btrfs_start_transaction(root, 5);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
goto fail;
}
btrfs_inc_nlink(inode);
inode_inc_iversion(inode);
inode->i_ctime = CURRENT_TIME;
ihold(inode);
err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
if (err) {
drop_inode = 1;
} else {
struct dentry *parent = dentry->d_parent;
err = btrfs_update_inode(trans, root, inode);
if (err)
goto fail;
d_instantiate(dentry, inode);
btrfs_log_new_name(trans, inode, NULL, parent);
}
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
fail:
if (drop_inode) {
inode_dec_link_count(inode);
iput(inode);
}
btrfs_btree_balance_dirty(root, nr);
return err;
}
static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct inode *inode = NULL;
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(dir)->root;
int err = 0;
int drop_on_err = 0;
u64 objectid = 0;
u64 index = 0;
unsigned long nr = 1;
/*
* 2 items for inode and ref
* 2 items for dir items
* 1 for xattr if selinux is on
*/
trans = btrfs_start_transaction(root, 5);
if (IS_ERR(trans))
return PTR_ERR(trans);
err = btrfs_find_free_ino(root, &objectid);
if (err)
goto out_fail;
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
dentry->d_name.len, btrfs_ino(dir), objectid,
S_IFDIR | mode, &index);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out_fail;
}
drop_on_err = 1;
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
if (err)
goto out_fail;
inode->i_op = &btrfs_dir_inode_operations;
inode->i_fop = &btrfs_dir_file_operations;
btrfs_i_size_write(inode, 0);
err = btrfs_update_inode(trans, root, inode);
if (err)
goto out_fail;
err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
dentry->d_name.len, 0, index);
if (err)
goto out_fail;
d_instantiate(dentry, inode);
drop_on_err = 0;
out_fail:
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
if (drop_on_err)
iput(inode);
btrfs_btree_balance_dirty(root, nr);
return err;
}
/* helper for btfs_get_extent. Given an existing extent in the tree,
* and an extent that you want to insert, deal with overlap and insert
* the new extent into the tree.
*/
static int merge_extent_mapping(struct extent_map_tree *em_tree,
struct extent_map *existing,
struct extent_map *em,
u64 map_start, u64 map_len)
{
u64 start_diff;
BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
start_diff = map_start - em->start;
em->start = map_start;
em->len = map_len;
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
em->block_start += start_diff;
em->block_len -= start_diff;
}
return add_extent_mapping(em_tree, em);
}
static noinline int uncompress_inline(struct btrfs_path *path,
struct inode *inode, struct page *page,
size_t pg_offset, u64 extent_offset,
struct btrfs_file_extent_item *item)
{
int ret;
struct extent_buffer *leaf = path->nodes[0];
char *tmp;
size_t max_size;
unsigned long inline_size;
unsigned long ptr;
int compress_type;
WARN_ON(pg_offset != 0);
compress_type = btrfs_file_extent_compression(leaf, item);
max_size = btrfs_file_extent_ram_bytes(leaf, item);
inline_size = btrfs_file_extent_inline_item_len(leaf,
btrfs_item_nr(leaf, path->slots[0]));
tmp = kmalloc(inline_size, GFP_NOFS);
if (!tmp)
return -ENOMEM;
ptr = btrfs_file_extent_inline_start(item);
read_extent_buffer(leaf, tmp, ptr, inline_size);
max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
ret = btrfs_decompress(compress_type, tmp, page,
extent_offset, inline_size, max_size);
if (ret) {
char *kaddr = kmap_atomic(page);
unsigned long copy_size = min_t(u64,
PAGE_CACHE_SIZE - pg_offset,
max_size - extent_offset);
memset(kaddr + pg_offset, 0, copy_size);
kunmap_atomic(kaddr);
}
kfree(tmp);
return 0;
}
/*
* a bit scary, this does extent mapping from logical file offset to the disk.
* the ugly parts come from merging extents from the disk with the in-ram
* representation. This gets more complex because of the data=ordered code,
* where the in-ram extents might be locked pending data=ordered completion.
*
* This also copies inline extents directly into the page.
*/
struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
size_t pg_offset, u64 start, u64 len,
int create)
{
int ret;
int err = 0;
u64 bytenr;
u64 extent_start = 0;
u64 extent_end = 0;
u64 objectid = btrfs_ino(inode);
u32 found_type;
struct btrfs_path *path = NULL;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_file_extent_item *item;
struct extent_buffer *leaf;
struct btrfs_key found_key;
struct extent_map *em = NULL;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_trans_handle *trans = NULL;
int compress_type;
again:
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (em)
em->bdev = root->fs_info->fs_devices->latest_bdev;
read_unlock(&em_tree->lock);
if (em) {
if (em->start > start || em->start + em->len <= start)
free_extent_map(em);
else if (em->block_start == EXTENT_MAP_INLINE && page)
free_extent_map(em);
else
goto out;
}
em = alloc_extent_map();
if (!em) {
err = -ENOMEM;
goto out;
}
em->bdev = root->fs_info->fs_devices->latest_bdev;
em->start = EXTENT_MAP_HOLE;
em->orig_start = EXTENT_MAP_HOLE;
em->len = (u64)-1;
em->block_len = (u64)-1;
if (!path) {
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
goto out;
}
/*
* Chances are we'll be called again, so go ahead and do
* readahead
*/
path->reada = 1;
}
ret = btrfs_lookup_file_extent(trans, root, path,
objectid, start, trans != NULL);
if (ret < 0) {
err = ret;
goto out;
}
if (ret != 0) {
if (path->slots[0] == 0)
goto not_found;
path->slots[0]--;
}
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
/* are we inside the extent that was found? */
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
found_type = btrfs_key_type(&found_key);
if (found_key.objectid != objectid ||
found_type != BTRFS_EXTENT_DATA_KEY) {
goto not_found;
}
found_type = btrfs_file_extent_type(leaf, item);
extent_start = found_key.offset;
compress_type = btrfs_file_extent_compression(leaf, item);
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
extent_end = extent_start +
btrfs_file_extent_num_bytes(leaf, item);
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
size_t size;
size = btrfs_file_extent_inline_len(leaf, item);
extent_end = (extent_start + size + root->sectorsize - 1) &
~((u64)root->sectorsize - 1);
}
if (start >= extent_end) {
path->slots[0]++;
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
err = ret;
goto out;
}
if (ret > 0)
goto not_found;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != objectid ||
found_key.type != BTRFS_EXTENT_DATA_KEY)
goto not_found;
if (start + len <= found_key.offset)
goto not_found;
em->start = start;
em->len = found_key.offset - start;
goto not_found_em;
}
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
em->start = extent_start;
em->len = extent_end - extent_start;
em->orig_start = extent_start -
btrfs_file_extent_offset(leaf, item);
bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
if (bytenr == 0) {
em->block_start = EXTENT_MAP_HOLE;
goto insert;
}
if (compress_type != BTRFS_COMPRESS_NONE) {
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
em->compress_type = compress_type;
em->block_start = bytenr;
em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
item);
} else {
bytenr += btrfs_file_extent_offset(leaf, item);
em->block_start = bytenr;
em->block_len = em->len;
if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
}
goto insert;
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
unsigned long ptr;
char *map;
size_t size;
size_t extent_offset;
size_t copy_size;
em->block_start = EXTENT_MAP_INLINE;
if (!page || create) {
em->start = extent_start;
em->len = extent_end - extent_start;
goto out;
}
size = btrfs_file_extent_inline_len(leaf, item);
extent_offset = page_offset(page) + pg_offset - extent_start;
copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
size - extent_offset);
em->start = extent_start + extent_offset;
em->len = (copy_size + root->sectorsize - 1) &
~((u64)root->sectorsize - 1);
em->orig_start = EXTENT_MAP_INLINE;
if (compress_type) {
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
em->compress_type = compress_type;
}
ptr = btrfs_file_extent_inline_start(item) + extent_offset;
if (create == 0 && !PageUptodate(page)) {
if (btrfs_file_extent_compression(leaf, item) !=
BTRFS_COMPRESS_NONE) {
ret = uncompress_inline(path, inode, page,
pg_offset,
extent_offset, item);
BUG_ON(ret); /* -ENOMEM */
} else {
map = kmap(page);
read_extent_buffer(leaf, map + pg_offset, ptr,
copy_size);
if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
memset(map + pg_offset + copy_size, 0,
PAGE_CACHE_SIZE - pg_offset -
copy_size);
}
kunmap(page);
}
flush_dcache_page(page);
} else if (create && PageUptodate(page)) {
BUG();
if (!trans) {
kunmap(page);
free_extent_map(em);
em = NULL;
btrfs_release_path(path);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return ERR_CAST(trans);
goto again;
}
map = kmap(page);
write_extent_buffer(leaf, map + pg_offset, ptr,
copy_size);
kunmap(page);
btrfs_mark_buffer_dirty(leaf);
}
set_extent_uptodate(io_tree, em->start,
extent_map_end(em) - 1, NULL, GFP_NOFS);
goto insert;
} else {
printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
WARN_ON(1);
}
not_found:
em->start = start;
em->len = len;
not_found_em:
em->block_start = EXTENT_MAP_HOLE;
set_bit(EXTENT_FLAG_VACANCY, &em->flags);
insert:
btrfs_release_path(path);
if (em->start > start || extent_map_end(em) <= start) {
printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
"[%llu %llu]\n", (unsigned long long)em->start,
(unsigned long long)em->len,
(unsigned long long)start,
(unsigned long long)len);
err = -EIO;
goto out;
}
err = 0;
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
/* it is possible that someone inserted the extent into the tree
* while we had the lock dropped. It is also possible that
* an overlapping map exists in the tree
*/
if (ret == -EEXIST) {
struct extent_map *existing;
ret = 0;
existing = lookup_extent_mapping(em_tree, start, len);
if (existing && (existing->start > start ||
existing->start + existing->len <= start)) {
free_extent_map(existing);
existing = NULL;
}
if (!existing) {
existing = lookup_extent_mapping(em_tree, em->start,
em->len);
if (existing) {
err = merge_extent_mapping(em_tree, existing,
em, start,
root->sectorsize);
free_extent_map(existing);
if (err) {
free_extent_map(em);
em = NULL;
}
} else {
err = -EIO;
free_extent_map(em);
em = NULL;
}
} else {
free_extent_map(em);
em = existing;
err = 0;
}
}
write_unlock(&em_tree->lock);
out:
trace_btrfs_get_extent(root, em);
if (path)
btrfs_free_path(path);
if (trans) {
ret = btrfs_end_transaction(trans, root);
if (!err)
err = ret;
}
if (err) {
free_extent_map(em);
return ERR_PTR(err);
}
BUG_ON(!em); /* Error is always set */
return em;
}
struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
size_t pg_offset, u64 start, u64 len,
int create)
{
struct extent_map *em;
struct extent_map *hole_em = NULL;
u64 range_start = start;
u64 end;
u64 found;
u64 found_end;
int err = 0;
em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
if (IS_ERR(em))
return em;
if (em) {
/*
* if our em maps to a hole, there might
* actually be delalloc bytes behind it
*/
if (em->block_start != EXTENT_MAP_HOLE)
return em;
else
hole_em = em;
}
/* check to see if we've wrapped (len == -1 or similar) */
end = start + len;
if (end < start)
end = (u64)-1;
else
end -= 1;
em = NULL;
/* ok, we didn't find anything, lets look for delalloc */
found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
end, len, EXTENT_DELALLOC, 1);
found_end = range_start + found;
if (found_end < range_start)
found_end = (u64)-1;
/*
* we didn't find anything useful, return
* the original results from get_extent()
*/
if (range_start > end || found_end <= start) {
em = hole_em;
hole_em = NULL;
goto out;
}
/* adjust the range_start to make sure it doesn't
* go backwards from the start they passed in
*/
range_start = max(start,range_start);
found = found_end - range_start;
if (found > 0) {
u64 hole_start = start;
u64 hole_len = len;
em = alloc_extent_map();
if (!em) {
err = -ENOMEM;
goto out;
}
/*
* when btrfs_get_extent can't find anything it
* returns one huge hole
*
* make sure what it found really fits our range, and
* adjust to make sure it is based on the start from
* the caller
*/
if (hole_em) {
u64 calc_end = extent_map_end(hole_em);
if (calc_end <= start || (hole_em->start > end)) {
free_extent_map(hole_em);
hole_em = NULL;
} else {
hole_start = max(hole_em->start, start);
hole_len = calc_end - hole_start;
}
}
em->bdev = NULL;
if (hole_em && range_start > hole_start) {
/* our hole starts before our delalloc, so we
* have to return just the parts of the hole
* that go until the delalloc starts
*/
em->len = min(hole_len,
range_start - hole_start);
em->start = hole_start;
em->orig_start = hole_start;
/*
* don't adjust block start at all,
* it is fixed at EXTENT_MAP_HOLE
*/
em->block_start = hole_em->block_start;
em->block_len = hole_len;
} else {
em->start = range_start;
em->len = found;
em->orig_start = range_start;
em->block_start = EXTENT_MAP_DELALLOC;
em->block_len = found;
}
} else if (hole_em) {
return hole_em;
}
out:
free_extent_map(hole_em);
if (err) {
free_extent_map(em);
return ERR_PTR(err);
}
return em;
}
static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
struct extent_map *em,
u64 start, u64 len)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct btrfs_key ins;
u64 alloc_hint;
int ret;
bool insert = false;
/*
* Ok if the extent map we looked up is a hole and is for the exact
* range we want, there is no reason to allocate a new one, however if
* it is not right then we need to free this one and drop the cache for
* our range.
*/
if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
em->len != len) {
free_extent_map(em);
em = NULL;
insert = true;
btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return ERR_CAST(trans);
if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
btrfs_add_inode_defrag(trans, inode);
trans->block_rsv = &root->fs_info->delalloc_block_rsv;
alloc_hint = get_extent_allocation_hint(inode, start, len);
ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
alloc_hint, &ins, 1);
if (ret) {
em = ERR_PTR(ret);
goto out;
}
if (!em) {
em = alloc_extent_map();
if (!em) {
em = ERR_PTR(-ENOMEM);
goto out;
}
}
em->start = start;
em->orig_start = em->start;
em->len = ins.offset;
em->block_start = ins.objectid;
em->block_len = ins.offset;
em->bdev = root->fs_info->fs_devices->latest_bdev;
/*
* We need to do this because if we're using the original em we searched
* for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
*/
em->flags = 0;
set_bit(EXTENT_FLAG_PINNED, &em->flags);
while (insert) {
write_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
if (ret != -EEXIST)
break;
btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
}
ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
ins.offset, ins.offset, 0);
if (ret) {
btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
em = ERR_PTR(ret);
}
out:
btrfs_end_transaction(trans, root);
return em;
}
/*
* returns 1 when the nocow is safe, < 1 on error, 0 if the
* block must be cow'd
*/
static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
struct inode *inode, u64 offset, u64 len)
{
struct btrfs_path *path;
int ret;
struct extent_buffer *leaf;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 disk_bytenr;
u64 backref_offset;
u64 extent_end;
u64 num_bytes;
int slot;
int found_type;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
offset, 0);
if (ret < 0)
goto out;
slot = path->slots[0];
if (ret == 1) {
if (slot == 0) {
/* can't find the item, must cow */
ret = 0;
goto out;
}
slot--;
}
ret = 0;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != btrfs_ino(inode) ||
key.type != BTRFS_EXTENT_DATA_KEY) {
/* not our file or wrong item type, must cow */
goto out;
}
if (key.offset > offset) {
/* Wrong offset, must cow */
goto out;
}
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
found_type = btrfs_file_extent_type(leaf, fi);
if (found_type != BTRFS_FILE_EXTENT_REG &&
found_type != BTRFS_FILE_EXTENT_PREALLOC) {
/* not a regular extent, must cow */
goto out;
}
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
backref_offset = btrfs_file_extent_offset(leaf, fi);
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
if (extent_end < offset + len) {
/* extent doesn't include our full range, must cow */
goto out;
}
if (btrfs_extent_readonly(root, disk_bytenr))
goto out;
/*
* look for other files referencing this extent, if we
* find any we must cow
*/
if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
key.offset - backref_offset, disk_bytenr))
goto out;
/*
* adjust disk_bytenr and num_bytes to cover just the bytes
* in this extent we are about to write. If there
* are any csums in that range we have to cow in order
* to keep the csums correct
*/
disk_bytenr += backref_offset;
disk_bytenr += offset - key.offset;
num_bytes = min(offset + len, extent_end) - offset;
if (csum_exist_in_range(root, disk_bytenr, num_bytes))
goto out;
/*
* all of the above have passed, it is safe to overwrite this extent
* without cow
*/
ret = 1;
out:
btrfs_free_path(path);
return ret;
}
static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
struct extent_state **cached_state, int writing)
{
struct btrfs_ordered_extent *ordered;
int ret = 0;
while (1) {
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
0, cached_state);
/*
* We're concerned with the entire range that we're going to be
* doing DIO to, so we need to make sure theres no ordered
* extents in this range.
*/
ordered = btrfs_lookup_ordered_range(inode, lockstart,
lockend - lockstart + 1);
/*
* We need to make sure there are no buffered pages in this
* range either, we could have raced between the invalidate in
* generic_file_direct_write and locking the extent. The
* invalidate needs to happen so that reads after a write do not
* get stale data.
*/
if (!ordered && (!writing ||
!test_range_bit(&BTRFS_I(inode)->io_tree,
lockstart, lockend, EXTENT_UPTODATE, 0,
*cached_state)))
break;
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
cached_state, GFP_NOFS);
if (ordered) {
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
} else {
/* Screw you mmap */
ret = filemap_write_and_wait_range(inode->i_mapping,
lockstart,
lockend);
if (ret)
break;
/*
* If we found a page that couldn't be invalidated just
* fall back to buffered.
*/
ret = invalidate_inode_pages2_range(inode->i_mapping,
lockstart >> PAGE_CACHE_SHIFT,
lockend >> PAGE_CACHE_SHIFT);
if (ret)
break;
}
cond_resched();
}
return ret;
}
static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
struct extent_map *em;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_state *cached_state = NULL;
u64 start = iblock << inode->i_blkbits;
u64 lockstart, lockend;
u64 len = bh_result->b_size;
struct btrfs_trans_handle *trans;
int unlock_bits = EXTENT_LOCKED;
int ret;
if (create) {
ret = btrfs_delalloc_reserve_space(inode, len);
if (ret)
return ret;
unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
} else {
len = min_t(u64, len, root->sectorsize);
}
lockstart = start;
lockend = start + len - 1;
/*
* If this errors out it's because we couldn't invalidate pagecache for
* this range and we need to fallback to buffered.
*/
if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
return -ENOTBLK;
if (create) {
ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
lockend, EXTENT_DELALLOC, NULL,
&cached_state, GFP_NOFS);
if (ret)
goto unlock_err;
}
em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto unlock_err;
}
/*
* Ok for INLINE and COMPRESSED extents we need to fallback on buffered
* io. INLINE is special, and we could probably kludge it in here, but
* it's still buffered so for safety lets just fall back to the generic
* buffered path.
*
* For COMPRESSED we _have_ to read the entire extent in so we can
* decompress it, so there will be buffering required no matter what we
* do, so go ahead and fallback to buffered.
*
* We return -ENOTBLK because thats what makes DIO go ahead and go back
* to buffered IO. Don't blame me, this is the price we pay for using
* the generic code.
*/
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
em->block_start == EXTENT_MAP_INLINE) {
free_extent_map(em);
ret = -ENOTBLK;
goto unlock_err;
}
/* Just a good old fashioned hole, return */
if (!create && (em->block_start == EXTENT_MAP_HOLE ||
test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
free_extent_map(em);
ret = 0;
goto unlock_err;
}
/*
* We don't allocate a new extent in the following cases
*
* 1) The inode is marked as NODATACOW. In this case we'll just use the
* existing extent.
* 2) The extent is marked as PREALLOC. We're good to go here and can
* just use the extent.
*
*/
if (!create) {
len = min(len, em->len - (start - em->start));
lockstart = start + len;
goto unlock;
}
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
em->block_start != EXTENT_MAP_HOLE)) {
int type;
int ret;
u64 block_start;
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
type = BTRFS_ORDERED_PREALLOC;
else
type = BTRFS_ORDERED_NOCOW;
len = min(len, em->len - (start - em->start));
block_start = em->block_start + (start - em->start);
/*
* we're not going to log anything, but we do need
* to make sure the current transaction stays open
* while we look for nocow cross refs
*/
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
goto must_cow;
if (can_nocow_odirect(trans, inode, start, len) == 1) {
ret = btrfs_add_ordered_extent_dio(inode, start,
block_start, len, len, type);
btrfs_end_transaction(trans, root);
if (ret) {
free_extent_map(em);
goto unlock_err;
}
goto unlock;
}
btrfs_end_transaction(trans, root);
}
must_cow:
/*
* this will cow the extent, reset the len in case we changed
* it above
*/
len = bh_result->b_size;
em = btrfs_new_extent_direct(inode, em, start, len);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto unlock_err;
}
len = min(len, em->len - (start - em->start));
unlock:
bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
inode->i_blkbits;
bh_result->b_size = len;
bh_result->b_bdev = em->bdev;
set_buffer_mapped(bh_result);
if (create) {
if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
set_buffer_new(bh_result);
/*
* Need to update the i_size under the extent lock so buffered
* readers will get the updated i_size when we unlock.
*/
if (start + len > i_size_read(inode))
i_size_write(inode, start + len);
}
/*
* In the case of write we need to clear and unlock the entire range,
* in the case of read we need to unlock only the end area that we
* aren't using if there is any left over space.
*/
if (lockstart < lockend) {
if (create && len < lockend - lockstart) {
clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
lockstart + len - 1, unlock_bits, 1, 0,
&cached_state, GFP_NOFS);
/*
* Beside unlock, we also need to cleanup reserved space
* for the left range by attaching EXTENT_DO_ACCOUNTING.
*/
clear_extent_bit(&BTRFS_I(inode)->io_tree,
lockstart + len, lockend,
unlock_bits | EXTENT_DO_ACCOUNTING,
1, 0, NULL, GFP_NOFS);
} else {
clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
lockend, unlock_bits, 1, 0,
&cached_state, GFP_NOFS);
}
} else {
free_extent_state(cached_state);
}
free_extent_map(em);
return 0;
unlock_err:
if (create)
unlock_bits |= EXTENT_DO_ACCOUNTING;
clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
unlock_bits, 1, 0, &cached_state, GFP_NOFS);
return ret;
}
struct btrfs_dio_private {
struct inode *inode;
u64 logical_offset;
u64 disk_bytenr;
u64 bytes;
void *private;
/* number of bios pending for this dio */
atomic_t pending_bios;
/* IO errors */
int errors;
struct bio *orig_bio;
};
static void btrfs_endio_direct_read(struct bio *bio, int err)
{
struct btrfs_dio_private *dip = bio->bi_private;
struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
struct bio_vec *bvec = bio->bi_io_vec;
struct inode *inode = dip->inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 start;
start = dip->logical_offset;
do {
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
struct page *page = bvec->bv_page;
char *kaddr;
u32 csum = ~(u32)0;
u64 private = ~(u32)0;
unsigned long flags;
if (get_state_private(&BTRFS_I(inode)->io_tree,
start, &private))
goto failed;
local_irq_save(flags);
kaddr = kmap_atomic(page);
csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
csum, bvec->bv_len);
btrfs_csum_final(csum, (char *)&csum);
kunmap_atomic(kaddr);
local_irq_restore(flags);
flush_dcache_page(bvec->bv_page);
if (csum != private) {
failed:
printk(KERN_ERR "btrfs csum failed ino %llu off"
" %llu csum %u private %u\n",
(unsigned long long)btrfs_ino(inode),
(unsigned long long)start,
csum, (unsigned)private);
err = -EIO;
}
}
start += bvec->bv_len;
bvec++;
} while (bvec <= bvec_end);
unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
dip->logical_offset + dip->bytes - 1);
bio->bi_private = dip->private;
kfree(dip);
/* If we had a csum failure make sure to clear the uptodate flag */
if (err)
clear_bit(BIO_UPTODATE, &bio->bi_flags);
dio_end_io(bio, err);
}
static void btrfs_endio_direct_write(struct bio *bio, int err)
{
struct btrfs_dio_private *dip = bio->bi_private;
struct inode *inode = dip->inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ordered_extent *ordered = NULL;
u64 ordered_offset = dip->logical_offset;
u64 ordered_bytes = dip->bytes;
int ret;
if (err)
goto out_done;
again:
ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
&ordered_offset,
ordered_bytes, !err);
if (!ret)
goto out_test;
ordered->work.func = finish_ordered_fn;
ordered->work.flags = 0;
btrfs_queue_worker(&root->fs_info->endio_write_workers,
&ordered->work);
out_test:
/*
* our bio might span multiple ordered extents. If we haven't
* completed the accounting for the whole dio, go back and try again
*/
if (ordered_offset < dip->logical_offset + dip->bytes) {
ordered_bytes = dip->logical_offset + dip->bytes -
ordered_offset;
ordered = NULL;
goto again;
}
out_done:
bio->bi_private = dip->private;
kfree(dip);
/* If we had an error make sure to clear the uptodate flag */
if (err)
clear_bit(BIO_UPTODATE, &bio->bi_flags);
dio_end_io(bio, err);
}
static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
struct bio *bio, int mirror_num,
unsigned long bio_flags, u64 offset)
{
int ret;
struct btrfs_root *root = BTRFS_I(inode)->root;
ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
BUG_ON(ret); /* -ENOMEM */
return 0;
}
static void btrfs_end_dio_bio(struct bio *bio, int err)
{
struct btrfs_dio_private *dip = bio->bi_private;
if (err) {
printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
"sector %#Lx len %u err no %d\n",
(unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
(unsigned long long)bio->bi_sector, bio->bi_size, err);
dip->errors = 1;
/*
* before atomic variable goto zero, we must make sure
* dip->errors is perceived to be set.
*/
smp_mb__before_atomic_dec();
}
/* if there are more bios still pending for this dio, just exit */
if (!atomic_dec_and_test(&dip->pending_bios))
goto out;
if (dip->errors)
bio_io_error(dip->orig_bio);
else {
set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
bio_endio(dip->orig_bio, 0);
}
out:
bio_put(bio);
}
static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
u64 first_sector, gfp_t gfp_flags)
{
int nr_vecs = bio_get_nr_vecs(bdev);
return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
}
static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
int rw, u64 file_offset, int skip_sum,
int async_submit)
{
int write = rw & REQ_WRITE;
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret;
bio_get(bio);
if (!write) {
ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
if (ret)
goto err;
}
if (skip_sum)
goto map;
if (write && async_submit) {
ret = btrfs_wq_submit_bio(root->fs_info,
inode, rw, bio, 0, 0,
file_offset,
__btrfs_submit_bio_start_direct_io,
__btrfs_submit_bio_done);
goto err;
} else if (write) {
/*
* If we aren't doing async submit, calculate the csum of the
* bio now.
*/
ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
if (ret)
goto err;
} else if (!skip_sum) {
ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
if (ret)
goto err;
}
map:
ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
err:
bio_put(bio);
return ret;
}
static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
int skip_sum)
{
struct inode *inode = dip->inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
struct bio *bio;
struct bio *orig_bio = dip->orig_bio;
struct bio_vec *bvec = orig_bio->bi_io_vec;
u64 start_sector = orig_bio->bi_sector;
u64 file_offset = dip->logical_offset;
u64 submit_len = 0;
u64 map_length;
int nr_pages = 0;
int ret = 0;
int async_submit = 0;
map_length = orig_bio->bi_size;
ret = btrfs_map_block(map_tree, READ, start_sector << 9,
&map_length, NULL, 0);
if (ret) {
bio_put(orig_bio);
return -EIO;
}
if (map_length >= orig_bio->bi_size) {
bio = orig_bio;
goto submit;
}
async_submit = 1;
bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
if (!bio)
return -ENOMEM;
bio->bi_private = dip;
bio->bi_end_io = btrfs_end_dio_bio;
atomic_inc(&dip->pending_bios);
while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
if (unlikely(map_length < submit_len + bvec->bv_len ||
bio_add_page(bio, bvec->bv_page, bvec->bv_len,
bvec->bv_offset) < bvec->bv_len)) {
/*
* inc the count before we submit the bio so
* we know the end IO handler won't happen before
* we inc the count. Otherwise, the dip might get freed
* before we're done setting it up
*/
atomic_inc(&dip->pending_bios);
ret = __btrfs_submit_dio_bio(bio, inode, rw,
file_offset, skip_sum,
async_submit);
if (ret) {
bio_put(bio);
atomic_dec(&dip->pending_bios);
goto out_err;
}
start_sector += submit_len >> 9;
file_offset += submit_len;
submit_len = 0;
nr_pages = 0;
bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
start_sector, GFP_NOFS);
if (!bio)
goto out_err;
bio->bi_private = dip;
bio->bi_end_io = btrfs_end_dio_bio;
map_length = orig_bio->bi_size;
ret = btrfs_map_block(map_tree, READ, start_sector << 9,
&map_length, NULL, 0);
if (ret) {
bio_put(bio);
goto out_err;
}
} else {
submit_len += bvec->bv_len;
nr_pages ++;
bvec++;
}
}
submit:
ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
async_submit);
if (!ret)
return 0;
bio_put(bio);
out_err:
dip->errors = 1;
/*
* before atomic variable goto zero, we must
* make sure dip->errors is perceived to be set.
*/
smp_mb__before_atomic_dec();
if (atomic_dec_and_test(&dip->pending_bios))
bio_io_error(dip->orig_bio);
/* bio_end_io() will handle error, so we needn't return it */
return 0;
}
static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
loff_t file_offset)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_dio_private *dip;
struct bio_vec *bvec = bio->bi_io_vec;
int skip_sum;
int write = rw & REQ_WRITE;
int ret = 0;
skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
dip = kmalloc(sizeof(*dip), GFP_NOFS);
if (!dip) {
ret = -ENOMEM;
goto free_ordered;
}
dip->private = bio->bi_private;
dip->inode = inode;
dip->logical_offset = file_offset;
dip->bytes = 0;
do {
dip->bytes += bvec->bv_len;
bvec++;
} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
dip->disk_bytenr = (u64)bio->bi_sector << 9;
bio->bi_private = dip;
dip->errors = 0;
dip->orig_bio = bio;
atomic_set(&dip->pending_bios, 0);
if (write)
bio->bi_end_io = btrfs_endio_direct_write;
else
bio->bi_end_io = btrfs_endio_direct_read;
ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
if (!ret)
return;
free_ordered:
/*
* If this is a write, we need to clean up the reserved space and kill
* the ordered extent.
*/
if (write) {
struct btrfs_ordered_extent *ordered;
ordered = btrfs_lookup_ordered_extent(inode, file_offset);
if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
btrfs_free_reserved_extent(root, ordered->start,
ordered->disk_len);
btrfs_put_ordered_extent(ordered);
btrfs_put_ordered_extent(ordered);
}
bio_endio(bio, ret);
}
static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
const struct iovec *iov, loff_t offset,
unsigned long nr_segs)
{
int seg;
int i;
size_t size;
unsigned long addr;
unsigned blocksize_mask = root->sectorsize - 1;
ssize_t retval = -EINVAL;
loff_t end = offset;
if (offset & blocksize_mask)
goto out;
/* Check the memory alignment. Blocks cannot straddle pages */
for (seg = 0; seg < nr_segs; seg++) {
addr = (unsigned long)iov[seg].iov_base;
size = iov[seg].iov_len;
end += size;
if ((addr & blocksize_mask) || (size & blocksize_mask))
goto out;
/* If this is a write we don't need to check anymore */
if (rw & WRITE)
continue;
/*
* Check to make sure we don't have duplicate iov_base's in this
* iovec, if so return EINVAL, otherwise we'll get csum errors
* when reading back.
*/
for (i = seg + 1; i < nr_segs; i++) {
if (iov[seg].iov_base == iov[i].iov_base)
goto out;
}
}
retval = 0;
out:
return retval;
}
static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
const struct iovec *iov, loff_t offset,
unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
offset, nr_segs))
return 0;
return __blockdev_direct_IO(rw, iocb, inode,
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
btrfs_submit_direct, 0);
}
static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
__u64 start, __u64 len)
{
return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
}
int btrfs_readpage(struct file *file, struct page *page)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btrfs_get_extent, 0);
}
static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
{
struct extent_io_tree *tree;
if (current->flags & PF_MEMALLOC) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
}
int btrfs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(mapping->host)->io_tree;
return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
}
static int
btrfs_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(mapping->host)->io_tree;
return extent_readpages(tree, mapping, pages, nr_pages,
btrfs_get_extent);
}
static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
{
struct extent_io_tree *tree;
struct extent_map_tree *map;
int ret;
tree = &BTRFS_I(page->mapping->host)->io_tree;
map = &BTRFS_I(page->mapping->host)->extent_tree;
ret = try_release_extent_mapping(map, tree, page, gfp_flags);
if (ret == 1) {
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
return ret;
}
static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
{
if (PageWriteback(page) || PageDirty(page))
return 0;
return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
}
static void btrfs_invalidatepage(struct page *page, unsigned long offset)
{
struct inode *inode = page->mapping->host;
struct extent_io_tree *tree;
struct btrfs_ordered_extent *ordered;
struct extent_state *cached_state = NULL;
u64 page_start = page_offset(page);
u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
/*
* we have the page locked, so new writeback can't start,
* and the dirty bit won't be cleared while we are here.
*
* Wait for IO on this page so that we can safely clear
* the PagePrivate2 bit and do ordered accounting
*/
wait_on_page_writeback(page);
tree = &BTRFS_I(inode)->io_tree;
if (offset) {
btrfs_releasepage(page, GFP_NOFS);
return;
}
lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
ordered = btrfs_lookup_ordered_extent(inode,
page_offset(page));
if (ordered) {
/*
* IO on this page will never be started, so we need
* to account for any ordered extents now
*/
clear_extent_bit(tree, page_start, page_end,
EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
&cached_state, GFP_NOFS);
/*
* whoever cleared the private bit is responsible
* for the finish_ordered_io
*/
if (TestClearPagePrivate2(page) &&
btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
PAGE_CACHE_SIZE, 1)) {
btrfs_finish_ordered_io(ordered);
}
btrfs_put_ordered_extent(ordered);
cached_state = NULL;
lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
}
clear_extent_bit(tree, page_start, page_end,
EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
__btrfs_releasepage(page, GFP_NOFS);
ClearPageChecked(page);
if (PagePrivate(page)) {
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
}
/*
* btrfs_page_mkwrite() is not allowed to change the file size as it gets
* called from a page fault handler when a page is first dirtied. Hence we must
* be careful to check for EOF conditions here. We set the page up correctly
* for a written page which means we get ENOSPC checking when writing into
* holes and correct delalloc and unwritten extent mapping on filesystems that
* support these features.
*
* We are not allowed to take the i_mutex here so we have to play games to
* protect against truncate races as the page could now be beyond EOF. Because
* vmtruncate() writes the inode size before removing pages, once we have the
* page lock we can determine safely if the page is beyond EOF. If it is not
* beyond EOF, then the page is guaranteed safe against truncation until we
* unlock the page.
*/
int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = fdentry(vma->vm_file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_ordered_extent *ordered;
struct extent_state *cached_state = NULL;
char *kaddr;
unsigned long zero_start;
loff_t size;
int ret;
int reserved = 0;
u64 page_start;
u64 page_end;
sb_start_pagefault(inode->i_sb);
ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
if (!ret) {
ret = file_update_time(vma->vm_file);
reserved = 1;
}
if (ret) {
if (ret == -ENOMEM)
ret = VM_FAULT_OOM;
else /* -ENOSPC, -EIO, etc */
ret = VM_FAULT_SIGBUS;
if (reserved)
goto out;
goto out_noreserve;
}
ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
again:
lock_page(page);
size = i_size_read(inode);
page_start = page_offset(page);
page_end = page_start + PAGE_CACHE_SIZE - 1;
if ((page->mapping != inode->i_mapping) ||
(page_start >= size)) {
/* page got truncated out from underneath us */
goto out_unlock;
}
wait_on_page_writeback(page);
lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
set_page_extent_mapped(page);
/*
* we can't set the delalloc bits if there are pending ordered
* extents. Drop our locks and wait for them to finish
*/
ordered = btrfs_lookup_ordered_extent(inode, page_start);
if (ordered) {
unlock_extent_cached(io_tree, page_start, page_end,
&cached_state, GFP_NOFS);
unlock_page(page);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
goto again;
}
/*
* XXX - page_mkwrite gets called every time the page is dirtied, even
* if it was already dirty, so for space accounting reasons we need to
* clear any delalloc bits for the range we are fixing to save. There
* is probably a better way to do this, but for now keep consistent with
* prepare_pages in the normal write path.
*/
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
0, 0, &cached_state, GFP_NOFS);
ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
&cached_state);
if (ret) {
unlock_extent_cached(io_tree, page_start, page_end,
&cached_state, GFP_NOFS);
ret = VM_FAULT_SIGBUS;
goto out_unlock;
}
ret = 0;
/* page is wholly or partially inside EOF */
if (page_start + PAGE_CACHE_SIZE > size)
zero_start = size & ~PAGE_CACHE_MASK;
else
zero_start = PAGE_CACHE_SIZE;
if (zero_start != PAGE_CACHE_SIZE) {
kaddr = kmap(page);
memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
flush_dcache_page(page);
kunmap(page);
}
ClearPageChecked(page);
set_page_dirty(page);
SetPageUptodate(page);
BTRFS_I(inode)->last_trans = root->fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
out_unlock:
if (!ret) {
sb_end_pagefault(inode->i_sb);
return VM_FAULT_LOCKED;
}
unlock_page(page);
out:
btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
out_noreserve:
sb_end_pagefault(inode->i_sb);
return ret;
}
static int btrfs_truncate(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_block_rsv *rsv;
int ret;
int err = 0;
struct btrfs_trans_handle *trans;
unsigned long nr;
u64 mask = root->sectorsize - 1;
u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
if (ret)
return ret;
btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
/*
* Yes ladies and gentelment, this is indeed ugly. The fact is we have
* 3 things going on here
*
* 1) We need to reserve space for our orphan item and the space to
* delete our orphan item. Lord knows we don't want to have a dangling
* orphan item because we didn't reserve space to remove it.
*
* 2) We need to reserve space to update our inode.
*
* 3) We need to have something to cache all the space that is going to
* be free'd up by the truncate operation, but also have some slack
* space reserved in case it uses space during the truncate (thank you
* very much snapshotting).
*
* And we need these to all be seperate. The fact is we can use alot of
* space doing the truncate, and we have no earthly idea how much space
* we will use, so we need the truncate reservation to be seperate so it
* doesn't end up using space reserved for updating the inode or
* removing the orphan item. We also need to be able to stop the
* transaction and start a new one, which means we need to be able to
* update the inode several times, and we have no idea of knowing how
* many times that will be, so we can't just reserve 1 item for the
* entirety of the opration, so that has to be done seperately as well.
* Then there is the orphan item, which does indeed need to be held on
* to for the whole operation, and we need nobody to touch this reserved
* space except the orphan code.
*
* So that leaves us with
*
* 1) root->orphan_block_rsv - for the orphan deletion.
* 2) rsv - for the truncate reservation, which we will steal from the
* transaction reservation.
* 3) fs_info->trans_block_rsv - this will have 1 items worth left for
* updating the inode.
*/
rsv = btrfs_alloc_block_rsv(root);
if (!rsv)
return -ENOMEM;
rsv->size = min_size;
/*
* 1 for the truncate slack space
* 1 for the orphan item we're going to add
* 1 for the orphan item deletion
* 1 for updating the inode.
*/
trans = btrfs_start_transaction(root, 4);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
goto out;
}
/* Migrate the slack space for the truncate to our reserve */
ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
min_size);
BUG_ON(ret);
ret = btrfs_orphan_add(trans, inode);
if (ret) {
btrfs_end_transaction(trans, root);
goto out;
}
/*
* setattr is responsible for setting the ordered_data_close flag,
* but that is only tested during the last file release. That
* could happen well after the next commit, leaving a great big
* window where new writes may get lost if someone chooses to write
* to this file after truncating to zero
*
* The inode doesn't have any dirty data here, and so if we commit
* this is a noop. If someone immediately starts writing to the inode
* it is very likely we'll catch some of their writes in this
* transaction, and the commit will find this file on the ordered
* data list with good things to send down.
*
* This is a best effort solution, there is still a window where
* using truncate to replace the contents of the file will
* end up with a zero length file after a crash.
*/
if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
&BTRFS_I(inode)->runtime_flags))
btrfs_add_ordered_operation(trans, root, inode);
while (1) {
ret = btrfs_block_rsv_refill(root, rsv, min_size);
if (ret) {
/*
* This can only happen with the original transaction we
* started above, every other time we shouldn't have a
* transaction started yet.
*/
if (ret == -EAGAIN)
goto end_trans;
err = ret;
break;
}
if (!trans) {
/* Just need the 1 for updating the inode */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = err = PTR_ERR(trans);
trans = NULL;
break;
}
}
trans->block_rsv = rsv;
ret = btrfs_truncate_inode_items(trans, root, inode,
inode->i_size,
BTRFS_EXTENT_DATA_KEY);
if (ret != -EAGAIN) {
err = ret;
break;
}
trans->block_rsv = &root->fs_info->trans_block_rsv;
ret = btrfs_update_inode(trans, root, inode);
if (ret) {
err = ret;
break;
}
end_trans:
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
trans = NULL;
btrfs_btree_balance_dirty(root, nr);
}
if (ret == 0 && inode->i_nlink > 0) {
trans->block_rsv = root->orphan_block_rsv;
ret = btrfs_orphan_del(trans, inode);
if (ret)
err = ret;
} else if (ret && inode->i_nlink > 0) {
/*
* Failed to do the truncate, remove us from the in memory
* orphan list.
*/
ret = btrfs_orphan_del(NULL, inode);
}
if (trans) {
trans->block_rsv = &root->fs_info->trans_block_rsv;
ret = btrfs_update_inode(trans, root, inode);
if (ret && !err)
err = ret;
nr = trans->blocks_used;
ret = btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty(root, nr);
}
out:
btrfs_free_block_rsv(root, rsv);
if (ret && !err)
err = ret;
return err;
}
/*
* create a new subvolume directory/inode (helper for the ioctl).
*/
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
struct btrfs_root *new_root, u64 new_dirid)
{
struct inode *inode;
int err;
u64 index = 0;
inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
new_dirid, new_dirid,
S_IFDIR | (~current_umask() & S_IRWXUGO),
&index);
if (IS_ERR(inode))
return PTR_ERR(inode);
inode->i_op = &btrfs_dir_inode_operations;
inode->i_fop = &btrfs_dir_file_operations;
set_nlink(inode, 1);
btrfs_i_size_write(inode, 0);
err = btrfs_update_inode(trans, new_root, inode);
iput(inode);
return err;
}
struct inode *btrfs_alloc_inode(struct super_block *sb)
{
struct btrfs_inode *ei;
struct inode *inode;
ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
ei->root = NULL;
ei->generation = 0;
ei->last_trans = 0;
ei->last_sub_trans = 0;
ei->logged_trans = 0;
ei->delalloc_bytes = 0;
ei->disk_i_size = 0;
ei->flags = 0;
ei->csum_bytes = 0;
ei->index_cnt = (u64)-1;
ei->last_unlink_trans = 0;
spin_lock_init(&ei->lock);
ei->outstanding_extents = 0;
ei->reserved_extents = 0;
ei->runtime_flags = 0;
ei->force_compress = BTRFS_COMPRESS_NONE;
ei->delayed_node = NULL;
inode = &ei->vfs_inode;
extent_map_tree_init(&ei->extent_tree);
extent_io_tree_init(&ei->io_tree, &inode->i_data);
extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
ei->io_tree.track_uptodate = 1;
ei->io_failure_tree.track_uptodate = 1;
mutex_init(&ei->log_mutex);
mutex_init(&ei->delalloc_mutex);
btrfs_ordered_inode_tree_init(&ei->ordered_tree);
INIT_LIST_HEAD(&ei->delalloc_inodes);
INIT_LIST_HEAD(&ei->ordered_operations);
RB_CLEAR_NODE(&ei->rb_node);
return inode;
}
static void btrfs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
}
void btrfs_destroy_inode(struct inode *inode)
{
struct btrfs_ordered_extent *ordered;
struct btrfs_root *root = BTRFS_I(inode)->root;
WARN_ON(!hlist_empty(&inode->i_dentry));
WARN_ON(inode->i_data.nrpages);
WARN_ON(BTRFS_I(inode)->outstanding_extents);
WARN_ON(BTRFS_I(inode)->reserved_extents);
WARN_ON(BTRFS_I(inode)->delalloc_bytes);
WARN_ON(BTRFS_I(inode)->csum_bytes);
/*
* This can happen where we create an inode, but somebody else also
* created the same inode and we need to destroy the one we already
* created.
*/
if (!root)
goto free;
/*
* Make sure we're properly removed from the ordered operation
* lists.
*/
smp_mb();
if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
spin_lock(&root->fs_info->ordered_extent_lock);
list_del_init(&BTRFS_I(inode)->ordered_operations);
spin_unlock(&root->fs_info->ordered_extent_lock);
}
if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
&BTRFS_I(inode)->runtime_flags)) {
printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
(unsigned long long)btrfs_ino(inode));
atomic_dec(&root->orphan_inodes);
}
while (1) {
ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
if (!ordered)
break;
else {
printk(KERN_ERR "btrfs found ordered "
"extent %llu %llu on inode cleanup\n",
(unsigned long long)ordered->file_offset,
(unsigned long long)ordered->len);
btrfs_remove_ordered_extent(inode, ordered);
btrfs_put_ordered_extent(ordered);
btrfs_put_ordered_extent(ordered);
}
}
inode_tree_del(inode);
btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
free:
btrfs_remove_delayed_node(inode);
call_rcu(&inode->i_rcu, btrfs_i_callback);
}
int btrfs_drop_inode(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
if (btrfs_root_refs(&root->root_item) == 0 &&
!btrfs_is_free_space_inode(inode))
return 1;
else
return generic_drop_inode(inode);
}
static void init_once(void *foo)
{
struct btrfs_inode *ei = (struct btrfs_inode *) foo;
inode_init_once(&ei->vfs_inode);
}
void btrfs_destroy_cachep(void)
{
if (btrfs_inode_cachep)
kmem_cache_destroy(btrfs_inode_cachep);
if (btrfs_trans_handle_cachep)
kmem_cache_destroy(btrfs_trans_handle_cachep);
if (btrfs_transaction_cachep)
kmem_cache_destroy(btrfs_transaction_cachep);
if (btrfs_path_cachep)
kmem_cache_destroy(btrfs_path_cachep);
if (btrfs_free_space_cachep)
kmem_cache_destroy(btrfs_free_space_cachep);
}
int btrfs_init_cachep(void)
{
btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
sizeof(struct btrfs_inode), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
if (!btrfs_inode_cachep)
goto fail;
btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
sizeof(struct btrfs_trans_handle), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_trans_handle_cachep)
goto fail;
btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
sizeof(struct btrfs_transaction), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_transaction_cachep)
goto fail;
btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
sizeof(struct btrfs_path), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_path_cachep)
goto fail;
btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
sizeof(struct btrfs_free_space), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_free_space_cachep)
goto fail;
return 0;
fail:
btrfs_destroy_cachep();
return -ENOMEM;
}
static int btrfs_getattr(struct vfsmount *mnt,
struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
u32 blocksize = inode->i_sb->s_blocksize;
generic_fillattr(inode, stat);
stat->dev = BTRFS_I(inode)->root->anon_dev;
stat->blksize = PAGE_CACHE_SIZE;
stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
return 0;
}
/*
* If a file is moved, it will inherit the cow and compression flags of the new
* directory.
*/
static void fixup_inode_flags(struct inode *dir, struct inode *inode)
{
struct btrfs_inode *b_dir = BTRFS_I(dir);
struct btrfs_inode *b_inode = BTRFS_I(inode);
if (b_dir->flags & BTRFS_INODE_NODATACOW)
b_inode->flags |= BTRFS_INODE_NODATACOW;
else
b_inode->flags &= ~BTRFS_INODE_NODATACOW;
if (b_dir->flags & BTRFS_INODE_COMPRESS) {
b_inode->flags |= BTRFS_INODE_COMPRESS;
b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
} else {
b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
BTRFS_INODE_NOCOMPRESS);
}
}
static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(old_dir)->root;
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
struct inode *new_inode = new_dentry->d_inode;
struct inode *old_inode = old_dentry->d_inode;
struct timespec ctime = CURRENT_TIME;
u64 index = 0;
u64 root_objectid;
int ret;
u64 old_ino = btrfs_ino(old_inode);
if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
return -EPERM;
/* we only allow rename subvolume link between subvolumes */
if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
return -EXDEV;
if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
(new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
return -ENOTEMPTY;
if (S_ISDIR(old_inode->i_mode) && new_inode &&
new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
return -ENOTEMPTY;
/*
* we're using rename to replace one file with another.
* and the replacement file is large. Start IO on it now so
* we don't add too much work to the end of the transaction
*/
if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
filemap_flush(old_inode->i_mapping);
/* close the racy window with snapshot create/destroy ioctl */
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
down_read(&root->fs_info->subvol_sem);
/*
* We want to reserve the absolute worst case amount of items. So if
* both inodes are subvols and we need to unlink them then that would
* require 4 item modifications, but if they are both normal inodes it
* would require 5 item modifications, so we'll assume their normal
* inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
* should cover the worst case number of items we'll modify.
*/
trans = btrfs_start_transaction(root, 20);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_notrans;
}
if (dest != root)
btrfs_record_root_in_trans(trans, dest);
ret = btrfs_set_inode_index(new_dir, &index);
if (ret)
goto out_fail;
if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
/* force full log commit if subvolume involved. */
root->fs_info->last_trans_log_full_commit = trans->transid;
} else {
ret = btrfs_insert_inode_ref(trans, dest,
new_dentry->d_name.name,
new_dentry->d_name.len,
old_ino,
btrfs_ino(new_dir), index);
if (ret)
goto out_fail;
/*
* this is an ugly little race, but the rename is required
* to make sure that if we crash, the inode is either at the
* old name or the new one. pinning the log transaction lets
* us make sure we don't allow a log commit to come in after
* we unlink the name but before we add the new name back in.
*/
btrfs_pin_log_trans(root);
}
/*
* make sure the inode gets flushed if it is replacing
* something.
*/
if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
btrfs_add_ordered_operation(trans, root, old_inode);
inode_inc_iversion(old_dir);
inode_inc_iversion(new_dir);
inode_inc_iversion(old_inode);
old_dir->i_ctime = old_dir->i_mtime = ctime;
new_dir->i_ctime = new_dir->i_mtime = ctime;
old_inode->i_ctime = ctime;
if (old_dentry->d_parent != new_dentry->d_parent)
btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
old_dentry->d_name.name,
old_dentry->d_name.len);
} else {
ret = __btrfs_unlink_inode(trans, root, old_dir,
old_dentry->d_inode,
old_dentry->d_name.name,
old_dentry->d_name.len);
if (!ret)
ret = btrfs_update_inode(trans, root, old_inode);
}
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
if (new_inode) {
inode_inc_iversion(new_inode);
new_inode->i_ctime = CURRENT_TIME;
if (unlikely(btrfs_ino(new_inode) ==
BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
root_objectid = BTRFS_I(new_inode)->location.objectid;
ret = btrfs_unlink_subvol(trans, dest, new_dir,
root_objectid,
new_dentry->d_name.name,
new_dentry->d_name.len);
BUG_ON(new_inode->i_nlink == 0);
} else {
ret = btrfs_unlink_inode(trans, dest, new_dir,
new_dentry->d_inode,
new_dentry->d_name.name,
new_dentry->d_name.len);
}
if (!ret && new_inode->i_nlink == 0) {
ret = btrfs_orphan_add(trans, new_dentry->d_inode);
BUG_ON(ret);
}
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
}
fixup_inode_flags(new_dir, old_inode);
ret = btrfs_add_link(trans, new_dir, old_inode,
new_dentry->d_name.name,
new_dentry->d_name.len, 0, index);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
struct dentry *parent = new_dentry->d_parent;
btrfs_log_new_name(trans, old_inode, old_dir, parent);
btrfs_end_log_trans(root);
}
out_fail:
btrfs_end_transaction(trans, root);
out_notrans:
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
up_read(&root->fs_info->subvol_sem);
return ret;
}
/*
* some fairly slow code that needs optimization. This walks the list
* of all the inodes with pending delalloc and forces them to disk.
*/
int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
{
struct list_head *head = &root->fs_info->delalloc_inodes;
struct btrfs_inode *binode;
struct inode *inode;
if (root->fs_info->sb->s_flags & MS_RDONLY)
return -EROFS;
spin_lock(&root->fs_info->delalloc_lock);
while (!list_empty(head)) {
binode = list_entry(head->next, struct btrfs_inode,
delalloc_inodes);
inode = igrab(&binode->vfs_inode);
if (!inode)
list_del_init(&binode->delalloc_inodes);
spin_unlock(&root->fs_info->delalloc_lock);
if (inode) {
filemap_flush(inode->i_mapping);
if (delay_iput)
btrfs_add_delayed_iput(inode);
else
iput(inode);
}
cond_resched();
spin_lock(&root->fs_info->delalloc_lock);
}
spin_unlock(&root->fs_info->delalloc_lock);
/* the filemap_flush will queue IO into the worker threads, but
* we have to make sure the IO is actually started and that
* ordered extents get created before we return
*/
atomic_inc(&root->fs_info->async_submit_draining);
while (atomic_read(&root->fs_info->nr_async_submits) ||
atomic_read(&root->fs_info->async_delalloc_pages)) {
wait_event(root->fs_info->async_submit_wait,
(atomic_read(&root->fs_info->nr_async_submits) == 0 &&
atomic_read(&root->fs_info->async_delalloc_pages) == 0));
}
atomic_dec(&root->fs_info->async_submit_draining);
return 0;
}
static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
const char *symname)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_path *path;
struct btrfs_key key;
struct inode *inode = NULL;
int err;
int drop_inode = 0;
u64 objectid;
u64 index = 0 ;
int name_len;
int datasize;
unsigned long ptr;
struct btrfs_file_extent_item *ei;
struct extent_buffer *leaf;
unsigned long nr = 0;
name_len = strlen(symname) + 1;
if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
return -ENAMETOOLONG;
/*
* 2 items for inode item and ref
* 2 items for dir items
* 1 item for xattr if selinux is on
*/
trans = btrfs_start_transaction(root, 5);
if (IS_ERR(trans))
return PTR_ERR(trans);
err = btrfs_find_free_ino(root, &objectid);
if (err)
goto out_unlock;
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
dentry->d_name.len, btrfs_ino(dir), objectid,
S_IFLNK|S_IRWXUGO, &index);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out_unlock;
}
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
if (err) {
drop_inode = 1;
goto out_unlock;
}
/*
* If the active LSM wants to access the inode during
* d_instantiate it needs these. Smack checks to see
* if the filesystem supports xattrs by looking at the
* ops vector.
*/
inode->i_fop = &btrfs_file_operations;
inode->i_op = &btrfs_file_inode_operations;
err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
if (err)
drop_inode = 1;
else {
inode->i_mapping->a_ops = &btrfs_aops;
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
}
if (drop_inode)
goto out_unlock;
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
drop_inode = 1;
goto out_unlock;
}
key.objectid = btrfs_ino(inode);
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
datasize = btrfs_file_extent_calc_inline_size(name_len);
err = btrfs_insert_empty_item(trans, root, path, &key,
datasize);
if (err) {
drop_inode = 1;
btrfs_free_path(path);
goto out_unlock;
}
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
btrfs_set_file_extent_type(leaf, ei,
BTRFS_FILE_EXTENT_INLINE);
btrfs_set_file_extent_encryption(leaf, ei, 0);
btrfs_set_file_extent_compression(leaf, ei, 0);
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
ptr = btrfs_file_extent_inline_start(ei);
write_extent_buffer(leaf, symname, ptr, name_len);
btrfs_mark_buffer_dirty(leaf);
btrfs_free_path(path);
inode->i_op = &btrfs_symlink_inode_operations;
inode->i_mapping->a_ops = &btrfs_symlink_aops;
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
inode_set_bytes(inode, name_len);
btrfs_i_size_write(inode, name_len - 1);
err = btrfs_update_inode(trans, root, inode);
if (err)
drop_inode = 1;
out_unlock:
if (!err)
d_instantiate(dentry, inode);
nr = trans->blocks_used;
btrfs_end_transaction(trans, root);
if (drop_inode) {
inode_dec_link_count(inode);
iput(inode);
}
btrfs_btree_balance_dirty(root, nr);
return err;
}
static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint,
struct btrfs_trans_handle *trans)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_key ins;
u64 cur_offset = start;
u64 i_size;
int ret = 0;
bool own_trans = true;
if (trans)
own_trans = false;
while (num_bytes > 0) {
if (own_trans) {
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
}
ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
0, *alloc_hint, &ins, 1);
if (ret) {
if (own_trans)
btrfs_end_transaction(trans, root);
break;
}
ret = insert_reserved_file_extent(trans, inode,
cur_offset, ins.objectid,
ins.offset, ins.offset,
ins.offset, 0, 0, 0,
BTRFS_FILE_EXTENT_PREALLOC);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
if (own_trans)
btrfs_end_transaction(trans, root);
break;
}
btrfs_drop_extent_cache(inode, cur_offset,
cur_offset + ins.offset -1, 0);
num_bytes -= ins.offset;
cur_offset += ins.offset;
*alloc_hint = ins.objectid + ins.offset;
inode_inc_iversion(inode);
inode->i_ctime = CURRENT_TIME;
BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
(actual_len > inode->i_size) &&
(cur_offset > inode->i_size)) {
if (cur_offset > actual_len)
i_size = actual_len;
else
i_size = cur_offset;
i_size_write(inode, i_size);
btrfs_ordered_update_i_size(inode, i_size, NULL);
}
ret = btrfs_update_inode(trans, root, inode);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
if (own_trans)
btrfs_end_transaction(trans, root);
break;
}
if (own_trans)
btrfs_end_transaction(trans, root);
}
return ret;
}
int btrfs_prealloc_file_range(struct inode *inode, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint)
{
return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
min_size, actual_len, alloc_hint,
NULL);
}
int btrfs_prealloc_file_range_trans(struct inode *inode,
struct btrfs_trans_handle *trans, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint)
{
return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
min_size, actual_len, alloc_hint, trans);
}
static int btrfs_set_page_dirty(struct page *page)
{
return __set_page_dirty_nobuffers(page);
}
static int btrfs_permission(struct inode *inode, int mask)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
umode_t mode = inode->i_mode;
if (mask & MAY_WRITE &&
(S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
if (btrfs_root_readonly(root))
return -EROFS;
if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
return -EACCES;
}
return generic_permission(inode, mask);
}
static const struct inode_operations btrfs_dir_inode_operations = {
.getattr = btrfs_getattr,
.lookup = btrfs_lookup,
.create = btrfs_create,
.unlink = btrfs_unlink,
.link = btrfs_link,
.mkdir = btrfs_mkdir,
.rmdir = btrfs_rmdir,
.rename = btrfs_rename,
.symlink = btrfs_symlink,
.setattr = btrfs_setattr,
.mknod = btrfs_mknod,
.setxattr = btrfs_setxattr,
.getxattr = btrfs_getxattr,
.listxattr = btrfs_listxattr,
.removexattr = btrfs_removexattr,
.permission = btrfs_permission,
.get_acl = btrfs_get_acl,
};
static const struct inode_operations btrfs_dir_ro_inode_operations = {
.lookup = btrfs_lookup,
.permission = btrfs_permission,
.get_acl = btrfs_get_acl,
};
static const struct file_operations btrfs_dir_file_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.readdir = btrfs_real_readdir,
.unlocked_ioctl = btrfs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = btrfs_ioctl,
#endif
.release = btrfs_release_file,
.fsync = btrfs_sync_file,
};
static struct extent_io_ops btrfs_extent_io_ops = {
.fill_delalloc = run_delalloc_range,
.submit_bio_hook = btrfs_submit_bio_hook,
.merge_bio_hook = btrfs_merge_bio_hook,
.readpage_end_io_hook = btrfs_readpage_end_io_hook,
.writepage_end_io_hook = btrfs_writepage_end_io_hook,
.writepage_start_hook = btrfs_writepage_start_hook,
.set_bit_hook = btrfs_set_bit_hook,
.clear_bit_hook = btrfs_clear_bit_hook,
.merge_extent_hook = btrfs_merge_extent_hook,
.split_extent_hook = btrfs_split_extent_hook,
};
/*
* btrfs doesn't support the bmap operation because swapfiles
* use bmap to make a mapping of extents in the file. They assume
* these extents won't change over the life of the file and they
* use the bmap result to do IO directly to the drive.
*
* the btrfs bmap call would return logical addresses that aren't
* suitable for IO and they also will change frequently as COW
* operations happen. So, swapfile + btrfs == corruption.
*
* For now we're avoiding this by dropping bmap.
*/
static const struct address_space_operations btrfs_aops = {
.readpage = btrfs_readpage,
.writepage = btrfs_writepage,
.writepages = btrfs_writepages,
.readpages = btrfs_readpages,
.direct_IO = btrfs_direct_IO,
.invalidatepage = btrfs_invalidatepage,
.releasepage = btrfs_releasepage,
.set_page_dirty = btrfs_set_page_dirty,
.error_remove_page = generic_error_remove_page,
};
static const struct address_space_operations btrfs_symlink_aops = {
.readpage = btrfs_readpage,
.writepage = btrfs_writepage,
.invalidatepage = btrfs_invalidatepage,
.releasepage = btrfs_releasepage,
};
static const struct inode_operations btrfs_file_inode_operations = {
.getattr = btrfs_getattr,
.setattr = btrfs_setattr,
.setxattr = btrfs_setxattr,
.getxattr = btrfs_getxattr,
.listxattr = btrfs_listxattr,
.removexattr = btrfs_removexattr,
.permission = btrfs_permission,
.fiemap = btrfs_fiemap,
.get_acl = btrfs_get_acl,
.update_time = btrfs_update_time,
};
static const struct inode_operations btrfs_special_inode_operations = {
.getattr = btrfs_getattr,
.setattr = btrfs_setattr,
.permission = btrfs_permission,
.setxattr = btrfs_setxattr,
.getxattr = btrfs_getxattr,
.listxattr = btrfs_listxattr,
.removexattr = btrfs_removexattr,
.get_acl = btrfs_get_acl,
.update_time = btrfs_update_time,
};
static const struct inode_operations btrfs_symlink_inode_operations = {
.readlink = generic_readlink,
.follow_link = page_follow_link_light,
.put_link = page_put_link,
.getattr = btrfs_getattr,
.setattr = btrfs_setattr,
.permission = btrfs_permission,
.setxattr = btrfs_setxattr,
.getxattr = btrfs_getxattr,
.listxattr = btrfs_listxattr,
.removexattr = btrfs_removexattr,
.get_acl = btrfs_get_acl,
.update_time = btrfs_update_time,
};
const struct dentry_operations btrfs_dentry_operations = {
.d_delete = btrfs_dentry_delete,
.d_release = btrfs_dentry_release,
};