summaryrefslogblamecommitdiff
path: root/fs/btrfs/inode.c
blob: 94f1c28c25b951b8804b9ffee61c5a1de387f0dc (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515

















                                                                    














                              
                               















































                                                              
































































































                                                                               



































                                                                      









































































                                                                       





































































                                                                              












































































































































































































                                                                                
                                                 























































































































                                                                          

























































































































































































                                                                              




























































































                                                                               





































































































































































































































































































                                                                            
                                              



                                                                      












                                                                          
                                                















































































                                                                                



















                                                                    

























                                                                            






                                               




















                                                                               













                                                                             
 





























                                                                              

















































































































































                                                                                

























                                                                           
                                                       




                                                                  






                                                       


































































                                                                               

















                                                                               
























































































































                                                                               























                                                                               





















                                                               
































































































































                                                                           
                                











                                                                          
















































































                                                                              

                                               
























































































































































































































































































































































































                                                                                 
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/module.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/smp_lock.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/statfs.h>
#include <linux/compat.h>
#include <linux/bit_spinlock.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "ioctl.h"
#include "print-tree.h"

struct btrfs_iget_args {
	u64 ino;
	struct btrfs_root *root;
};

static struct inode_operations btrfs_dir_inode_operations;
static struct inode_operations btrfs_symlink_inode_operations;
static struct inode_operations btrfs_dir_ro_inode_operations;
static struct inode_operations btrfs_file_inode_operations;
static struct address_space_operations btrfs_aops;
static struct address_space_operations btrfs_symlink_aops;
static struct file_operations btrfs_dir_file_operations;

static struct kmem_cache *btrfs_inode_cachep;
struct kmem_cache *btrfs_trans_handle_cachep;
struct kmem_cache *btrfs_transaction_cachep;
struct kmem_cache *btrfs_bit_radix_cachep;
struct kmem_cache *btrfs_path_cachep;

#define S_SHIFT 12
static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
};

void btrfs_read_locked_inode(struct inode *inode)
{
	struct btrfs_path *path;
	struct btrfs_inode_item *inode_item;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct btrfs_key location;
	u64 alloc_group_block;
	int ret;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	mutex_lock(&root->fs_info->fs_mutex);

	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
	if (ret) {
		btrfs_free_path(path);
		goto make_bad;
	}
	inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
				  path->slots[0],
				  struct btrfs_inode_item);

	inode->i_mode = btrfs_inode_mode(inode_item);
	inode->i_nlink = btrfs_inode_nlink(inode_item);
	inode->i_uid = btrfs_inode_uid(inode_item);
	inode->i_gid = btrfs_inode_gid(inode_item);
	inode->i_size = btrfs_inode_size(inode_item);
	inode->i_atime.tv_sec = btrfs_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_timespec_nsec(&inode_item->atime);
	inode->i_mtime.tv_sec = btrfs_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(&inode_item->mtime);
	inode->i_ctime.tv_sec = btrfs_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(&inode_item->ctime);
	inode->i_blocks = btrfs_inode_nblocks(inode_item);
	inode->i_generation = btrfs_inode_generation(inode_item);
	alloc_group_block = btrfs_inode_block_group(inode_item);
	BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
						       alloc_group_block);

	btrfs_free_path(path);
	inode_item = NULL;

	mutex_unlock(&root->fs_info->fs_mutex);

	switch (inode->i_mode & S_IFMT) {
#if 0
	default:
		init_special_inode(inode, inode->i_mode,
				   btrfs_inode_rdev(inode_item));
		break;
#endif
	case S_IFREG:
		inode->i_mapping->a_ops = &btrfs_aops;
		inode->i_fop = &btrfs_file_operations;
		inode->i_op = &btrfs_file_inode_operations;
		break;
	case S_IFDIR:
		inode->i_fop = &btrfs_dir_file_operations;
		if (root == root->fs_info->tree_root)
			inode->i_op = &btrfs_dir_ro_inode_operations;
		else
			inode->i_op = &btrfs_dir_inode_operations;
		break;
	case S_IFLNK:
		inode->i_op = &btrfs_symlink_inode_operations;
		inode->i_mapping->a_ops = &btrfs_symlink_aops;
		break;
	}
	return;

make_bad:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	mutex_unlock(&root->fs_info->fs_mutex);
	make_bad_inode(inode);
}

static void fill_inode_item(struct btrfs_inode_item *item,
			    struct inode *inode)
{
	btrfs_set_inode_uid(item, inode->i_uid);
	btrfs_set_inode_gid(item, inode->i_gid);
	btrfs_set_inode_size(item, inode->i_size);
	btrfs_set_inode_mode(item, inode->i_mode);
	btrfs_set_inode_nlink(item, inode->i_nlink);
	btrfs_set_timespec_sec(&item->atime, inode->i_atime.tv_sec);
	btrfs_set_timespec_nsec(&item->atime, inode->i_atime.tv_nsec);
	btrfs_set_timespec_sec(&item->mtime, inode->i_mtime.tv_sec);
	btrfs_set_timespec_nsec(&item->mtime, inode->i_mtime.tv_nsec);
	btrfs_set_timespec_sec(&item->ctime, inode->i_ctime.tv_sec);
	btrfs_set_timespec_nsec(&item->ctime, inode->i_ctime.tv_nsec);
	btrfs_set_inode_nblocks(item, inode->i_blocks);
	btrfs_set_inode_generation(item, inode->i_generation);
	btrfs_set_inode_block_group(item,
				    BTRFS_I(inode)->block_group->key.objectid);
}

static int btrfs_update_inode(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct inode *inode)
{
	struct btrfs_inode_item *inode_item;
	struct btrfs_path *path;
	int ret;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	ret = btrfs_lookup_inode(trans, root, path,
				 &BTRFS_I(inode)->location, 1);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		goto failed;
	}

	inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
				  path->slots[0],
				  struct btrfs_inode_item);

	fill_inode_item(inode_item, inode);
	btrfs_mark_buffer_dirty(path->nodes[0]);
	ret = 0;
failed:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	return ret;
}


static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct inode *dir,
			      struct dentry *dentry)
{
	struct btrfs_path *path;
	const char *name = dentry->d_name.name;
	int name_len = dentry->d_name.len;
	int ret = 0;
	u64 objectid;
	struct btrfs_dir_item *di;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
				    name, name_len, -1);
	if (IS_ERR(di)) {
		ret = PTR_ERR(di);
		goto err;
	}
	if (!di) {
		ret = -ENOENT;
		goto err;
	}
	objectid = btrfs_disk_key_objectid(&di->location);
	ret = btrfs_delete_one_dir_name(trans, root, path, di);
	BUG_ON(ret);
	btrfs_release_path(root, path);

	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
					 objectid, name, name_len, -1);
	if (IS_ERR(di)) {
		ret = PTR_ERR(di);
		goto err;
	}
	if (!di) {
		ret = -ENOENT;
		goto err;
	}
	ret = btrfs_delete_one_dir_name(trans, root, path, di);
	BUG_ON(ret);

	dentry->d_inode->i_ctime = dir->i_ctime;
err:
	btrfs_free_path(path);
	if (!ret) {
		dir->i_size -= name_len * 2;
		btrfs_update_inode(trans, root, dir);
		drop_nlink(dentry->d_inode);
		btrfs_update_inode(trans, root, dentry->d_inode);
		dir->i_sb->s_dirt = 1;
	}
	return ret;
}

static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
{
	struct btrfs_root *root;
	struct btrfs_trans_handle *trans;
	int ret;

	root = BTRFS_I(dir)->root;
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, dir);
	ret = btrfs_unlink_trans(trans, root, dir, dentry);
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);
	btrfs_btree_balance_dirty(root);
	return ret;
}

static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = dentry->d_inode;
	int err;
	int ret;
	struct btrfs_root *root = BTRFS_I(dir)->root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;
	struct btrfs_key found_key;
	int found_type;
	struct btrfs_leaf *leaf;
	char *goodnames = "..";

	path = btrfs_alloc_path();
	BUG_ON(!path);
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, dir);
	key.objectid = inode->i_ino;
	key.offset = (u64)-1;
	key.flags = (u32)-1;
	while(1) {
		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		BUG_ON(ret == 0);
		if (path->slots[0] == 0) {
			err = -ENOENT;
			goto out;
		}
		path->slots[0]--;
		leaf = btrfs_buffer_leaf(path->nodes[0]);
		btrfs_disk_key_to_cpu(&found_key,
				      &leaf->items[path->slots[0]].key);
		found_type = btrfs_key_type(&found_key);
		if (found_key.objectid != inode->i_ino) {
			err = -ENOENT;
			goto out;
		}
		if ((found_type != BTRFS_DIR_ITEM_KEY &&
		     found_type != BTRFS_DIR_INDEX_KEY) ||
	            (!btrfs_match_dir_item_name(root, path, goodnames, 2) &&
	            !btrfs_match_dir_item_name(root, path, goodnames, 1))) {
			err = -ENOTEMPTY;
			goto out;
		}
		ret = btrfs_del_item(trans, root, path);
		BUG_ON(ret);

		if (found_type == BTRFS_DIR_ITEM_KEY && found_key.offset == 1)
			break;
		btrfs_release_path(root, path);
	}
	ret = 0;
	btrfs_release_path(root, path);

	/* now the directory is empty */
	err = btrfs_unlink_trans(trans, root, dir, dentry);
	if (!err) {
		inode->i_size = 0;
	}
out:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	mutex_unlock(&root->fs_info->fs_mutex);
	ret = btrfs_end_transaction(trans, root);
	btrfs_btree_balance_dirty(root);
	if (ret && !err)
		err = ret;
	return err;
}

static int btrfs_free_inode(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct inode *inode)
{
	struct btrfs_path *path;
	int ret;

	clear_inode(inode);

	path = btrfs_alloc_path();
	BUG_ON(!path);
	ret = btrfs_lookup_inode(trans, root, path,
				 &BTRFS_I(inode)->location, -1);
	BUG_ON(ret);
	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);
	btrfs_free_path(path);
	return ret;
}

/*
 * truncates go from a high offset to a low offset.  So, walk
 * from hi to lo in the node and issue readas.  Stop when you find
 * keys from a different objectid
 */
static void reada_truncate(struct btrfs_root *root, struct btrfs_path *path,
			   u64 objectid)
{
	struct btrfs_node *node;
	int i;
	int nritems;
	u64 item_objectid;
	u64 blocknr;
	int slot;
	int ret;

	if (!path->nodes[1])
		return;
	node = btrfs_buffer_node(path->nodes[1]);
	slot = path->slots[1];
	if (slot == 0)
		return;
	nritems = btrfs_header_nritems(&node->header);
	for (i = slot - 1; i >= 0; i--) {
		item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
		if (item_objectid != objectid)
			break;
		blocknr = btrfs_node_blockptr(node, i);
		ret = readahead_tree_block(root, blocknr);
		if (ret)
			break;
	}
}

/*
 * this can truncate away extent items, csum items and directory items.
 * It starts at a high offset and removes keys until it can't find
 * any higher than i_size.
 *
 * csum items that cross the new i_size are truncated to the new size
 * as well.
 */
static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct inode *inode)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_disk_key *found_key;
	u32 found_type;
	struct btrfs_leaf *leaf;
	struct btrfs_file_extent_item *fi;
	u64 extent_start = 0;
	u64 extent_num_blocks = 0;
	u64 item_end = 0;
	int found_extent;
	int del_item;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	/* FIXME, add redo link to tree so we don't leak on crash */
	key.objectid = inode->i_ino;
	key.offset = (u64)-1;
	key.flags = (u32)-1;
	while(1) {
		btrfs_init_path(path);
		fi = NULL;
		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret < 0) {
			goto error;
		}
		if (ret > 0) {
			BUG_ON(path->slots[0] == 0);
			path->slots[0]--;
		}
		reada_truncate(root, path, inode->i_ino);
		leaf = btrfs_buffer_leaf(path->nodes[0]);
		found_key = &leaf->items[path->slots[0]].key;
		found_type = btrfs_disk_key_type(found_key);

		if (btrfs_disk_key_objectid(found_key) != inode->i_ino)
			break;
		if (found_type != BTRFS_CSUM_ITEM_KEY &&
		    found_type != BTRFS_DIR_ITEM_KEY &&
		    found_type != BTRFS_DIR_INDEX_KEY &&
		    found_type != BTRFS_EXTENT_DATA_KEY)
			break;

		item_end = btrfs_disk_key_offset(found_key);
		if (found_type == BTRFS_EXTENT_DATA_KEY) {
			fi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
					    path->slots[0],
					    struct btrfs_file_extent_item);
			if (btrfs_file_extent_type(fi) !=
			    BTRFS_FILE_EXTENT_INLINE) {
				item_end += btrfs_file_extent_num_blocks(fi) <<
						inode->i_blkbits;
			}
		}
		if (found_type == BTRFS_CSUM_ITEM_KEY) {
			ret = btrfs_csum_truncate(trans, root, path,
						  inode->i_size);
			BUG_ON(ret);
		}
		if (item_end < inode->i_size) {
			if (found_type) {
				btrfs_set_key_type(&key, found_type - 1);
				continue;
			}
			break;
		}
		if (btrfs_disk_key_offset(found_key) >= inode->i_size)
			del_item = 1;
		else
			del_item = 0;
		found_extent = 0;

		/* FIXME, shrink the extent if the ref count is only 1 */
		if (found_type == BTRFS_EXTENT_DATA_KEY &&
			   btrfs_file_extent_type(fi) !=
			   BTRFS_FILE_EXTENT_INLINE) {
			u64 num_dec;
			if (!del_item) {
				u64 orig_num_blocks =
					btrfs_file_extent_num_blocks(fi);
				extent_num_blocks = inode->i_size -
					btrfs_disk_key_offset(found_key) +
					root->blocksize - 1;
				extent_num_blocks >>= inode->i_blkbits;
				btrfs_set_file_extent_num_blocks(fi,
							 extent_num_blocks);
				inode->i_blocks -= (orig_num_blocks -
					extent_num_blocks) << 3;
				mark_buffer_dirty(path->nodes[0]);
			} else {
				extent_start =
					btrfs_file_extent_disk_blocknr(fi);
				extent_num_blocks =
					btrfs_file_extent_disk_num_blocks(fi);
				/* FIXME blocksize != 4096 */
				num_dec = btrfs_file_extent_num_blocks(fi) << 3;
				if (extent_start != 0) {
					found_extent = 1;
					inode->i_blocks -= num_dec;
				}
			}
		}
		if (del_item) {
			ret = btrfs_del_item(trans, root, path);
			BUG_ON(ret);
		} else {
			break;
		}
		btrfs_release_path(root, path);
		if (found_extent) {
			ret = btrfs_free_extent(trans, root, extent_start,
						extent_num_blocks, 0);
			BUG_ON(ret);
		}
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	inode->i_sb->s_dirt = 1;
	return ret;
}

/*
 * taken from block_truncate_page, but does cow as it zeros out
 * any bytes left in the last page in the file.
 */
static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
{
	struct inode *inode = mapping->host;
	unsigned blocksize = 1 << inode->i_blkbits;
	pgoff_t index = from >> PAGE_CACHE_SHIFT;
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	struct page *page;
	char *kaddr;
	int ret = 0;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	u64 alloc_hint = 0;
	struct btrfs_key ins;
	struct btrfs_trans_handle *trans;

	if ((offset & (blocksize - 1)) == 0)
		goto out;

	ret = -ENOMEM;
	page = grab_cache_page(mapping, index);
	if (!page)
		goto out;

	if (!PageUptodate(page)) {
		ret = btrfs_readpage(NULL, page);
		lock_page(page);
		if (!PageUptodate(page)) {
			ret = -EIO;
			goto out;
		}
	}
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, inode);

	ret = btrfs_drop_extents(trans, root, inode,
				 page->index << PAGE_CACHE_SHIFT,
				 (page->index + 1) << PAGE_CACHE_SHIFT,
				 &alloc_hint);
	BUG_ON(ret);
	ret = btrfs_alloc_extent(trans, root, inode->i_ino, 1,
				 alloc_hint, (u64)-1, &ins, 1);
	BUG_ON(ret);
	ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
				       page->index << PAGE_CACHE_SHIFT,
				       ins.objectid, 1, 1);
	BUG_ON(ret);
	SetPageChecked(page);
	kaddr = kmap(page);
	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
	flush_dcache_page(page);
	btrfs_csum_file_block(trans, root, inode->i_ino,
			      page->index << PAGE_CACHE_SHIFT,
			      kaddr, PAGE_CACHE_SIZE);
	kunmap(page);
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);

	set_page_dirty(page);
	unlock_page(page);
	page_cache_release(page);
out:
	return ret;
}

static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
{
	struct inode *inode = dentry->d_inode;
	int err;

	err = inode_change_ok(inode, attr);
	if (err)
		return err;

	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
		struct btrfs_trans_handle *trans;
		struct btrfs_root *root = BTRFS_I(inode)->root;
		u64 mask = root->blocksize - 1;
		u64 pos = (inode->i_size + mask) & ~mask;
		u64 hole_size;

		if (attr->ia_size <= pos)
			goto out;

		btrfs_truncate_page(inode->i_mapping, inode->i_size);

		hole_size = (attr->ia_size - pos + mask) & ~mask;
		hole_size >>= inode->i_blkbits;

		mutex_lock(&root->fs_info->fs_mutex);
		trans = btrfs_start_transaction(root, 1);
		btrfs_set_trans_block_group(trans, inode);
		err = btrfs_insert_file_extent(trans, root, inode->i_ino,
					       pos, 0, 0, hole_size);
		BUG_ON(err);
		btrfs_end_transaction(trans, root);
		mutex_unlock(&root->fs_info->fs_mutex);
	}
out:
	err = inode_setattr(inode, attr);

	return err;
}
void btrfs_delete_inode(struct inode *inode)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	int ret;

	truncate_inode_pages(&inode->i_data, 0);
	if (is_bad_inode(inode)) {
		goto no_delete;
	}
	inode->i_size = 0;
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, inode);
	ret = btrfs_truncate_in_trans(trans, root, inode);
	BUG_ON(ret);
	btrfs_free_inode(trans, root, inode);
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);
	btrfs_btree_balance_dirty(root);
	return;
no_delete:
	clear_inode(inode);
}

/*
 * this returns the key found in the dir entry in the location pointer.
 * If no dir entries were found, location->objectid is 0.
 */
static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
			       struct btrfs_key *location)
{
	const char *name = dentry->d_name.name;
	int namelen = dentry->d_name.len;
	struct btrfs_dir_item *di;
	struct btrfs_path *path;
	struct btrfs_root *root = BTRFS_I(dir)->root;
	int ret;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
				    namelen, 0);
	if (!di || IS_ERR(di)) {
		location->objectid = 0;
		ret = 0;
		goto out;
	}
	btrfs_disk_key_to_cpu(location, &di->location);
out:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	return ret;
}

/*
 * when we hit a tree root in a directory, the btrfs part of the inode
 * needs to be changed to reflect the root directory of the tree root.  This
 * is kind of like crossing a mount point.
 */
static int fixup_tree_root_location(struct btrfs_root *root,
			     struct btrfs_key *location,
			     struct btrfs_root **sub_root)
{
	struct btrfs_path *path;
	struct btrfs_root_item *ri;

	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
		return 0;
	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
		return 0;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	mutex_lock(&root->fs_info->fs_mutex);

	*sub_root = btrfs_read_fs_root(root->fs_info, location);
	if (IS_ERR(*sub_root))
		return PTR_ERR(*sub_root);

	ri = &(*sub_root)->root_item;
	location->objectid = btrfs_root_dirid(ri);
	location->flags = 0;
	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
	location->offset = 0;

	btrfs_free_path(path);
	mutex_unlock(&root->fs_info->fs_mutex);
	return 0;
}

static int btrfs_init_locked_inode(struct inode *inode, void *p)
{
	struct btrfs_iget_args *args = p;
	inode->i_ino = args->ino;
	BTRFS_I(inode)->root = args->root;
	return 0;
}

static int btrfs_find_actor(struct inode *inode, void *opaque)
{
	struct btrfs_iget_args *args = opaque;
	return (args->ino == inode->i_ino &&
		args->root == BTRFS_I(inode)->root);
}

struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
				struct btrfs_root *root)
{
	struct inode *inode;
	struct btrfs_iget_args args;
	args.ino = objectid;
	args.root = root;

	inode = iget5_locked(s, objectid, btrfs_find_actor,
			     btrfs_init_locked_inode,
			     (void *)&args);
	return inode;
}

static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
				   struct nameidata *nd)
{
	struct inode * inode;
	struct btrfs_inode *bi = BTRFS_I(dir);
	struct btrfs_root *root = bi->root;
	struct btrfs_root *sub_root = root;
	struct btrfs_key location;
	int ret;

	if (dentry->d_name.len > BTRFS_NAME_LEN)
		return ERR_PTR(-ENAMETOOLONG);
	mutex_lock(&root->fs_info->fs_mutex);
	ret = btrfs_inode_by_name(dir, dentry, &location);
	mutex_unlock(&root->fs_info->fs_mutex);
	if (ret < 0)
		return ERR_PTR(ret);
	inode = NULL;
	if (location.objectid) {
		ret = fixup_tree_root_location(root, &location, &sub_root);
		if (ret < 0)
			return ERR_PTR(ret);
		if (ret > 0)
			return ERR_PTR(-ENOENT);
		inode = btrfs_iget_locked(dir->i_sb, location.objectid,
					  sub_root);
		if (!inode)
			return ERR_PTR(-EACCES);
		if (inode->i_state & I_NEW) {
			/* the inode and parent dir are two different roots */
			if (sub_root != root) {
				igrab(inode);
				sub_root->inode = inode;
			}
			BTRFS_I(inode)->root = sub_root;
			memcpy(&BTRFS_I(inode)->location, &location,
			       sizeof(location));
			btrfs_read_locked_inode(inode);
			unlock_new_inode(inode);
		}
	}
	return d_splice_alias(inode, dentry);
}

/*
 * readahead one full node of leaves as long as their keys include
 * the objectid supplied
 */
static void reada_leaves(struct btrfs_root *root, struct btrfs_path *path,
			 u64 objectid)
{
	struct btrfs_node *node;
	int i;
	u32 nritems;
	u64 item_objectid;
	u64 blocknr;
	int slot;
	int ret;

	if (!path->nodes[1])
		return;
	node = btrfs_buffer_node(path->nodes[1]);
	slot = path->slots[1];
	nritems = btrfs_header_nritems(&node->header);
	for (i = slot + 1; i < nritems; i++) {
		item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
		if (item_objectid != objectid)
			break;
		blocknr = btrfs_node_blockptr(node, i);
		ret = readahead_tree_block(root, blocknr);
		if (ret)
			break;
	}
}
static unsigned char btrfs_filetype_table[] = {
	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
};

static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct btrfs_item *item;
	struct btrfs_dir_item *di;
	struct btrfs_key key;
	struct btrfs_path *path;
	int ret;
	u32 nritems;
	struct btrfs_leaf *leaf;
	int slot;
	int advance;
	unsigned char d_type;
	int over = 0;
	u32 di_cur;
	u32 di_total;
	u32 di_len;
	int key_type = BTRFS_DIR_INDEX_KEY;

	/* FIXME, use a real flag for deciding about the key type */
	if (root->fs_info->tree_root == root)
		key_type = BTRFS_DIR_ITEM_KEY;
	mutex_lock(&root->fs_info->fs_mutex);
	key.objectid = inode->i_ino;
	key.flags = 0;
	btrfs_set_key_type(&key, key_type);
	key.offset = filp->f_pos;
	path = btrfs_alloc_path();
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto err;
	advance = 0;
	reada_leaves(root, path, inode->i_ino);
	while(1) {
		leaf = btrfs_buffer_leaf(path->nodes[0]);
		nritems = btrfs_header_nritems(&leaf->header);
		slot = path->slots[0];
		if (advance || slot >= nritems) {
			if (slot >= nritems -1) {
				reada_leaves(root, path, inode->i_ino);
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
				leaf = btrfs_buffer_leaf(path->nodes[0]);
				nritems = btrfs_header_nritems(&leaf->header);
				slot = path->slots[0];
			} else {
				slot++;
				path->slots[0]++;
			}
		}
		advance = 1;
		item = leaf->items + slot;
		if (btrfs_disk_key_objectid(&item->key) != key.objectid)
			break;
		if (btrfs_disk_key_type(&item->key) != key_type)
			break;
		if (btrfs_disk_key_offset(&item->key) < filp->f_pos)
			continue;
		filp->f_pos = btrfs_disk_key_offset(&item->key);
		advance = 1;
		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
		di_cur = 0;
		di_total = btrfs_item_size(leaf->items + slot);
		while(di_cur < di_total) {
			d_type = btrfs_filetype_table[btrfs_dir_type(di)];
			over = filldir(dirent, (const char *)(di + 1),
				       btrfs_dir_name_len(di),
				       btrfs_disk_key_offset(&item->key),
				       btrfs_disk_key_objectid(&di->location),
				       d_type);
			if (over)
				goto nopos;
			di_len = btrfs_dir_name_len(di) + sizeof(*di);
			di_cur += di_len;
			di = (struct btrfs_dir_item *)((char *)di + di_len);
		}
	}
	filp->f_pos++;
nopos:
	ret = 0;
err:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;
}

int btrfs_write_inode(struct inode *inode, int wait)
{
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct btrfs_trans_handle *trans;
	int ret = 0;

	if (wait) {
		mutex_lock(&root->fs_info->fs_mutex);
		trans = btrfs_start_transaction(root, 1);
		btrfs_set_trans_block_group(trans, inode);
		ret = btrfs_commit_transaction(trans, root);
		mutex_unlock(&root->fs_info->fs_mutex);
	}
	return ret;
}

/*
 * This is somewhat expense, updating the tree every time the
 * inode changes.  But, it is most likely to find the inode in cache.
 * FIXME, needs more benchmarking...there are no reasons other than performance
 * to keep or drop this code.
 */
void btrfs_dirty_inode(struct inode *inode)
{
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct btrfs_trans_handle *trans;

	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, inode);
	btrfs_update_inode(trans, root, inode);
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);
}

static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     u64 objectid,
				     struct btrfs_block_group_cache *group,
				     int mode)
{
	struct inode *inode;
	struct btrfs_inode_item inode_item;
	struct btrfs_key *location;
	int ret;
	int owner;

	inode = new_inode(root->fs_info->sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);

	BTRFS_I(inode)->root = root;
	if (mode & S_IFDIR)
		owner = 0;
	else
		owner = 1;
	group = btrfs_find_block_group(root, group, 0, 0, owner);
	BTRFS_I(inode)->block_group = group;

	inode->i_uid = current->fsuid;
	inode->i_gid = current->fsgid;
	inode->i_mode = mode;
	inode->i_ino = objectid;
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	fill_inode_item(&inode_item, inode);
	location = &BTRFS_I(inode)->location;
	location->objectid = objectid;
	location->flags = 0;
	location->offset = 0;
	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);

	ret = btrfs_insert_inode(trans, root, objectid, &inode_item);
	BUG_ON(ret);

	insert_inode_hash(inode);
	return inode;
}

static inline u8 btrfs_inode_type(struct inode *inode)
{
	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
}

static int btrfs_add_link(struct btrfs_trans_handle *trans,
			    struct dentry *dentry, struct inode *inode)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
	key.objectid = inode->i_ino;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
	key.offset = 0;

	ret = btrfs_insert_dir_item(trans, root,
				    dentry->d_name.name, dentry->d_name.len,
				    dentry->d_parent->d_inode->i_ino,
				    &key, btrfs_inode_type(inode));
	if (ret == 0) {
		dentry->d_parent->d_inode->i_size += dentry->d_name.len * 2;
		ret = btrfs_update_inode(trans, root,
					 dentry->d_parent->d_inode);
	}
	return ret;
}

static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
			    struct dentry *dentry, struct inode *inode)
{
	int err = btrfs_add_link(trans, dentry, inode);
	if (!err) {
		d_instantiate(dentry, inode);
		return 0;
	}
	if (err > 0)
		err = -EEXIST;
	return err;
}

static int btrfs_create(struct inode *dir, struct dentry *dentry,
			int mode, struct nameidata *nd)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = BTRFS_I(dir)->root;
	struct inode *inode;
	int err;
	int drop_inode = 0;
	u64 objectid;

	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, dir);

	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
	if (err) {
		err = -ENOSPC;
		goto out_unlock;
	}

	inode = btrfs_new_inode(trans, root, objectid,
				BTRFS_I(dir)->block_group, mode);
	err = PTR_ERR(inode);
	if (IS_ERR(inode))
		goto out_unlock;

	btrfs_set_trans_block_group(trans, inode);
	err = btrfs_add_nondir(trans, dentry, inode);
	if (err)
		drop_inode = 1;
	else {
		inode->i_mapping->a_ops = &btrfs_aops;
		inode->i_fop = &btrfs_file_operations;
		inode->i_op = &btrfs_file_inode_operations;
	}
	dir->i_sb->s_dirt = 1;
	btrfs_update_inode_block_group(trans, inode);
	btrfs_update_inode_block_group(trans, dir);
out_unlock:
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);

	if (drop_inode) {
		inode_dec_link_count(inode);
		iput(inode);
	}
	btrfs_btree_balance_dirty(root);
	return err;
}

static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
		      struct dentry *dentry)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = BTRFS_I(dir)->root;
	struct inode *inode = old_dentry->d_inode;
	int err;
	int drop_inode = 0;

	if (inode->i_nlink == 0)
		return -ENOENT;

	inc_nlink(inode);
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, dir);
	atomic_inc(&inode->i_count);
	err = btrfs_add_nondir(trans, dentry, inode);
	if (err)
		drop_inode = 1;
	dir->i_sb->s_dirt = 1;
	btrfs_update_inode_block_group(trans, dir);
	btrfs_update_inode(trans, root, inode);

	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);

	if (drop_inode) {
		inode_dec_link_count(inode);
		iput(inode);
	}
	btrfs_btree_balance_dirty(root);
	return err;
}

static int btrfs_make_empty_dir(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
				u64 objectid, u64 dirid)
{
	int ret;
	char buf[2];
	struct btrfs_key key;

	buf[0] = '.';
	buf[1] = '.';

	key.objectid = objectid;
	key.offset = 0;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);

	ret = btrfs_insert_dir_item(trans, root, buf, 1, objectid,
				    &key, BTRFS_FT_DIR);
	if (ret)
		goto error;
	key.objectid = dirid;
	ret = btrfs_insert_dir_item(trans, root, buf, 2, objectid,
				    &key, BTRFS_FT_DIR);
	if (ret)
		goto error;
error:
	return ret;
}

static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct inode *inode;
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = BTRFS_I(dir)->root;
	int err = 0;
	int drop_on_err = 0;
	u64 objectid;

	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, dir);
	if (IS_ERR(trans)) {
		err = PTR_ERR(trans);
		goto out_unlock;
	}

	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
	if (err) {
		err = -ENOSPC;
		goto out_unlock;
	}

	inode = btrfs_new_inode(trans, root, objectid,
				BTRFS_I(dir)->block_group, S_IFDIR | mode);
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		goto out_fail;
	}
	drop_on_err = 1;
	inode->i_op = &btrfs_dir_inode_operations;
	inode->i_fop = &btrfs_dir_file_operations;
	btrfs_set_trans_block_group(trans, inode);

	err = btrfs_make_empty_dir(trans, root, inode->i_ino, dir->i_ino);
	if (err)
		goto out_fail;

	inode->i_size = 6;
	err = btrfs_update_inode(trans, root, inode);
	if (err)
		goto out_fail;
	err = btrfs_add_link(trans, dentry, inode);
	if (err)
		goto out_fail;
	d_instantiate(dentry, inode);
	drop_on_err = 0;
	dir->i_sb->s_dirt = 1;
	btrfs_update_inode_block_group(trans, inode);
	btrfs_update_inode_block_group(trans, dir);

out_fail:
	btrfs_end_transaction(trans, root);
out_unlock:
	mutex_unlock(&root->fs_info->fs_mutex);
	if (drop_on_err)
		iput(inode);
	btrfs_btree_balance_dirty(root);
	return err;
}

/*
 * FIBMAP and others want to pass in a fake buffer head.  They need to
 * use BTRFS_GET_BLOCK_NO_DIRECT to make sure we don't try to memcpy
 * any packed file data into the fake bh
 */
#define BTRFS_GET_BLOCK_NO_CREATE 0
#define BTRFS_GET_BLOCK_CREATE 1
#define BTRFS_GET_BLOCK_NO_DIRECT 2

/*
 * FIXME create==1 doe not work.
 */
static int btrfs_get_block_lock(struct inode *inode, sector_t iblock,
				struct buffer_head *result, int create)
{
	int ret;
	int err = 0;
	u64 blocknr;
	u64 extent_start = 0;
	u64 extent_end = 0;
	u64 objectid = inode->i_ino;
	u32 found_type;
	u64 alloc_hint = 0;
	struct btrfs_path *path;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct btrfs_file_extent_item *item;
	struct btrfs_leaf *leaf;
	struct btrfs_disk_key *found_key;
	struct btrfs_trans_handle *trans = NULL;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	if (create & BTRFS_GET_BLOCK_CREATE) {
		/*
		 * danger!, this only works if the page is properly up
		 * to date somehow
		 */
		trans = btrfs_start_transaction(root, 1);
		if (!trans) {
			err = -ENOMEM;
			goto out;
		}
		ret = btrfs_drop_extents(trans, root, inode,
					 iblock << inode->i_blkbits,
					 (iblock + 1) << inode->i_blkbits,
					 &alloc_hint);
		BUG_ON(ret);
	}

	ret = btrfs_lookup_file_extent(NULL, root, path,
				       objectid,
				       iblock << inode->i_blkbits, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}

	if (ret != 0) {
		if (path->slots[0] == 0) {
			btrfs_release_path(root, path);
			goto not_found;
		}
		path->slots[0]--;
	}

	item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0],
			      struct btrfs_file_extent_item);
	leaf = btrfs_buffer_leaf(path->nodes[0]);
	blocknr = btrfs_file_extent_disk_blocknr(item);
	blocknr += btrfs_file_extent_offset(item);

	/* are we inside the extent that was found? */
	found_key = &leaf->items[path->slots[0]].key;
	found_type = btrfs_disk_key_type(found_key);
	if (btrfs_disk_key_objectid(found_key) != objectid ||
	    found_type != BTRFS_EXTENT_DATA_KEY) {
		extent_end = 0;
		extent_start = 0;
		goto not_found;
	}
	found_type = btrfs_file_extent_type(item);
	extent_start = btrfs_disk_key_offset(&leaf->items[path->slots[0]].key);
	if (found_type == BTRFS_FILE_EXTENT_REG) {
		extent_start = extent_start >> inode->i_blkbits;
		extent_end = extent_start + btrfs_file_extent_num_blocks(item);
		err = 0;
		if (btrfs_file_extent_disk_blocknr(item) == 0)
			goto out;
		if (iblock >= extent_start && iblock < extent_end) {
			btrfs_map_bh_to_logical(root, result, blocknr +
						iblock - extent_start);
			goto out;
		}
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
		char *ptr;
		char *map;
		u32 size;

		if (create & BTRFS_GET_BLOCK_NO_DIRECT) {
			err = -EINVAL;
			goto out;
		}
		size = btrfs_file_extent_inline_len(leaf->items +
						    path->slots[0]);
		extent_end = (extent_start + size) >> inode->i_blkbits;
		extent_start >>= inode->i_blkbits;
		if (iblock < extent_start || iblock > extent_end) {
			goto not_found;
		}
		ptr = btrfs_file_extent_inline_start(item);
		map = kmap(result->b_page);
		memcpy(map, ptr, size);
		memset(map + size, 0, PAGE_CACHE_SIZE - size);
		flush_dcache_page(result->b_page);
		kunmap(result->b_page);
		set_buffer_uptodate(result);
		SetPageChecked(result->b_page);
		btrfs_map_bh_to_logical(root, result, 0);
	}
not_found:
	if (create & BTRFS_GET_BLOCK_CREATE) {
		struct btrfs_key ins;
		ret = btrfs_alloc_extent(trans, root, inode->i_ino,
					 1, alloc_hint, (u64)-1,
					 &ins, 1);
		BUG_ON(ret);
		ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
					       iblock << inode->i_blkbits,
					       ins.objectid, ins.offset,
					       ins.offset);
		BUG_ON(ret);
		btrfs_map_bh_to_logical(root, result, ins.objectid);
	}
out:
	if (trans)
		err = btrfs_end_transaction(trans, root);
	btrfs_free_path(path);
	return err;
}

int btrfs_get_block(struct inode *inode, sector_t iblock,
		    struct buffer_head *result, int create)
{
	int err;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	mutex_lock(&root->fs_info->fs_mutex);
	err = btrfs_get_block_lock(inode, iblock, result, create);
	mutex_unlock(&root->fs_info->fs_mutex);
	return err;
}

int btrfs_get_block_csum(struct inode *inode, sector_t iblock,
		    struct buffer_head *result, int create)
{
	int ret;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct page *page = result->b_page;
	u64 offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(result);
	struct btrfs_csum_item *item;
	struct btrfs_path *path = NULL;

	mutex_lock(&root->fs_info->fs_mutex);
	ret = btrfs_get_block_lock(inode, iblock, result, create);
	if (ret)
		goto out;

	path = btrfs_alloc_path();
	item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, offset, 0);
	if (IS_ERR(item)) {
		ret = PTR_ERR(item);
		/* a csum that isn't present is a preallocated region. */
		if (ret == -ENOENT || ret == -EFBIG)
			ret = 0;
		result->b_private = 0;
		goto out;
	}
	memcpy((char *)&result->b_private, &item->csum, BTRFS_CRC32_SIZE);
out:
	if (path)
		btrfs_free_path(path);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;
}

static int btrfs_get_block_bmap(struct inode *inode, sector_t iblock,
			   struct buffer_head *result, int create)
{
	struct btrfs_root *root = BTRFS_I(inode)->root;
	mutex_lock(&root->fs_info->fs_mutex);
	btrfs_get_block_lock(inode, iblock, result, BTRFS_GET_BLOCK_NO_DIRECT);
	mutex_unlock(&root->fs_info->fs_mutex);
	return 0;
}

static sector_t btrfs_bmap(struct address_space *as, sector_t block)
{
	return generic_block_bmap(as, block, btrfs_get_block_bmap);
}

static int btrfs_prepare_write(struct file *file, struct page *page,
			       unsigned from, unsigned to)
{
	return block_prepare_write(page, from, to, btrfs_get_block);
}

static void buffer_io_error(struct buffer_head *bh)
{
	char b[BDEVNAME_SIZE];

	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
			bdevname(bh->b_bdev, b),
			(unsigned long long)bh->b_blocknr);
}

/*
 * I/O completion handler for block_read_full_page() - pages
 * which come unlocked at the end of I/O.
 */
static void btrfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
{
	unsigned long flags;
	struct buffer_head *first;
	struct buffer_head *tmp;
	struct page *page;
	int page_uptodate = 1;
	struct inode *inode;
	int ret;

	BUG_ON(!buffer_async_read(bh));

	page = bh->b_page;
	inode = page->mapping->host;
	if (uptodate) {
		void *kaddr;
		struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
		if (bh->b_private) {
			char csum[BTRFS_CRC32_SIZE];
			kaddr = kmap_atomic(page, KM_IRQ0);
			ret = btrfs_csum_data(root, kaddr + bh_offset(bh),
					      bh->b_size, csum);
			BUG_ON(ret);
			if (memcmp(csum, &bh->b_private, BTRFS_CRC32_SIZE)) {
				u64 offset;
				offset = (page->index << PAGE_CACHE_SHIFT) +
					bh_offset(bh);
				printk("btrfs csum failed ino %lu off %llu\n",
				       page->mapping->host->i_ino,
				       (unsigned long long)offset);
				memset(kaddr + bh_offset(bh), 1, bh->b_size);
				flush_dcache_page(page);
			}
			kunmap_atomic(kaddr, KM_IRQ0);
		}
		set_buffer_uptodate(bh);
	} else {
		clear_buffer_uptodate(bh);
		if (printk_ratelimit())
			buffer_io_error(bh);
		SetPageError(page);
	}

	/*
	 * Be _very_ careful from here on. Bad things can happen if
	 * two buffer heads end IO at almost the same time and both
	 * decide that the page is now completely done.
	 */
	first = page_buffers(page);
	local_irq_save(flags);
	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
	clear_buffer_async_read(bh);
	unlock_buffer(bh);
	tmp = bh;
	do {
		if (!buffer_uptodate(tmp))
			page_uptodate = 0;
		if (buffer_async_read(tmp)) {
			BUG_ON(!buffer_locked(tmp));
			goto still_busy;
		}
		tmp = tmp->b_this_page;
	} while (tmp != bh);
	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
	local_irq_restore(flags);

	/*
	 * If none of the buffers had errors and they are all
	 * uptodate then we can set the page uptodate.
	 */
	if (page_uptodate && !PageError(page))
		SetPageUptodate(page);
	unlock_page(page);
	return;

still_busy:
	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
	local_irq_restore(flags);
	return;
}

/*
 * Generic "read page" function for block devices that have the normal
 * get_block functionality. This is most of the block device filesystems.
 * Reads the page asynchronously --- the unlock_buffer() and
 * set/clear_buffer_uptodate() functions propagate buffer state into the
 * page struct once IO has completed.
 */
int btrfs_readpage(struct file *file, struct page *page)
{
	struct inode *inode = page->mapping->host;
	sector_t iblock, lblock;
	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
	unsigned int blocksize;
	int nr, i;
	int fully_mapped = 1;

	BUG_ON(!PageLocked(page));
	blocksize = 1 << inode->i_blkbits;
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
	head = page_buffers(page);

	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
	bh = head;
	nr = 0;
	i = 0;

	do {
		if (buffer_uptodate(bh))
			continue;

		if (!buffer_mapped(bh)) {
			int err = 0;

			fully_mapped = 0;
			if (iblock < lblock) {
				WARN_ON(bh->b_size != blocksize);
				err = btrfs_get_block_csum(inode, iblock,
							   bh, 0);
				if (err)
					SetPageError(page);
			}
			if (!buffer_mapped(bh)) {
				void *kaddr = kmap_atomic(page, KM_USER0);
				memset(kaddr + i * blocksize, 0, blocksize);
				flush_dcache_page(page);
				kunmap_atomic(kaddr, KM_USER0);
				if (!err)
					set_buffer_uptodate(bh);
				continue;
			}
			/*
			 * get_block() might have updated the buffer
			 * synchronously
			 */
			if (buffer_uptodate(bh))
				continue;
		}
		arr[nr++] = bh;
	} while (i++, iblock++, (bh = bh->b_this_page) != head);

	if (fully_mapped)
		SetPageMappedToDisk(page);

	if (!nr) {
		/*
		 * All buffers are uptodate - we can set the page uptodate
		 * as well. But not if get_block() returned an error.
		 */
		if (!PageError(page))
			SetPageUptodate(page);
		unlock_page(page);
		return 0;
	}

	/* Stage two: lock the buffers */
	for (i = 0; i < nr; i++) {
		bh = arr[i];
		lock_buffer(bh);
		bh->b_end_io = btrfs_end_buffer_async_read;
		set_buffer_async_read(bh);
	}

	/*
	 * Stage 3: start the IO.  Check for uptodateness
	 * inside the buffer lock in case another process reading
	 * the underlying blockdev brought it uptodate (the sct fix).
	 */
	for (i = 0; i < nr; i++) {
		bh = arr[i];
		if (buffer_uptodate(bh))
			btrfs_end_buffer_async_read(bh, 1);
		else
			submit_bh(READ, bh);
	}
	return 0;
}

/*
 * Aside from a tiny bit of packed file data handling, this is the
 * same as the generic code.
 *
 * While block_write_full_page is writing back the dirty buffers under
 * the page lock, whoever dirtied the buffers may decide to clean them
 * again at any time.  We handle that by only looking at the buffer
 * state inside lock_buffer().
 *
 * If block_write_full_page() is called for regular writeback
 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
 * locked buffer.   This only can happen if someone has written the buffer
 * directly, with submit_bh().  At the address_space level PageWriteback
 * prevents this contention from occurring.
 */
static int __btrfs_write_full_page(struct inode *inode, struct page *page,
				   struct writeback_control *wbc)
{
	int err;
	sector_t block;
	sector_t last_block;
	struct buffer_head *bh, *head;
	const unsigned blocksize = 1 << inode->i_blkbits;
	int nr_underway = 0;
	struct btrfs_root *root = BTRFS_I(inode)->root;

	BUG_ON(!PageLocked(page));

	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;

	/* no csumming allowed when from PF_MEMALLOC */
	if (current->flags & PF_MEMALLOC) {
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return 0;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, blocksize,
					(1 << BH_Dirty)|(1 << BH_Uptodate));
	}

	/*
	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
	 * here, and the (potentially unmapped) buffers may become dirty at
	 * any time.  If a buffer becomes dirty here after we've inspected it
	 * then we just miss that fact, and the page stays dirty.
	 *
	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
	 * handle that here by just cleaning them.
	 */

	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	head = page_buffers(page);
	bh = head;

	/*
	 * Get all the dirty buffers mapped to disk addresses and
	 * handle any aliases from the underlying blockdev's mapping.
	 */
	do {
		if (block > last_block) {
			/*
			 * mapped buffers outside i_size will occur, because
			 * this page can be outside i_size when there is a
			 * truncate in progress.
			 */
			/*
			 * The buffer was zeroed by block_write_full_page()
			 */
			clear_buffer_dirty(bh);
			set_buffer_uptodate(bh);
		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
			WARN_ON(bh->b_size != blocksize);
			err = btrfs_get_block(inode, block, bh, 0);
			if (err) {
				goto recover;
			}
			if (buffer_new(bh)) {
				/* blockdev mappings never come here */
				clear_buffer_new(bh);
			}
		}
		bh = bh->b_this_page;
		block++;
	} while (bh != head);

	do {
		if (!buffer_mapped(bh))
			continue;
		/*
		 * If it's a fully non-blocking write attempt and we cannot
		 * lock the buffer then redirty the page.  Note that this can
		 * potentially cause a busy-wait loop from pdflush and kswapd
		 * activity, but those code paths have their own higher-level
		 * throttling.
		 */
		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
			lock_buffer(bh);
		} else if (test_set_buffer_locked(bh)) {
			redirty_page_for_writepage(wbc, page);
			continue;
		}
		if (test_clear_buffer_dirty(bh) && bh->b_blocknr != 0) {
			struct btrfs_trans_handle *trans;
			int ret;
			u64 off = page->index << PAGE_CACHE_SHIFT;
			char *kaddr;

			off += bh_offset(bh);
			mutex_lock(&root->fs_info->fs_mutex);
			trans = btrfs_start_transaction(root, 1);
			btrfs_set_trans_block_group(trans, inode);
			kaddr = kmap(page);
			ret = btrfs_csum_file_block(trans, root, inode->i_ino,
						    off, kaddr + bh_offset(bh),
						    bh->b_size);
			kunmap(page);
			BUG_ON(ret);
			ret = btrfs_end_transaction(trans, root);
			BUG_ON(ret);
			mutex_unlock(&root->fs_info->fs_mutex);
			mark_buffer_async_write(bh);
		} else {
			unlock_buffer(bh);
		}
	} while ((bh = bh->b_this_page) != head);

	/*
	 * The page and its buffers are protected by PageWriteback(), so we can
	 * drop the bh refcounts early.
	 */
	BUG_ON(PageWriteback(page));
	set_page_writeback(page);

	do {
		struct buffer_head *next = bh->b_this_page;
		if (buffer_async_write(bh)) {
			submit_bh(WRITE, bh);
			nr_underway++;
		}
		bh = next;
	} while (bh != head);
	unlock_page(page);

	err = 0;
done:
	if (nr_underway == 0) {
		/*
		 * The page was marked dirty, but the buffers were
		 * clean.  Someone wrote them back by hand with
		 * ll_rw_block/submit_bh.  A rare case.
		 */
		int uptodate = 1;
		do {
			if (!buffer_uptodate(bh)) {
				uptodate = 0;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		if (uptodate)
			SetPageUptodate(page);
		end_page_writeback(page);
	}
	return err;

recover:
	/*
	 * ENOSPC, or some other error.  We may already have added some
	 * blocks to the file, so we need to write these out to avoid
	 * exposing stale data.
	 * The page is currently locked and not marked for writeback
	 */
	bh = head;
	/* Recovery: lock and submit the mapped buffers */
	do {
		if (buffer_mapped(bh) && buffer_dirty(bh)) {
			lock_buffer(bh);
			mark_buffer_async_write(bh);
		} else {
			/*
			 * The buffer may have been set dirty during
			 * attachment to a dirty page.
			 */
			clear_buffer_dirty(bh);
		}
	} while ((bh = bh->b_this_page) != head);
	SetPageError(page);
	BUG_ON(PageWriteback(page));
	set_page_writeback(page);
	do {
		struct buffer_head *next = bh->b_this_page;
		if (buffer_async_write(bh)) {
			clear_buffer_dirty(bh);
			submit_bh(WRITE, bh);
			nr_underway++;
		}
		bh = next;
	} while (bh != head);
	unlock_page(page);
	goto done;
}

static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
{
	struct inode * const inode = page->mapping->host;
	loff_t i_size = i_size_read(inode);
	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
	unsigned offset;
	void *kaddr;

	/* Is the page fully inside i_size? */
	if (page->index < end_index)
		return __btrfs_write_full_page(inode, page, wbc);

	/* Is the page fully outside i_size? (truncate in progress) */
	offset = i_size & (PAGE_CACHE_SIZE-1);
	if (page->index >= end_index+1 || !offset) {
		/*
		 * The page may have dirty, unmapped buffers.  For example,
		 * they may have been added in ext3_writepage().  Make them
		 * freeable here, so the page does not leak.
		 */
		block_invalidatepage(page, 0);
		unlock_page(page);
		return 0; /* don't care */
	}

	/*
	 * The page straddles i_size.  It must be zeroed out on each and every
	 * writepage invokation because it may be mmapped.  "A file is mapped
	 * in multiples of the page size.  For a file that is not a multiple of
	 * the  page size, the remaining memory is zeroed when mapped, and
	 * writes to that region are not written out to the file."
	 */
	kaddr = kmap_atomic(page, KM_USER0);
	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
	flush_dcache_page(page);
	kunmap_atomic(kaddr, KM_USER0);
	return __btrfs_write_full_page(inode, page, wbc);
}

/*
 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
 * called from a page fault handler when a page is first dirtied. Hence we must
 * be careful to check for EOF conditions here. We set the page up correctly
 * for a written page which means we get ENOSPC checking when writing into
 * holes and correct delalloc and unwritten extent mapping on filesystems that
 * support these features.
 *
 * We are not allowed to take the i_mutex here so we have to play games to
 * protect against truncate races as the page could now be beyond EOF.  Because
 * vmtruncate() writes the inode size before removing pages, once we have the
 * page lock we can determine safely if the page is beyond EOF. If it is not
 * beyond EOF, then the page is guaranteed safe against truncation until we
 * unlock the page.
 */
int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
	unsigned long end;
	loff_t size;
	int ret = -EINVAL;

	lock_page(page);
	wait_on_page_writeback(page);
	size = i_size_read(inode);
	if ((page->mapping != inode->i_mapping) ||
	    ((page->index << PAGE_CACHE_SHIFT) > size)) {
		/* page got truncated out from underneath us */
		goto out_unlock;
	}

	/* page is wholly or partially inside EOF */
	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
		end = size & ~PAGE_CACHE_MASK;
	else
		end = PAGE_CACHE_SIZE;

	ret = btrfs_prepare_write(NULL, page, 0, end);
	if (!ret)
		ret = btrfs_commit_write(NULL, page, 0, end);

out_unlock:
	unlock_page(page);
	return ret;
}

static void btrfs_truncate(struct inode *inode)
{
	struct btrfs_root *root = BTRFS_I(inode)->root;
	int ret;
	struct btrfs_trans_handle *trans;

	if (!S_ISREG(inode->i_mode))
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	btrfs_truncate_page(inode->i_mapping, inode->i_size);

	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, inode);

	/* FIXME, add redo link to tree so we don't leak on crash */
	ret = btrfs_truncate_in_trans(trans, root, inode);
	BUG_ON(ret);
	btrfs_update_inode(trans, root, inode);
	ret = btrfs_end_transaction(trans, root);
	BUG_ON(ret);
	mutex_unlock(&root->fs_info->fs_mutex);
	btrfs_btree_balance_dirty(root);
}

int btrfs_commit_write(struct file *file, struct page *page,
		       unsigned from, unsigned to)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *bh;
	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;

	SetPageUptodate(page);
	bh = page_buffers(page);
	set_buffer_uptodate(bh);
	if (buffer_mapped(bh) && bh->b_blocknr != 0) {
		set_page_dirty(page);
	}
	if (pos > inode->i_size) {
		i_size_write(inode, pos);
		mark_inode_dirty(inode);
	}
	return 0;
}

static int create_subvol(struct btrfs_root *root, char *name, int namelen)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_key key;
	struct btrfs_root_item root_item;
	struct btrfs_inode_item *inode_item;
	struct buffer_head *subvol;
	struct btrfs_leaf *leaf;
	struct btrfs_root *new_root;
	struct inode *inode;
	struct inode *dir;
	int ret;
	u64 objectid;
	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;

	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

	subvol = btrfs_alloc_free_block(trans, root, 0);
	if (subvol == NULL)
		return -ENOSPC;
	leaf = btrfs_buffer_leaf(subvol);
	btrfs_set_header_nritems(&leaf->header, 0);
	btrfs_set_header_level(&leaf->header, 0);
	btrfs_set_header_blocknr(&leaf->header, bh_blocknr(subvol));
	btrfs_set_header_generation(&leaf->header, trans->transid);
	btrfs_set_header_owner(&leaf->header, root->root_key.objectid);
	memcpy(leaf->header.fsid, root->fs_info->disk_super->fsid,
	       sizeof(leaf->header.fsid));
	mark_buffer_dirty(subvol);

	inode_item = &root_item.inode;
	memset(inode_item, 0, sizeof(*inode_item));
	btrfs_set_inode_generation(inode_item, 1);
	btrfs_set_inode_size(inode_item, 3);
	btrfs_set_inode_nlink(inode_item, 1);
	btrfs_set_inode_nblocks(inode_item, 1);
	btrfs_set_inode_mode(inode_item, S_IFDIR | 0755);

	btrfs_set_root_blocknr(&root_item, bh_blocknr(subvol));
	btrfs_set_root_refs(&root_item, 1);
	brelse(subvol);
	subvol = NULL;

	ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
				       0, &objectid);
	BUG_ON(ret);

	btrfs_set_root_dirid(&root_item, new_dirid);

	key.objectid = objectid;
	key.offset = 1;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
				&root_item);
	BUG_ON(ret);

	/*
	 * insert the directory item
	 */
	key.offset = (u64)-1;
	dir = root->fs_info->sb->s_root->d_inode;
	ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
				    name, namelen, dir->i_ino, &key,
				    BTRFS_FT_DIR);
	BUG_ON(ret);

	ret = btrfs_commit_transaction(trans, root);
	BUG_ON(ret);

	new_root = btrfs_read_fs_root(root->fs_info, &key);
	BUG_ON(!new_root);

	trans = btrfs_start_transaction(new_root, 1);
	BUG_ON(!trans);

	inode = btrfs_new_inode(trans, new_root, new_dirid,
				BTRFS_I(dir)->block_group, S_IFDIR | 0700);
	inode->i_op = &btrfs_dir_inode_operations;
	inode->i_fop = &btrfs_dir_file_operations;
	new_root->inode = inode;

	ret = btrfs_make_empty_dir(trans, new_root, new_dirid, new_dirid);
	BUG_ON(ret);

	inode->i_nlink = 1;
	inode->i_size = 6;
	ret = btrfs_update_inode(trans, new_root, inode);
	BUG_ON(ret);

	ret = btrfs_commit_transaction(trans, new_root);
	BUG_ON(ret);

	mutex_unlock(&root->fs_info->fs_mutex);
	btrfs_btree_balance_dirty(root);
	return 0;
}

static int create_snapshot(struct btrfs_root *root, char *name, int namelen)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_key key;
	struct btrfs_root_item new_root_item;
	int ret;
	u64 objectid;

	if (!root->ref_cows)
		return -EINVAL;

	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

	ret = btrfs_update_inode(trans, root, root->inode);
	BUG_ON(ret);

	ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
				       0, &objectid);
	BUG_ON(ret);

	memcpy(&new_root_item, &root->root_item,
	       sizeof(new_root_item));

	key.objectid = objectid;
	key.offset = 1;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
	btrfs_set_root_blocknr(&new_root_item, bh_blocknr(root->node));

	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
				&new_root_item);
	BUG_ON(ret);

	/*
	 * insert the directory item
	 */
	key.offset = (u64)-1;
	ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
				    name, namelen,
				    root->fs_info->sb->s_root->d_inode->i_ino,
				    &key, BTRFS_FT_DIR);

	BUG_ON(ret);

	ret = btrfs_inc_root_ref(trans, root);
	BUG_ON(ret);

	ret = btrfs_commit_transaction(trans, root);
	BUG_ON(ret);
	mutex_unlock(&root->fs_info->fs_mutex);
	btrfs_btree_balance_dirty(root);
	return 0;
}

int btrfs_ioctl(struct inode *inode, struct file *filp, unsigned int
		cmd, unsigned long arg)
{
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct btrfs_ioctl_vol_args vol_args;
	int ret = 0;
	struct btrfs_dir_item *di;
	int namelen;
	struct btrfs_path *path;
	u64 root_dirid;

	switch (cmd) {
	case BTRFS_IOC_SNAP_CREATE:
		if (copy_from_user(&vol_args,
				   (struct btrfs_ioctl_vol_args __user *)arg,
				   sizeof(vol_args)))
			return -EFAULT;
		namelen = strlen(vol_args.name);
		if (namelen > BTRFS_VOL_NAME_MAX)
			return -EINVAL;
		if (strchr(vol_args.name, '/'))
			return -EINVAL;
		path = btrfs_alloc_path();
		if (!path)
			return -ENOMEM;
		root_dirid = root->fs_info->sb->s_root->d_inode->i_ino,
		mutex_lock(&root->fs_info->fs_mutex);
		di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root,
				    path, root_dirid,
				    vol_args.name, namelen, 0);
		mutex_unlock(&root->fs_info->fs_mutex);
		btrfs_free_path(path);
		if (di && !IS_ERR(di))
			return -EEXIST;

		if (root == root->fs_info->tree_root)
			ret = create_subvol(root, vol_args.name, namelen);
		else
			ret = create_snapshot(root, vol_args.name, namelen);
		WARN_ON(ret);
		break;
	default:
		return -ENOTTY;
	}
	return ret;
}

#ifdef CONFIG_COMPAT
long btrfs_compat_ioctl(struct file *file, unsigned int cmd,
			       unsigned long arg)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	int ret;
	lock_kernel();
	ret = btrfs_ioctl(inode, file, cmd, (unsigned long) compat_ptr(arg));
	unlock_kernel();
	return ret;

}
#endif

/*
 * Called inside transaction, so use GFP_NOFS
 */
struct inode *btrfs_alloc_inode(struct super_block *sb)
{
	struct btrfs_inode *ei;

	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
	if (!ei)
		return NULL;
	return &ei->vfs_inode;
}

void btrfs_destroy_inode(struct inode *inode)
{
	WARN_ON(!list_empty(&inode->i_dentry));
	WARN_ON(inode->i_data.nrpages);

	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
}

static void init_once(void * foo, struct kmem_cache * cachep,
		      unsigned long flags)
{
	struct btrfs_inode *ei = (struct btrfs_inode *) foo;

	inode_init_once(&ei->vfs_inode);
}

void btrfs_destroy_cachep(void)
{
	if (btrfs_inode_cachep)
		kmem_cache_destroy(btrfs_inode_cachep);
	if (btrfs_trans_handle_cachep)
		kmem_cache_destroy(btrfs_trans_handle_cachep);
	if (btrfs_transaction_cachep)
		kmem_cache_destroy(btrfs_transaction_cachep);
	if (btrfs_bit_radix_cachep)
		kmem_cache_destroy(btrfs_bit_radix_cachep);
	if (btrfs_path_cachep)
		kmem_cache_destroy(btrfs_path_cachep);
}

int btrfs_init_cachep(void)
{
	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
					     sizeof(struct btrfs_inode),
					     0, (SLAB_RECLAIM_ACCOUNT|
						SLAB_MEM_SPREAD),
					     init_once, NULL);
	if (!btrfs_inode_cachep)
		goto fail;
	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
					     sizeof(struct btrfs_trans_handle),
					     0, (SLAB_RECLAIM_ACCOUNT|
						SLAB_MEM_SPREAD),
					     NULL, NULL);
	if (!btrfs_trans_handle_cachep)
		goto fail;
	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
					     sizeof(struct btrfs_transaction),
					     0, (SLAB_RECLAIM_ACCOUNT|
						SLAB_MEM_SPREAD),
					     NULL, NULL);
	if (!btrfs_transaction_cachep)
		goto fail;
	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
					     sizeof(struct btrfs_transaction),
					     0, (SLAB_RECLAIM_ACCOUNT|
						SLAB_MEM_SPREAD),
					     NULL, NULL);
	if (!btrfs_path_cachep)
		goto fail;
	btrfs_bit_radix_cachep = kmem_cache_create("btrfs_radix",
					     256,
					     0, (SLAB_RECLAIM_ACCOUNT|
						SLAB_MEM_SPREAD |
						SLAB_DESTROY_BY_RCU),
					     NULL, NULL);
	if (!btrfs_bit_radix_cachep)
		goto fail;
	return 0;
fail:
	btrfs_destroy_cachep();
	return -ENOMEM;
}

static int btrfs_getattr(struct vfsmount *mnt,
			 struct dentry *dentry, struct kstat *stat)
{
	struct inode *inode = dentry->d_inode;
	generic_fillattr(inode, stat);
	stat->blksize = 256 * 1024;
	return 0;
}

static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
			   struct inode * new_dir,struct dentry *new_dentry)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = BTRFS_I(old_dir)->root;
	struct inode *new_inode = new_dentry->d_inode;
	struct inode *old_inode = old_dentry->d_inode;
	struct timespec ctime = CURRENT_TIME;
	struct btrfs_path *path;
	struct btrfs_dir_item *di;
	int ret;

	if (S_ISDIR(old_inode->i_mode) && new_inode &&
	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
		return -ENOTEMPTY;
	}
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, new_dir);
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out_fail;
	}

	old_dentry->d_inode->i_nlink++;
	old_dir->i_ctime = old_dir->i_mtime = ctime;
	new_dir->i_ctime = new_dir->i_mtime = ctime;
	old_inode->i_ctime = ctime;
	if (S_ISDIR(old_inode->i_mode) && old_dir != new_dir) {
		struct btrfs_key *location = &BTRFS_I(new_dir)->location;
		u64 old_parent_oid;
		di = btrfs_lookup_dir_item(trans, root, path, old_inode->i_ino,
					   "..", 2, -1);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out_fail;
		}
		if (!di) {
			ret = -ENOENT;
			goto out_fail;
		}
		old_parent_oid = btrfs_disk_key_objectid(&di->location);
		ret = btrfs_del_item(trans, root, path);
		if (ret) {
			ret = -EIO;
			goto out_fail;
		}
		btrfs_release_path(root, path);

		di = btrfs_lookup_dir_index_item(trans, root, path,
						 old_inode->i_ino,
						 old_parent_oid,
						 "..", 2, -1);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out_fail;
		}
		if (!di) {
			ret = -ENOENT;
			goto out_fail;
		}
		ret = btrfs_del_item(trans, root, path);
		if (ret) {
			ret = -EIO;
			goto out_fail;
		}
		btrfs_release_path(root, path);

		ret = btrfs_insert_dir_item(trans, root, "..", 2,
					    old_inode->i_ino, location,
					    BTRFS_FT_DIR);
		if (ret)
			goto out_fail;
	}


	ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
	if (ret)
		goto out_fail;

	if (new_inode) {
		new_inode->i_ctime = CURRENT_TIME;
		ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
		if (ret)
			goto out_fail;
		if (S_ISDIR(new_inode->i_mode))
			clear_nlink(new_inode);
		else
			drop_nlink(new_inode);
		btrfs_update_inode(trans, root, new_inode);
	}
	ret = btrfs_add_link(trans, new_dentry, old_inode);
	if (ret)
		goto out_fail;

out_fail:
	btrfs_free_path(path);
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;
}

static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
			 const char *symname)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = BTRFS_I(dir)->root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct inode *inode;
	int err;
	int drop_inode = 0;
	u64 objectid;
	int name_len;
	int datasize;
	char *ptr;
	struct btrfs_file_extent_item *ei;

	name_len = strlen(symname) + 1;
	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
		return -ENAMETOOLONG;
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	btrfs_set_trans_block_group(trans, dir);

	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
	if (err) {
		err = -ENOSPC;
		goto out_unlock;
	}

	inode = btrfs_new_inode(trans, root, objectid,
				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO);
	err = PTR_ERR(inode);
	if (IS_ERR(inode))
		goto out_unlock;

	btrfs_set_trans_block_group(trans, inode);
	err = btrfs_add_nondir(trans, dentry, inode);
	if (err)
		drop_inode = 1;
	else {
		inode->i_mapping->a_ops = &btrfs_aops;
		inode->i_fop = &btrfs_file_operations;
		inode->i_op = &btrfs_file_inode_operations;
	}
	dir->i_sb->s_dirt = 1;
	btrfs_update_inode_block_group(trans, inode);
	btrfs_update_inode_block_group(trans, dir);
	if (drop_inode)
		goto out_unlock;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	key.objectid = inode->i_ino;
	key.offset = 0;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
	datasize = btrfs_file_extent_calc_inline_size(name_len);
	err = btrfs_insert_empty_item(trans, root, path, &key,
				      datasize);
	BUG_ON(err);
	ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
	       path->slots[0], struct btrfs_file_extent_item);
	btrfs_set_file_extent_generation(ei, trans->transid);
	btrfs_set_file_extent_type(ei,
				   BTRFS_FILE_EXTENT_INLINE);
	ptr = btrfs_file_extent_inline_start(ei);
	btrfs_memcpy(root, path->nodes[0]->b_data,
		     ptr, symname, name_len);
	mark_buffer_dirty(path->nodes[0]);
	btrfs_free_path(path);
	inode->i_op = &btrfs_symlink_inode_operations;
	inode->i_mapping->a_ops = &btrfs_symlink_aops;
	inode->i_size = name_len - 1;
	btrfs_update_inode(trans, root, inode);
	err = 0;

out_unlock:
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);

	if (drop_inode) {
		inode_dec_link_count(inode);
		iput(inode);
	}
	btrfs_btree_balance_dirty(root);
	return err;
}

static struct inode_operations btrfs_dir_inode_operations = {
	.lookup		= btrfs_lookup,
	.create		= btrfs_create,
	.unlink		= btrfs_unlink,
	.link		= btrfs_link,
	.mkdir		= btrfs_mkdir,
	.rmdir		= btrfs_rmdir,
	.rename		= btrfs_rename,
	.symlink	= btrfs_symlink,
	.setattr	= btrfs_setattr,
};

static struct inode_operations btrfs_dir_ro_inode_operations = {
	.lookup		= btrfs_lookup,
};

static struct file_operations btrfs_dir_file_operations = {
	.llseek		= generic_file_llseek,
	.read		= generic_read_dir,
	.readdir	= btrfs_readdir,
	.ioctl		= btrfs_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= btrfs_compat_ioctl,
#endif
};

static struct address_space_operations btrfs_aops = {
	.readpage	= btrfs_readpage,
	.writepage	= btrfs_writepage,
	.sync_page	= block_sync_page,
	.prepare_write	= btrfs_prepare_write,
	.commit_write	= btrfs_commit_write,
	.bmap		= btrfs_bmap,
};

static struct address_space_operations btrfs_symlink_aops = {
	.readpage	= btrfs_readpage,
	.writepage	= btrfs_writepage,
};

static struct inode_operations btrfs_file_inode_operations = {
	.truncate	= btrfs_truncate,
	.getattr	= btrfs_getattr,
	.setattr	= btrfs_setattr,
};

static struct inode_operations btrfs_symlink_inode_operations = {
	.readlink	= generic_readlink,
	.follow_link	= page_follow_link_light,
	.put_link	= page_put_link,
};