/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/version.h>
#include "compat.h"
#include "hash.h"
#include "crc32c.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "ref-cache.h"
#include "compat.h"
#define PENDING_EXTENT_INSERT 0
#define PENDING_EXTENT_DELETE 1
#define PENDING_BACKREF_UPDATE 2
struct pending_extent_op {
int type;
u64 bytenr;
u64 num_bytes;
u64 parent;
u64 orig_parent;
u64 generation;
u64 orig_generation;
int level;
struct list_head list;
int del;
};
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root, int all);
static int del_pending_extents(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root, int all);
static int pin_down_bytes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int is_data);
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int alloc,
int mark_free);
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
{
return (cache->flags & bits) == bits;
}
/*
* this adds the block group to the fs_info rb tree for the block group
* cache
*/
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
struct btrfs_block_group_cache *block_group)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct btrfs_block_group_cache *cache;
spin_lock(&info->block_group_cache_lock);
p = &info->block_group_cache_tree.rb_node;
while (*p) {
parent = *p;
cache = rb_entry(parent, struct btrfs_block_group_cache,
cache_node);
if (block_group->key.objectid < cache->key.objectid) {
p = &(*p)->rb_left;
} else if (block_group->key.objectid > cache->key.objectid) {
p = &(*p)->rb_right;
} else {
spin_unlock(&info->block_group_cache_lock);
return -EEXIST;
}
}
rb_link_node(&block_group->cache_node, parent, p);
rb_insert_color(&block_group->cache_node,
&info->block_group_cache_tree);
spin_unlock(&info->block_group_cache_lock);
return 0;
}
/*
* This will return the block group at or after bytenr if contains is 0, else
* it will return the block group that contains the bytenr
*/
static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
int contains)
{
struct btrfs_block_group_cache *cache, *ret = NULL;
struct rb_node *n;
u64 end, start;
spin_lock(&info->block_group_cache_lock);
n = info->block_group_cache_tree.rb_node;
while (n) {
cache = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
end = cache->key.objectid + cache->key.offset - 1;
start = cache->key.objectid;
if (bytenr < start) {
if (!contains && (!ret || start < ret->key.objectid))
ret = cache;
n = n->rb_left;
} else if (bytenr > start) {
if (contains && bytenr <= end) {
ret = cache;
break;
}
n = n->rb_right;
} else {
ret = cache;
break;
}
}
if (ret)
atomic_inc(&ret->count);
spin_unlock(&info->block_group_cache_lock);
return ret;
}
/*
* this is only called by cache_block_group, since we could have freed extents
* we need to check the pinned_extents for any extents that can't be used yet
* since their free space will be released as soon as the transaction commits.
*/
static int add_new_free_space(struct btrfs_block_group_cache *block_group,
struct btrfs_fs_info *info, u64 start, u64 end)
{
u64 extent_start, extent_end, size;
int ret;
mutex_lock(&info->pinned_mutex);
while (start < end) {
ret = find_first_extent_bit(&info->pinned_extents, start,
&extent_start, &extent_end,
EXTENT_DIRTY);
if (ret)
break;
if (extent_start == start) {
start = extent_end + 1;
} else if (extent_start > start && extent_start < end) {
size = extent_start - start;
ret = btrfs_add_free_space(block_group, start,
size);
BUG_ON(ret);
start = extent_end + 1;
} else {
break;
}
}
if (start < end) {
size = end - start;
ret = btrfs_add_free_space(block_group, start, size);
BUG_ON(ret);
}
mutex_unlock(&info->pinned_mutex);
return 0;
}
static int remove_sb_from_cache(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
u64 bytenr;
u64 *logical;
int stripe_len;
int i, nr, ret;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
cache->key.objectid, bytenr, 0,
&logical, &nr, &stripe_len);
BUG_ON(ret);
while (nr--) {
btrfs_remove_free_space(cache, logical[nr],
stripe_len);
}
kfree(logical);
}
return 0;
}
static int cache_block_group(struct btrfs_root *root,
struct btrfs_block_group_cache *block_group)
{
struct btrfs_path *path;
int ret = 0;
struct btrfs_key key;
struct extent_buffer *leaf;
int slot;
u64 last;
if (!block_group)
return 0;
root = root->fs_info->extent_root;
if (block_group->cached)
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 2;
/*
* we get into deadlocks with paths held by callers of this function.
* since the alloc_mutex is protecting things right now, just
* skip the locking here
*/
path->skip_locking = 1;
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
key.objectid = last;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto err;
while(1) {
leaf = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto err;
if (ret == 0)
continue;
else
break;
}
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid < block_group->key.objectid)
goto next;
if (key.objectid >= block_group->key.objectid +
block_group->key.offset)
break;
if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
add_new_free_space(block_group, root->fs_info, last,
key.objectid);
last = key.objectid + key.offset;
}
next:
path->slots[0]++;
}
add_new_free_space(block_group, root->fs_info, last,
block_group->key.objectid +
block_group->key.offset);
remove_sb_from_cache(root, block_group);
block_group->cached = 1;
ret = 0;
err:
btrfs_free_path(path);
return ret;
}
/*
* return the block group that starts at or after bytenr
*/
static struct btrfs_block_group_cache *btrfs_lookup_first_block_group(struct
btrfs_fs_info *info,
u64 bytenr)
{
struct btrfs_block_group_cache *cache;
cache = block_group_cache_tree_search(info, bytenr, 0);
return cache;
}
/*
* return the block group that contains teh given bytenr
*/
struct btrfs_block_group_cache *btrfs_lookup_block_group(struct
btrfs_fs_info *info,
u64 bytenr)
{
struct btrfs_block_group_cache *cache;
cache = block_group_cache_tree_search(info, bytenr, 1);
return cache;
}
static inline void put_block_group(struct btrfs_block_group_cache *cache)
{
if (atomic_dec_and_test(&cache->count))
kfree(cache);
}
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
u64 flags)
{
struct list_head *head = &info->space_info;
struct list_head *cur;
struct btrfs_space_info *found;
list_for_each(cur, head) {
found = list_entry(cur, struct btrfs_space_info, list);
if (found->flags == flags)
return found;
}
return NULL;
}
static u64 div_factor(u64 num, int factor)
{
if (factor == 10)
return num;
num *= factor;
do_div(num, 10);
return num;
}
u64 btrfs_find_block_group(struct btrfs_root *root,
u64 search_start, u64 search_hint, int owner)
{
struct btrfs_block_group_cache *cache;
u64 used;
u64 last = max(search_hint, search_start);
u64 group_start = 0;
int full_search = 0;
int factor = 9;
int wrapped = 0;
again:
while (1) {
cache = btrfs_lookup_first_block_group(root->fs_info, last);
if (!cache)
break;
spin_lock(&cache->lock);
last = cache->key.objectid + cache->key.offset;
used = btrfs_block_group_used(&cache->item);
if ((full_search || !cache->ro) &&
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
if (used + cache->pinned + cache->reserved <
div_factor(cache->key.offset, factor)) {
group_start = cache->key.objectid;
spin_unlock(&cache->lock);
put_block_group(cache);
goto found;
}
}
spin_unlock(&cache->lock);
put_block_group(cache);
cond_resched();
}
if (!wrapped) {
last = search_start;
wrapped = 1;
goto again;
}
if (!full_search && factor < 10) {
last = search_start;
full_search = 1;
factor = 10;
goto again;
}
found:
return group_start;
}
/* simple helper to search for an existing extent at a given offset */
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
{
int ret;
struct btrfs_key key;
struct btrfs_path *path;
path = btrfs_alloc_path();
BUG_ON(!path);
key.objectid = start;
key.offset = len;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
0, 0);
btrfs_free_path(path);
return ret;
}
/*
* Back reference rules. Back refs have three main goals:
*
* 1) differentiate between all holders of references to an extent so that
* when a reference is dropped we can make sure it was a valid reference
* before freeing the extent.
*
* 2) Provide enough information to quickly find the holders of an extent
* if we notice a given block is corrupted or bad.
*
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
* maintenance. This is actually the same as #2, but with a slightly
* different use case.
*
* File extents can be referenced by:
*
* - multiple snapshots, subvolumes, or different generations in one subvol
* - different files inside a single subvolume
* - different offsets inside a file (bookend extents in file.c)
*
* The extent ref structure has fields for:
*
* - Objectid of the subvolume root
* - Generation number of the tree holding the reference
* - objectid of the file holding the reference
* - number of references holding by parent node (alway 1 for tree blocks)
*
* Btree leaf may hold multiple references to a file extent. In most cases,
* these references are from same file and the corresponding offsets inside
* the file are close together.
*
* When a file extent is allocated the fields are filled in:
* (root_key.objectid, trans->transid, inode objectid, 1)
*
* When a leaf is cow'd new references are added for every file extent found
* in the leaf. It looks similar to the create case, but trans->transid will
* be different when the block is cow'd.
*
* (root_key.objectid, trans->transid, inode objectid,
* number of references in the leaf)
*
* When a file extent is removed either during snapshot deletion or
* file truncation, we find the corresponding back reference and check
* the following fields:
*
* (btrfs_header_owner(leaf), btrfs_header_generation(leaf),
* inode objectid)
*
* Btree extents can be referenced by:
*
* - Different subvolumes
* - Different generations of the same subvolume
*
* When a tree block is created, back references are inserted:
*
* (root->root_key.objectid, trans->transid, level, 1)
*
* When a tree block is cow'd, new back references are added for all the
* blocks it points to. If the tree block isn't in reference counted root,
* the old back references are removed. These new back references are of
* the form (trans->transid will have increased since creation):
*
* (root->root_key.objectid, trans->transid, level, 1)
*
* When a backref is in deleting, the following fields are checked:
*
* if backref was for a tree root:
* (btrfs_header_owner(itself), btrfs_header_generation(itself), level)
* else
* (btrfs_header_owner(parent), btrfs_header_generation(parent), level)
*
* Back Reference Key composing:
*
* The key objectid corresponds to the first byte in the extent, the key
* type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first
* byte of parent extent. If a extent is tree root, the key offset is set
* to the key objectid.
*/
static int noinline lookup_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 ref_root, u64 ref_generation,
u64 owner_objectid, int del)
{
struct btrfs_key key;
struct btrfs_extent_ref *ref;
struct extent_buffer *leaf;
u64 ref_objectid;
int ret;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_REF_KEY;
key.offset = parent;
ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
ref_objectid = btrfs_ref_objectid(leaf, ref);
if (btrfs_ref_root(leaf, ref) != ref_root ||
btrfs_ref_generation(leaf, ref) != ref_generation ||
(ref_objectid != owner_objectid &&
ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
ret = -EIO;
WARN_ON(1);
goto out;
}
ret = 0;
out:
return ret;
}
/*
* updates all the backrefs that are pending on update_list for the
* extent_root
*/
static int noinline update_backrefs(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_path *path,
struct list_head *update_list)
{
struct btrfs_key key;
struct btrfs_extent_ref *ref;
struct btrfs_fs_info *info = extent_root->fs_info;
struct pending_extent_op *op;
struct extent_buffer *leaf;
int ret = 0;
struct list_head *cur = update_list->next;
u64 ref_objectid;
u64 ref_root = extent_root->root_key.objectid;
op = list_entry(cur, struct pending_extent_op, list);
search:
key.objectid = op->bytenr;
key.type = BTRFS_EXTENT_REF_KEY;
key.offset = op->orig_parent;
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
BUG_ON(ret);
leaf = path->nodes[0];
loop:
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
ref_objectid = btrfs_ref_objectid(leaf, ref);
if (btrfs_ref_root(leaf, ref) != ref_root ||
btrfs_ref_generation(leaf, ref) != op->orig_generation ||
(ref_objectid != op->level &&
ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
printk(KERN_ERR "couldn't find %Lu, parent %Lu, root %Lu, "
"owner %u\n", op->bytenr, op->orig_parent,
ref_root, op->level);
btrfs_print_leaf(extent_root, leaf);
BUG();
}
key.objectid = op->bytenr;
key.offset = op->parent;
key.type = BTRFS_EXTENT_REF_KEY;
ret = btrfs_set_item_key_safe(trans, extent_root, path, &key);
BUG_ON(ret);
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
btrfs_set_ref_generation(leaf, ref, op->generation);
cur = cur->next;
list_del_init(&op->list);
unlock_extent(&info->extent_ins, op->bytenr,
op->bytenr + op->num_bytes - 1, GFP_NOFS);
kfree(op);
if (cur == update_list) {
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(extent_root, path);
goto out;
}
op = list_entry(cur, struct pending_extent_op, list);
path->slots[0]++;
while (path->slots[0] < btrfs_header_nritems(leaf)) {
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid == op->bytenr &&
key.type == BTRFS_EXTENT_REF_KEY)
goto loop;
path->slots[0]++;
}
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(extent_root, path);
goto search;
out:
return 0;
}
static int noinline insert_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_path *path,
struct list_head *insert_list, int nr)
{
struct btrfs_key *keys;
u32 *data_size;
struct pending_extent_op *op;
struct extent_buffer *leaf;
struct list_head *cur = insert_list->next;
struct btrfs_fs_info *info = extent_root->fs_info;
u64 ref_root = extent_root->root_key.objectid;
int i = 0, last = 0, ret;
int total = nr * 2;
if (!nr)
return 0;
keys = kzalloc(total * sizeof(struct btrfs_key), GFP_NOFS);
if (!keys)
return -ENOMEM;
data_size = kzalloc(total * sizeof(u32), GFP_NOFS);
if (!data_size) {
kfree(keys);
return -ENOMEM;
}
list_for_each_entry(op, insert_list, list) {
keys[i].objectid = op->bytenr;
keys[i].offset = op->num_bytes;
keys[i].type = BTRFS_EXTENT_ITEM_KEY;
data_size[i] = sizeof(struct btrfs_extent_item);
i++;
keys[i].objectid = op->bytenr;
keys[i].offset = op->parent;
keys[i].type = BTRFS_EXTENT_REF_KEY;
data_size[i] = sizeof(struct btrfs_extent_ref);
i++;
}
op = list_entry(cur, struct pending_extent_op, list);
i = 0;
while (i < total) {
int c;
ret = btrfs_insert_some_items(trans, extent_root, path,
keys+i, data_size+i, total-i);
BUG_ON(ret < 0);
if (last && ret > 1)
BUG();
leaf = path->nodes[0];
for (c = 0; c < ret; c++) {
int ref_first = keys[i].type == BTRFS_EXTENT_REF_KEY;
/*
* if the first item we inserted was a backref, then
* the EXTENT_ITEM will be the odd c's, else it will
* be the even c's
*/
if ((ref_first && (c % 2)) ||
(!ref_first && !(c % 2))) {
struct btrfs_extent_item *itm;
itm = btrfs_item_ptr(leaf, path->slots[0] + c,
struct btrfs_extent_item);
btrfs_set_extent_refs(path->nodes[0], itm, 1);
op->del++;
} else {
struct btrfs_extent_ref *ref;
ref = btrfs_item_ptr(leaf, path->slots[0] + c,
struct btrfs_extent_ref);
btrfs_set_ref_root(leaf, ref, ref_root);
btrfs_set_ref_generation(leaf, ref,
op->generation);
btrfs_set_ref_objectid(leaf, ref, op->level);
btrfs_set_ref_num_refs(leaf, ref, 1);
op->del++;
}
/*
* using del to see when its ok to free up the
* pending_extent_op. In the case where we insert the
* last item on the list in order to help do batching
* we need to not free the extent op until we actually
* insert the extent_item
*/
if (op->del == 2) {
unlock_extent(&info->extent_ins, op->bytenr,
op->bytenr + op->num_bytes - 1,
GFP_NOFS);
cur = cur->next;
list_del_init(&op->list);
kfree(op);
if (cur != insert_list)
op = list_entry(cur,
struct pending_extent_op,
list);
}
}
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(extent_root, path);
/*
* Ok backref's and items usually go right next to eachother,
* but if we could only insert 1 item that means that we
* inserted on the end of a leaf, and we have no idea what may
* be on the next leaf so we just play it safe. In order to
* try and help this case we insert the last thing on our
* insert list so hopefully it will end up being the last
* thing on the leaf and everything else will be before it,
* which will let us insert a whole bunch of items at the same
* time.
*/
if (ret == 1 && !last && (i + ret < total)) {
/*
* last: where we will pick up the next time around
* i: our current key to insert, will be total - 1
* cur: the current op we are screwing with
* op: duh
*/
last = i + ret;
i = total - 1;
cur = insert_list->prev;
op = list_entry(cur, struct pending_extent_op, list);
} else if (last) {
/*
* ok we successfully inserted the last item on the
* list, lets reset everything
*
* i: our current key to insert, so where we left off
* last time
* last: done with this
* cur: the op we are messing with
* op: duh
* total: since we inserted the last key, we need to
* decrement total so we dont overflow
*/
i = last;
last = 0;
total--;
if (i < total) {
cur = insert_list->next;
op = list_entry(cur, struct pending_extent_op,
list);
}
} else {
i += ret;
}
cond_resched();
}
ret = 0;
kfree(keys);
kfree(data_size);
return ret;
}
static int noinline insert_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 ref_root, u64 ref_generation,
u64 owner_objectid)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_ref *ref;
u32 num_refs;
int ret;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_REF_KEY;
key.offset = parent;
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref));
if (ret == 0) {
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref);
btrfs_set_ref_root(leaf, ref, ref_root);
btrfs_set_ref_generation(leaf, ref, ref_generation);
btrfs_set_ref_objectid(leaf, ref, owner_objectid);
btrfs_set_ref_num_refs(leaf, ref, 1);
} else if (ret == -EEXIST) {
u64 existing_owner;
BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID);
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref);
if (btrfs_ref_root(leaf, ref) != ref_root ||
btrfs_ref_generation(leaf, ref) != ref_generation) {
ret = -EIO;
WARN_ON(1);
goto out;
}
num_refs = btrfs_ref_num_refs(leaf, ref);
BUG_ON(num_refs == 0);
btrfs_set_ref_num_refs(leaf, ref, num_refs + 1);
existing_owner = btrfs_ref_objectid(leaf, ref);
if (existing_owner != owner_objectid &&
existing_owner != BTRFS_MULTIPLE_OBJECTIDS) {
btrfs_set_ref_objectid(leaf, ref,
BTRFS_MULTIPLE_OBJECTIDS);
}
ret = 0;
} else {
goto out;
}
btrfs_mark_buffer_dirty(path->nodes[0]);
out:
btrfs_release_path(root, path);
return ret;
}
static int noinline remove_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
struct extent_buffer *leaf;
struct btrfs_extent_ref *ref;
u32 num_refs;
int ret = 0;
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
num_refs = btrfs_ref_num_refs(leaf, ref);
BUG_ON(num_refs == 0);
num_refs -= 1;
if (num_refs == 0) {
ret = btrfs_del_item(trans, root, path);
} else {
btrfs_set_ref_num_refs(leaf, ref, num_refs);
btrfs_mark_buffer_dirty(leaf);
}
btrfs_release_path(root, path);
return ret;
}
#ifdef BIO_RW_DISCARD
static void btrfs_issue_discard(struct block_device *bdev,
u64 start, u64 len)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,28)
blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
#else
blkdev_issue_discard(bdev, start >> 9, len >> 9);
#endif
}
#endif
static int noinline free_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct list_head *del_list)
{
struct btrfs_fs_info *info = extent_root->fs_info;
struct btrfs_path *path;
struct btrfs_key key, found_key;
struct extent_buffer *leaf;
struct list_head *cur;
struct pending_extent_op *op;
struct btrfs_extent_item *ei;
int ret, num_to_del, extent_slot = 0, found_extent = 0;
u32 refs;
u64 bytes_freed = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
search:
/* search for the backref for the current ref we want to delete */
cur = del_list->next;
op = list_entry(cur, struct pending_extent_op, list);
ret = lookup_extent_backref(trans, extent_root, path, op->bytenr,
op->orig_parent,
extent_root->root_key.objectid,
op->orig_generation, op->level, 1);
if (ret) {
printk("Unable to find backref byte nr %Lu root %Lu gen %Lu "
"owner %u\n", op->bytenr,
extent_root->root_key.objectid, op->orig_generation,
op->level);
btrfs_print_leaf(extent_root, path->nodes[0]);
WARN_ON(1);
goto out;
}
extent_slot = path->slots[0];
num_to_del = 1;
found_extent = 0;
/*
* if we aren't the first item on the leaf we can move back one and see
* if our ref is right next to our extent item
*/
if (likely(extent_slot)) {
extent_slot--;
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
extent_slot);
if (found_key.objectid == op->bytenr &&
found_key.type == BTRFS_EXTENT_ITEM_KEY &&
found_key.offset == op->num_bytes) {
num_to_del++;
found_extent = 1;
}
}
/*
* if we didn't find the extent we need to delete the backref and then
* search for the extent item key so we can update its ref count
*/
if (!found_extent) {
key.objectid = op->bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = op->num_bytes;
ret = remove_extent_backref(trans, extent_root, path);
BUG_ON(ret);
btrfs_release_path(extent_root, path);
ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1);
BUG_ON(ret);
extent_slot = path->slots[0];
}
/* this is where we update the ref count for the extent */
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, extent_slot, struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, ei);
BUG_ON(refs == 0);
refs--;
btrfs_set_extent_refs(leaf, ei, refs);
btrfs_mark_buffer_dirty(leaf);
/*
* This extent needs deleting. The reason cur_slot is extent_slot +
* num_to_del is because extent_slot points to the slot where the extent
* is, and if the backref was not right next to the extent we will be
* deleting at least 1 item, and will want to start searching at the
* slot directly next to extent_slot. However if we did find the
* backref next to the extent item them we will be deleting at least 2
* items and will want to start searching directly after the ref slot
*/
if (!refs) {
struct list_head *pos, *n, *end;
int cur_slot = extent_slot+num_to_del;
u64 super_used;
u64 root_used;
path->slots[0] = extent_slot;
bytes_freed = op->num_bytes;
mutex_lock(&info->pinned_mutex);
ret = pin_down_bytes(trans, extent_root, op->bytenr,
op->num_bytes, op->level >=
BTRFS_FIRST_FREE_OBJECTID);
mutex_unlock(&info->pinned_mutex);
BUG_ON(ret < 0);
op->del = ret;
/*
* we need to see if we can delete multiple things at once, so
* start looping through the list of extents we are wanting to
* delete and see if their extent/backref's are right next to
* eachother and the extents only have 1 ref
*/
for (pos = cur->next; pos != del_list; pos = pos->next) {
struct pending_extent_op *tmp;
tmp = list_entry(pos, struct pending_extent_op, list);
/* we only want to delete extent+ref at this stage */
if (cur_slot >= btrfs_header_nritems(leaf) - 1)
break;
btrfs_item_key_to_cpu(leaf, &found_key, cur_slot);
if (found_key.objectid != tmp->bytenr ||
found_key.type != BTRFS_EXTENT_ITEM_KEY ||
found_key.offset != tmp->num_bytes)
break;
/* check to make sure this extent only has one ref */
ei = btrfs_item_ptr(leaf, cur_slot,
struct btrfs_extent_item);
if (btrfs_extent_refs(leaf, ei) != 1)
break;
btrfs_item_key_to_cpu(leaf, &found_key, cur_slot+1);
if (found_key.objectid != tmp->bytenr ||
found_key.type != BTRFS_EXTENT_REF_KEY ||
found_key.offset != tmp->orig_parent)
break;
/*
* the ref is right next to the extent, we can set the
* ref count to 0 since we will delete them both now
*/
btrfs_set_extent_refs(leaf, ei, 0);
/* pin down the bytes for this extent */
mutex_lock(&info->pinned_mutex);
ret = pin_down_bytes(trans, extent_root, tmp->bytenr,
tmp->num_bytes, tmp->level >=
BTRFS_FIRST_FREE_OBJECTID);
mutex_unlock(&info->pinned_mutex);
BUG_ON(ret < 0);
/*
* use the del field to tell if we need to go ahead and
* free up the extent when we delete the item or not.
*/
tmp->del = ret;
bytes_freed += tmp->num_bytes;
num_to_del += 2;
cur_slot += 2;
}
end = pos;
/* update the free space counters */
spin_lock_irq(&info->delalloc_lock);
super_used = btrfs_super_bytes_used(&info->super_copy);
btrfs_set_super_bytes_used(&info->super_copy,
super_used - bytes_freed);
spin_unlock_irq(&info->delalloc_lock);
root_used = btrfs_root_used(&extent_root->root_item);
btrfs_set_root_used(&extent_root->root_item,
root_used - bytes_freed);
/* delete the items */
ret = btrfs_del_items(trans, extent_root, path,
path->slots[0], num_to_del);
BUG_ON(ret);
/*
* loop through the extents we deleted and do the cleanup work
* on them
*/
for (pos = cur, n = pos->next; pos != end;
pos = n, n = pos->next) {
struct pending_extent_op *tmp;
#ifdef BIO_RW_DISCARD
u64 map_length;
struct btrfs_multi_bio *multi = NULL;
#endif
tmp = list_entry(pos, struct pending_extent_op, list);
/*
* remember tmp->del tells us wether or not we pinned
* down the extent
*/
ret = update_block_group(trans, extent_root,
tmp->bytenr, tmp->num_bytes, 0,
tmp->del);
BUG_ON(ret);
#ifdef BIO_RW_DISCARD
map_length = tmp->num_bytes;
ret = btrfs_map_block(&info->mapping_tree, READ,
tmp->bytenr, &map_length, &multi,
0);
if (!ret) {
struct btrfs_bio_stripe *stripe;
int i;
stripe = multi->stripes;
if (map_length > tmp->num_bytes)
map_length = tmp->num_bytes;
for (i = 0; i < multi->num_stripes;
i++, stripe++)
btrfs_issue_discard(stripe->dev->bdev,
stripe->physical,
map_length);
kfree(multi);
}
#endif
list_del_init(&tmp->list);
unlock_extent(&info->extent_ins, tmp->bytenr,
tmp->bytenr + tmp->num_bytes - 1,
GFP_NOFS);
kfree(tmp);
}
} else if (refs && found_extent) {
/*
* the ref and extent were right next to eachother, but the
* extent still has a ref, so just free the backref and keep
* going
*/
ret = remove_extent_backref(trans, extent_root, path);
BUG_ON(ret);
list_del_init(&op->list);
unlock_extent(&info->extent_ins, op->bytenr,
op->bytenr + op->num_bytes - 1, GFP_NOFS);
kfree(op);
} else {
/*
* the extent has multiple refs and the backref we were looking
* for was not right next to it, so just unlock and go next,
* we're good to go
*/
list_del_init(&op->list);
unlock_extent(&info->extent_ins, op->bytenr,
op->bytenr + op->num_bytes - 1, GFP_NOFS);
kfree(op);
}
btrfs_release_path(extent_root, path);
if (!list_empty(del_list))
goto search;
out:
btrfs_free_path(path);
return ret;
}
static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 orig_parent, u64 parent,
u64 orig_root, u64 ref_root,
u64 orig_generation, u64 ref_generation,
u64 owner_objectid)
{
int ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_path *path;
if (root == root->fs_info->extent_root) {
struct pending_extent_op *extent_op;
u64 num_bytes;
BUG_ON(owner_objectid >= BTRFS_MAX_LEVEL);
num_bytes = btrfs_level_size(root, (int)owner_objectid);
mutex_lock(&root->fs_info->extent_ins_mutex);
if (test_range_bit(&root->fs_info->extent_ins, bytenr,
bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) {
u64 priv;
ret = get_state_private(&root->fs_info->extent_ins,
bytenr, &priv);
BUG_ON(ret);
extent_op = (struct pending_extent_op *)
(unsigned long)priv;
BUG_ON(extent_op->parent != orig_parent);
BUG_ON(extent_op->generation != orig_generation);
extent_op->parent = parent;
extent_op->generation = ref_generation;
} else {
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
BUG_ON(!extent_op);
extent_op->type = PENDING_BACKREF_UPDATE;
extent_op->bytenr = bytenr;
extent_op->num_bytes = num_bytes;
extent_op->parent = parent;
extent_op->orig_parent = orig_parent;
extent_op->generation = ref_generation;
extent_op->orig_generation = orig_generation;
extent_op->level = (int)owner_objectid;
INIT_LIST_HEAD(&extent_op->list);
extent_op->del = 0;
set_extent_bits(&root->fs_info->extent_ins,
bytenr, bytenr + num_bytes - 1,
EXTENT_WRITEBACK, GFP_NOFS);
set_state_private(&root->fs_info->extent_ins,
bytenr, (unsigned long)extent_op);
}
mutex_unlock(&root->fs_info->extent_ins_mutex);
return 0;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = lookup_extent_backref(trans, extent_root, path,
bytenr, orig_parent, orig_root,
orig_generation, owner_objectid, 1);
if (ret)
goto out;
ret = remove_extent_backref(trans, extent_root, path);
if (ret)
goto out;
ret = insert_extent_backref(trans, extent_root, path, bytenr,
parent, ref_root, ref_generation,
owner_objectid);
BUG_ON(ret);
finish_current_insert(trans, extent_root, 0);
del_pending_extents(trans, extent_root, 0);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 orig_parent, u64 parent,
u64 ref_root, u64 ref_generation,
u64 owner_objectid)
{
int ret;
if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
return 0;
ret = __btrfs_update_extent_ref(trans, root, bytenr, orig_parent,
parent, ref_root, ref_root,
ref_generation, ref_generation,
owner_objectid);
return ret;
}
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 orig_parent, u64 parent,
u64 orig_root, u64 ref_root,
u64 orig_generation, u64 ref_generation,
u64 owner_objectid)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_extent_item *item;
u32 refs;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
0, 1);
if (ret < 0)
return ret;
BUG_ON(ret == 0 || path->slots[0] == 0);
path->slots[0]--;
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
if (key.objectid != bytenr) {
btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]);
printk("wanted %Lu found %Lu\n", bytenr, key.objectid);
BUG();
}
BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY);
item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(l, item);
btrfs_set_extent_refs(l, item, refs + 1);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(root->fs_info->extent_root, path);
path->reada = 1;
ret = insert_extent_backref(trans, root->fs_info->extent_root,
path, bytenr, parent,
ref_root, ref_generation,
owner_objectid);
BUG_ON(ret);
finish_current_insert(trans, root->fs_info->extent_root, 0);
del_pending_extents(trans, root->fs_info->extent_root, 0);
btrfs_free_path(path);
return 0;
}
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 ref_root, u64 ref_generation,
u64 owner_objectid)
{
int ret;
if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
return 0;
ret = __btrfs_inc_extent_ref(trans, root, bytenr, 0, parent,
0, ref_root, 0, ref_generation,
owner_objectid);
return ret;
}
int btrfs_extent_post_op(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
finish_current_insert(trans, root->fs_info->extent_root, 1);
del_pending_extents(trans, root->fs_info->extent_root, 1);
return 0;
}
int btrfs_lookup_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u32 *refs)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_extent_item *item;
WARN_ON(num_bytes < root->sectorsize);
path = btrfs_alloc_path();
path->reada = 1;
key.objectid = bytenr;
key.offset = num_bytes;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
0, 0);
if (ret < 0)
goto out;
if (ret != 0) {
btrfs_print_leaf(root, path->nodes[0]);
printk("failed to find block number %Lu\n", bytenr);
BUG();
}
l = path->nodes[0];
item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
*refs = btrfs_extent_refs(l, item);
out:
btrfs_free_path(path);
return 0;
}
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid, u64 bytenr)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_extent_ref *ref_item;
struct btrfs_key key;
struct btrfs_key found_key;
u64 ref_root;
u64 last_snapshot;
u32 nritems;
int ret;
key.objectid = bytenr;
key.offset = (u64)-1;
key.type = BTRFS_EXTENT_ITEM_KEY;
path = btrfs_alloc_path();
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0);
ret = -ENOENT;
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != bytenr ||
found_key.type != BTRFS_EXTENT_ITEM_KEY)
goto out;
last_snapshot = btrfs_root_last_snapshot(&root->root_item);
while (1) {
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret == 0)
continue;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != bytenr)
break;
if (found_key.type != BTRFS_EXTENT_REF_KEY) {
path->slots[0]++;
continue;
}
ref_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref);
ref_root = btrfs_ref_root(leaf, ref_item);
if ((ref_root != root->root_key.objectid &&
ref_root != BTRFS_TREE_LOG_OBJECTID) ||
objectid != btrfs_ref_objectid(leaf, ref_item)) {
ret = 1;
goto out;
}
if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) {
ret = 1;
goto out;
}
path->slots[0]++;
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, u32 nr_extents)
{
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
u64 root_gen;
u32 nritems;
int i;
int level;
int ret = 0;
int shared = 0;
if (!root->ref_cows)
return 0;
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
shared = 0;
root_gen = root->root_key.offset;
} else {
shared = 1;
root_gen = trans->transid - 1;
}
level = btrfs_header_level(buf);
nritems = btrfs_header_nritems(buf);
if (level == 0) {
struct btrfs_leaf_ref *ref;
struct btrfs_extent_info *info;
ref = btrfs_alloc_leaf_ref(root, nr_extents);
if (!ref) {
ret = -ENOMEM;
goto out;
}
ref->root_gen = root_gen;
ref->bytenr = buf->start;
ref->owner = btrfs_header_owner(buf);
ref->generation = btrfs_header_generation(buf);
ref->nritems = nr_extents;
info = ref->extents;
for (i = 0; nr_extents > 0 && i < nritems; i++) {
u64 disk_bytenr;
btrfs_item_key_to_cpu(buf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(buf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
if (disk_bytenr == 0)
continue;
info->bytenr = disk_bytenr;
info->num_bytes =
btrfs_file_extent_disk_num_bytes(buf, fi);
info->objectid = key.objectid;
info->offset = key.offset;
info++;
}
ret = btrfs_add_leaf_ref(root, ref, shared);
if (ret == -EEXIST && shared) {
struct btrfs_leaf_ref *old;
old = btrfs_lookup_leaf_ref(root, ref->bytenr);
BUG_ON(!old);
btrfs_remove_leaf_ref(root, old);
btrfs_free_leaf_ref(root, old);
ret = btrfs_add_leaf_ref(root, ref, shared);
}
WARN_ON(ret);
btrfs_free_leaf_ref(root, ref);
}
out:
return ret;
}
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *orig_buf, struct extent_buffer *buf,
u32 *nr_extents)
{
u64 bytenr;
u64 ref_root;
u64 orig_root;
u64 ref_generation;
u64 orig_generation;
u32 nritems;
u32 nr_file_extents = 0;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int i;
int level;
int ret = 0;
int faili = 0;
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
u64, u64, u64, u64, u64, u64, u64, u64);
ref_root = btrfs_header_owner(buf);
ref_generation = btrfs_header_generation(buf);
orig_root = btrfs_header_owner(orig_buf);
orig_generation = btrfs_header_generation(orig_buf);
nritems = btrfs_header_nritems(buf);
level = btrfs_header_level(buf);
if (root->ref_cows) {
process_func = __btrfs_inc_extent_ref;
} else {
if (level == 0 &&
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
goto out;
if (level != 0 &&
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
goto out;
process_func = __btrfs_update_extent_ref;
}
for (i = 0; i < nritems; i++) {
cond_resched();
if (level == 0) {
btrfs_item_key_to_cpu(buf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(buf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
if (bytenr == 0)
continue;
nr_file_extents++;
ret = process_func(trans, root, bytenr,
orig_buf->start, buf->start,
orig_root, ref_root,
orig_generation, ref_generation,
key.objectid);
if (ret) {
faili = i;
WARN_ON(1);
goto fail;
}
} else {
bytenr = btrfs_node_blockptr(buf, i);
ret = process_func(trans, root, bytenr,
orig_buf->start, buf->start,
orig_root, ref_root,
orig_generation, ref_generation,
level - 1);
if (ret) {
faili = i;
WARN_ON(1);
goto fail;
}
}
}
out:
if (nr_extents) {
if (level == 0)
*nr_extents = nr_file_extents;
else
*nr_extents = nritems;
}
return 0;
fail:
WARN_ON(1);
return ret;
}
int btrfs_update_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *orig_buf,
struct extent_buffer *buf, int start_slot, int nr)
{
u64 bytenr;
u64 ref_root;
u64 orig_root;
u64 ref_generation;
u64 orig_generation;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int i;
int ret;
int slot;
int level;
BUG_ON(start_slot < 0);
BUG_ON(start_slot + nr > btrfs_header_nritems(buf));
ref_root = btrfs_header_owner(buf);
ref_generation = btrfs_header_generation(buf);
orig_root = btrfs_header_owner(orig_buf);
orig_generation = btrfs_header_generation(orig_buf);
level = btrfs_header_level(buf);
if (!root->ref_cows) {
if (level == 0 &&
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
return 0;
if (level != 0 &&
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
return 0;
}
for (i = 0, slot = start_slot; i < nr; i++, slot++) {
cond_resched();
if (level == 0) {
btrfs_item_key_to_cpu(buf, &key, slot);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf, slot,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(buf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
if (bytenr == 0)
continue;
ret = __btrfs_update_extent_ref(trans, root, bytenr,
orig_buf->start, buf->start,
orig_root, ref_root,
orig_generation, ref_generation,
key.objectid);
if (ret)
goto fail;
} else {
bytenr = btrfs_node_blockptr(buf, slot);
ret = __btrfs_update_extent_ref(trans, root, bytenr,
orig_buf->start, buf->start,
orig_root, ref_root,
orig_generation, ref_generation,
level - 1);
if (ret)
goto fail;
}
}
return 0;
fail:
WARN_ON(1);
return -1;
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
int pending_ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
unsigned long bi;
struct extent_buffer *leaf;
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
if (ret < 0)
goto fail;
BUG_ON(ret);
leaf = path->nodes[0];
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(extent_root, path);
fail:
finish_current_insert(trans, extent_root, 0);
pending_ret = del_pending_extents(trans, extent_root, 0);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return 0;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *cache, *entry;
struct rb_node *n;
int err = 0;
int werr = 0;
struct btrfs_path *path;
u64 last = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while(1) {
cache = NULL;
spin_lock(&root->fs_info->block_group_cache_lock);
for (n = rb_first(&root->fs_info->block_group_cache_tree);
n; n = rb_next(n)) {
entry = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
if (entry->dirty) {
cache = entry;
break;
}
}
spin_unlock(&root->fs_info->block_group_cache_lock);
if (!cache)
break;
cache->dirty = 0;
last += cache->key.offset;
err = write_one_cache_group(trans, root,
path, cache);
/*
* if we fail to write the cache group, we want
* to keep it marked dirty in hopes that a later
* write will work
*/
if (err) {
werr = err;
continue;
}
}
btrfs_free_path(path);
return werr;
}
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
{
struct btrfs_block_group_cache *block_group;
int readonly = 0;
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
if (!block_group || block_group->ro)
readonly = 1;
if (block_group)
put_block_group(block_group);
return readonly;
}
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
u64 total_bytes, u64 bytes_used,
struct btrfs_space_info **space_info)
{
struct btrfs_space_info *found;
found = __find_space_info(info, flags);
if (found) {
spin_lock(&found->lock);
found->total_bytes += total_bytes;
found->bytes_used += bytes_used;
found->full = 0;
spin_unlock(&found->lock);
*space_info = found;
return 0;
}
found = kzalloc(sizeof(*found), GFP_NOFS);
if (!found)
return -ENOMEM;
list_add(&found->list, &info->space_info);
INIT_LIST_HEAD(&found->block_groups);
init_rwsem(&found->groups_sem);
spin_lock_init(&found->lock);
found->flags = flags;
found->total_bytes = total_bytes;
found->bytes_used = bytes_used;
found->bytes_pinned = 0;
found->bytes_reserved = 0;
found->bytes_readonly = 0;
found->full = 0;
found->force_alloc = 0;
*space_info = found;
return 0;
}
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_DUP);
if (extra_flags) {
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits |= extra_flags;
}
}
static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
{
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
if (!cache->ro) {
cache->space_info->bytes_readonly += cache->key.offset -
btrfs_block_group_used(&cache->item);
cache->ro = 1;
}
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
}
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
{
u64 num_devices = root->fs_info->fs_devices->rw_devices;
if (num_devices == 1)
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
if (num_devices < 4)
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
(flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))) {
flags &= ~BTRFS_BLOCK_GROUP_DUP;
}
if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
(flags & BTRFS_BLOCK_GROUP_RAID10)) {
flags &= ~BTRFS_BLOCK_GROUP_RAID1;
}
if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
((flags & BTRFS_BLOCK_GROUP_RAID1) |
(flags & BTRFS_BLOCK_GROUP_RAID10) |
(flags & BTRFS_BLOCK_GROUP_DUP)))
flags &= ~BTRFS_BLOCK_GROUP_RAID0;
return flags;
}
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, u64 alloc_bytes,
u64 flags, int force)
{
struct btrfs_space_info *space_info;
u64 thresh;
int ret = 0;
mutex_lock(&extent_root->fs_info->chunk_mutex);
flags = btrfs_reduce_alloc_profile(extent_root, flags);
space_info = __find_space_info(extent_root->fs_info, flags);
if (!space_info) {
ret = update_space_info(extent_root->fs_info, flags,
0, 0, &space_info);
BUG_ON(ret);
}
BUG_ON(!space_info);
spin_lock(&space_info->lock);
if (space_info->force_alloc) {
force = 1;
space_info->force_alloc = 0;
}
if (space_info->full) {
spin_unlock(&space_info->lock);
goto out;
}
thresh = space_info->total_bytes - space_info->bytes_readonly;
thresh = div_factor(thresh, 6);
if (!force &&
(space_info->bytes_used + space_info->bytes_pinned +
space_info->bytes_reserved + alloc_bytes) < thresh) {
spin_unlock(&space_info->lock);
goto out;
}
spin_unlock(&space_info->lock);
ret = btrfs_alloc_chunk(trans, extent_root, flags);
if (ret) {
printk("space info full %Lu\n", flags);
space_info->full = 1;
}
out:
mutex_unlock(&extent_root->fs_info->chunk_mutex);
return ret;
}
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int alloc,
int mark_free)
{
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num_bytes;
u64 old_val;
u64 byte_in_group;
while(total) {
cache = btrfs_lookup_block_group(info, bytenr);
if (!cache)
return -1;
byte_in_group = bytenr - cache->key.objectid;
WARN_ON(byte_in_group > cache->key.offset);
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->dirty = 1;
old_val = btrfs_block_group_used(&cache->item);
num_bytes = min(total, cache->key.offset - byte_in_group);
if (alloc) {
old_val += num_bytes;
cache->space_info->bytes_used += num_bytes;
if (cache->ro)
cache->space_info->bytes_readonly -= num_bytes;
btrfs_set_block_group_used(&cache->item, old_val);
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
} else {
old_val -= num_bytes;
cache->space_info->bytes_used -= num_bytes;
if (cache->ro)
cache->space_info->bytes_readonly += num_bytes;
btrfs_set_block_group_used(&cache->item, old_val);
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
if (mark_free) {
int ret;
ret = btrfs_add_free_space(cache, bytenr,
num_bytes);
WARN_ON(ret);
}
}
put_block_group(cache);
total -= num_bytes;
bytenr += num_bytes;
}
return 0;
}
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
{
struct btrfs_block_group_cache *cache;
u64 bytenr;
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
if (!cache)
return 0;
bytenr = cache->key.objectid;
put_block_group(cache);
return bytenr;
}
int btrfs_update_pinned_extents(struct btrfs_root *root,
u64 bytenr, u64 num, int pin)
{
u64 len;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *fs_info = root->fs_info;
WARN_ON(!mutex_is_locked(&root->fs_info->pinned_mutex));
if (pin) {
set_extent_dirty(&fs_info->pinned_extents,
bytenr, bytenr + num - 1, GFP_NOFS);
} else {
clear_extent_dirty(&fs_info->pinned_extents,
bytenr, bytenr + num - 1, GFP_NOFS);
}
while (num > 0) {
cache = btrfs_lookup_block_group(fs_info, bytenr);
BUG_ON(!cache);
len = min(num, cache->key.offset -
(bytenr - cache->key.objectid));
if (pin) {
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->pinned += len;
cache->space_info->bytes_pinned += len;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
fs_info->total_pinned += len;
} else {
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->pinned -= len;
cache->space_info->bytes_pinned -= len;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
fs_info->total_pinned -= len;
if (cache->cached)
btrfs_add_free_space(cache, bytenr, len);
}
put_block_group(cache);
bytenr += len;
num -= len;
}
return 0;
}
static int update_reserved_extents(struct btrfs_root *root,
u64 bytenr, u64 num, int reserve)
{
u64 len;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *fs_info = root->fs_info;
while (num > 0) {
cache = btrfs_lookup_block_group(fs_info, bytenr);
BUG_ON(!cache);
len = min(num, cache->key.offset -
(bytenr - cache->key.objectid));
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
if (reserve) {
cache->reserved += len;
cache->space_info->bytes_reserved += len;
} else {
cache->reserved -= len;
cache->space_info->bytes_reserved -= len;
}
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
put_block_group(cache);
bytenr += len;
num -= len;
}
return 0;
}
int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
{
u64 last = 0;
u64 start;
u64 end;
struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
int ret;
mutex_lock(&root->fs_info->pinned_mutex);
while(1) {
ret = find_first_extent_bit(pinned_extents, last,
&start, &end, EXTENT_DIRTY);
if (ret)
break;
set_extent_dirty(copy, start, end, GFP_NOFS);
last = end + 1;
}
mutex_unlock(&root->fs_info->pinned_mutex);
return 0;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_io_tree *unpin)
{
u64 start;
u64 end;
int ret;
mutex_lock(&root->fs_info->pinned_mutex);
while(1) {
ret = find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY);
if (ret)
break;
btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
clear_extent_dirty(unpin, start, end, GFP_NOFS);
if (need_resched()) {
mutex_unlock(&root->fs_info->pinned_mutex);
cond_resched();
mutex_lock(&root->fs_info->pinned_mutex);
}
}
mutex_unlock(&root->fs_info->pinned_mutex);
return 0;
}
static int finish_current_insert(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, int all)
{
u64 start;
u64 end;
u64 priv;
u64 search = 0;
u64 skipped = 0;
struct btrfs_fs_info *info = extent_root->fs_info;
struct btrfs_path *path;
struct pending_extent_op *extent_op, *tmp;
struct list_head insert_list, update_list;
int ret;
int num_inserts = 0, max_inserts;
path = btrfs_alloc_path();
INIT_LIST_HEAD(&insert_list);
INIT_LIST_HEAD(&update_list);
max_inserts = extent_root->leafsize /
(2 * sizeof(struct btrfs_key) + 2 * sizeof(struct btrfs_item) +
sizeof(struct btrfs_extent_ref) +
sizeof(struct btrfs_extent_item));
again:
mutex_lock(&info->extent_ins_mutex);
while (1) {
ret = find_first_extent_bit(&info->extent_ins, search, &start,
&end, EXTENT_WRITEBACK);
if (ret) {
if (skipped && all && !num_inserts) {
skipped = 0;
search = 0;
continue;
}
mutex_unlock(&info->extent_ins_mutex);
break;
}
ret = try_lock_extent(&info->extent_ins, start, end, GFP_NOFS);
if (!ret) {
skipped = 1;
search = end + 1;
if (need_resched()) {
mutex_unlock(&info->extent_ins_mutex);
cond_resched();
mutex_lock(&info->extent_ins_mutex);
}
continue;
}
ret = get_state_private(&info->extent_ins, start, &priv);
BUG_ON(ret);
extent_op = (struct pending_extent_op *)(unsigned long) priv;
if (extent_op->type == PENDING_EXTENT_INSERT) {
num_inserts++;
list_add_tail(&extent_op->list, &insert_list);
search = end + 1;
if (num_inserts == max_inserts) {
mutex_unlock(&info->extent_ins_mutex);
break;
}
} else if (extent_op->type == PENDING_BACKREF_UPDATE) {
list_add_tail(&extent_op->list, &update_list);
search = end + 1;
} else {
BUG();
}
}
/*
* process the update list, clear the writeback bit for it, and if
* somebody marked this thing for deletion then just unlock it and be
* done, the free_extents will handle it
*/
mutex_lock(&info->extent_ins_mutex);
list_for_each_entry_safe(extent_op, tmp, &update_list, list) {
clear_extent_bits(&info->extent_ins, extent_op->bytenr,
extent_op->bytenr + extent_op->num_bytes - 1,
EXTENT_WRITEBACK, GFP_NOFS);
if (extent_op->del) {
list_del_init(&extent_op->list);
unlock_extent(&info->extent_ins, extent_op->bytenr,
extent_op->bytenr + extent_op->num_bytes
- 1, GFP_NOFS);
kfree(extent_op);
}
}
mutex_unlock(&info->extent_ins_mutex);
/*
* still have things left on the update list, go ahead an update
* everything
*/
if (!list_empty(&update_list)) {
ret = update_backrefs(trans, extent_root, path, &update_list);
BUG_ON(ret);
}
/*
* if no inserts need to be done, but we skipped some extents and we
* need to make sure everything is cleaned then reset everything and
* go back to the beginning
*/
if (!num_inserts && all && skipped) {
search = 0;
skipped = 0;
INIT_LIST_HEAD(&update_list);
INIT_LIST_HEAD(&insert_list);
goto again;
} else if (!num_inserts) {
goto out;
}
/*
* process the insert extents list. Again if we are deleting this
* extent, then just unlock it, pin down the bytes if need be, and be
* done with it. Saves us from having to actually insert the extent
* into the tree and then subsequently come along and delete it
*/
mutex_lock(&info->extent_ins_mutex);
list_for_each_entry_safe(extent_op, tmp, &insert_list, list) {
clear_extent_bits(&info->extent_ins, extent_op->bytenr,
extent_op->bytenr + extent_op->num_bytes - 1,
EXTENT_WRITEBACK, GFP_NOFS);
if (extent_op->del) {
list_del_init(&extent_op->list);
unlock_extent(&info->extent_ins, extent_op->bytenr,
extent_op->bytenr + extent_op->num_bytes
- 1, GFP_NOFS);
mutex_lock(&extent_root->fs_info->pinned_mutex);
ret = pin_down_bytes(trans, extent_root,
extent_op->bytenr,
extent_op->num_bytes, 0);
mutex_unlock(&extent_root->fs_info->pinned_mutex);
ret = update_block_group(trans, extent_root,
extent_op->bytenr,
extent_op->num_bytes,
0, ret > 0);
BUG_ON(ret);
kfree(extent_op);
num_inserts--;
}
}
mutex_unlock(&info->extent_ins_mutex);
ret = insert_extents(trans, extent_root, path, &insert_list,
num_inserts);
BUG_ON(ret);
/*
* if we broke out of the loop in order to insert stuff because we hit
* the maximum number of inserts at a time we can handle, then loop
* back and pick up where we left off
*/
if (num_inserts == max_inserts) {
INIT_LIST_HEAD(&insert_list);
INIT_LIST_HEAD(&update_list);
num_inserts = 0;
goto again;
}
/*
* again, if we need to make absolutely sure there are no more pending
* extent operations left and we know that we skipped some, go back to
* the beginning and do it all again
*/
if (all && skipped) {
INIT_LIST_HEAD(&insert_list);
INIT_LIST_HEAD(&update_list);
search = 0;
skipped = 0;
num_inserts = 0;
goto again;
}
out:
btrfs_free_path(path);
return 0;
}
static int pin_down_bytes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int is_data)
{
int err = 0;
struct extent_buffer *buf;
if (is_data)
goto pinit;
buf = btrfs_find_tree_block(root, bytenr, num_bytes);
if (!buf)
goto pinit;
/* we can reuse a block if it hasn't been written
* and it is from this transaction. We can't
* reuse anything from the tree log root because
* it has tiny sub-transactions.
*/
if (btrfs_buffer_uptodate(buf, 0) &&
btrfs_try_tree_lock(buf)) {
u64 header_owner = btrfs_header_owner(buf);
u64 header_transid = btrfs_header_generation(buf);
if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
header_owner != BTRFS_TREE_RELOC_OBJECTID &&
header_transid == trans->transid &&
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
clean_tree_block(NULL, root, buf);
btrfs_tree_unlock(buf);
free_extent_buffer(buf);
return 1;
}
btrfs_tree_unlock(buf);
}
free_extent_buffer(buf);
pinit:
btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
BUG_ON(err < 0);
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
static int __free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 ref_generation,
u64 owner_objectid, int pin, int mark_free)
{
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct extent_buffer *leaf;
int ret;
int extent_slot = 0;
int found_extent = 0;
int num_to_del = 1;
struct btrfs_extent_item *ei;
u32 refs;
key.objectid = bytenr;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = num_bytes;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
ret = lookup_extent_backref(trans, extent_root, path,
bytenr, parent, root_objectid,
ref_generation, owner_objectid, 1);
if (ret == 0) {
struct btrfs_key found_key;
extent_slot = path->slots[0];
while(extent_slot > 0) {
extent_slot--;
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
extent_slot);
if (found_key.objectid != bytenr)
break;
if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
found_key.offset == num_bytes) {
found_extent = 1;
break;
}
if (path->slots[0] - extent_slot > 5)
break;
}
if (!found_extent) {
ret = remove_extent_backref(trans, extent_root, path);
BUG_ON(ret);
btrfs_release_path(extent_root, path);
ret = btrfs_search_slot(trans, extent_root,
&key, path, -1, 1);
if (ret) {
printk(KERN_ERR "umm, got %d back from search"
", was looking for %Lu\n", ret,
bytenr);
btrfs_print_leaf(extent_root, path->nodes[0]);
}
BUG_ON(ret);
extent_slot = path->slots[0];
}
} else {
btrfs_print_leaf(extent_root, path->nodes[0]);
WARN_ON(1);
printk("Unable to find ref byte nr %Lu root %Lu "
"gen %Lu owner %Lu\n", bytenr,
root_objectid, ref_generation, owner_objectid);
}
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, extent_slot,
struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, ei);
BUG_ON(refs == 0);
refs -= 1;
btrfs_set_extent_refs(leaf, ei, refs);
btrfs_mark_buffer_dirty(leaf);
if (refs == 0 && found_extent && path->slots[0] == extent_slot + 1) {
struct btrfs_extent_ref *ref;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref);
BUG_ON(btrfs_ref_num_refs(leaf, ref) != 1);
/* if the back ref and the extent are next to each other
* they get deleted below in one shot
*/
path->slots[0] = extent_slot;
num_to_del = 2;
} else if (found_extent) {
/* otherwise delete the extent back ref */
ret = remove_extent_backref(trans, extent_root, path);
BUG_ON(ret);
/* if refs are 0, we need to setup the path for deletion */
if (refs == 0) {
btrfs_release_path(extent_root, path);
ret = btrfs_search_slot(trans, extent_root, &key, path,
-1, 1);
BUG_ON(ret);
}
}
if (refs == 0) {
u64 super_used;
u64 root_used;
#ifdef BIO_RW_DISCARD
u64 map_length = num_bytes;
struct btrfs_multi_bio *multi = NULL;
#endif
if (pin) {
mutex_lock(&root->fs_info->pinned_mutex);
ret = pin_down_bytes(trans, root, bytenr, num_bytes,
owner_objectid >= BTRFS_FIRST_FREE_OBJECTID);
mutex_unlock(&root->fs_info->pinned_mutex);
if (ret > 0)
mark_free = 1;
BUG_ON(ret < 0);
}
/* block accounting for super block */
spin_lock_irq(&info->delalloc_lock);
super_used = btrfs_super_bytes_used(&info->super_copy);
btrfs_set_super_bytes_used(&info->super_copy,
super_used - num_bytes);
spin_unlock_irq(&info->delalloc_lock);
/* block accounting for root item */
root_used = btrfs_root_used(&root->root_item);
btrfs_set_root_used(&root->root_item,
root_used - num_bytes);
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
num_to_del);
BUG_ON(ret);
btrfs_release_path(extent_root, path);
ret = update_block_group(trans, root, bytenr, num_bytes, 0,
mark_free);
BUG_ON(ret);
if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
BUG_ON(ret);
}
#ifdef BIO_RW_DISCARD
/* Tell the block device(s) that the sectors can be discarded */
ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
bytenr, &map_length, &multi, 0);
if (!ret) {
struct btrfs_bio_stripe *stripe = multi->stripes;
int i;
if (map_length > num_bytes)
map_length = num_bytes;
for (i = 0; i < multi->num_stripes; i++, stripe++) {
btrfs_issue_discard(stripe->dev->bdev,
stripe->physical,
map_length);
}
kfree(multi);
}
#endif
}
btrfs_free_path(path);
finish_current_insert(trans, extent_root, 0);
return ret;
}
/*
* find all the blocks marked as pending in the radix tree and remove
* them from the extent map
*/
static int del_pending_extents(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root, int all)
{
int ret;
int err = 0;
u64 start;
u64 end;
u64 priv;
u64 search = 0;
int nr = 0, skipped = 0;
struct extent_io_tree *pending_del;
struct extent_io_tree *extent_ins;
struct pending_extent_op *extent_op;
struct btrfs_fs_info *info = extent_root->fs_info;
struct list_head delete_list;
INIT_LIST_HEAD(&delete_list);
extent_ins = &extent_root->fs_info->extent_ins;
pending_del = &extent_root->fs_info->pending_del;
again:
mutex_lock(&info->extent_ins_mutex);
while(1) {
ret = find_first_extent_bit(pending_del, search, &start, &end,
EXTENT_WRITEBACK);
if (ret) {
if (all && skipped && !nr) {
search = 0;
continue;
}
mutex_unlock(&info->extent_ins_mutex);
break;
}
ret = try_lock_extent(extent_ins, start, end, GFP_NOFS);
if (!ret) {
search = end+1;
skipped = 1;
if (need_resched()) {
mutex_unlock(&info->extent_ins_mutex);
cond_resched();
mutex_lock(&info->extent_ins_mutex);
}
continue;
}
BUG_ON(ret < 0);
ret = get_state_private(pending_del, start, &priv);
BUG_ON(ret);
extent_op = (struct pending_extent_op *)(unsigned long)priv;
clear_extent_bits(pending_del, start, end, EXTENT_WRITEBACK,
GFP_NOFS);
if (!test_range_bit(extent_ins, start, end,
EXTENT_WRITEBACK, 0)) {
list_add_tail(&extent_op->list, &delete_list);
nr++;
} else {
kfree(extent_op);
ret = get_state_private(&info->extent_ins, start,
&priv);
BUG_ON(ret);
extent_op = (struct pending_extent_op *)
(unsigned long)priv;
clear_extent_bits(&info->extent_ins, start, end,
EXTENT_WRITEBACK, GFP_NOFS);
if (extent_op->type == PENDING_BACKREF_UPDATE) {
list_add_tail(&extent_op->list, &delete_list);
search = end + 1;
nr++;
continue;
}
mutex_lock(&extent_root->fs_info->pinned_mutex);
ret = pin_down_bytes(trans, extent_root, start,
end + 1 - start, 0);
mutex_unlock(&extent_root->fs_info->pinned_mutex);
ret = update_block_group(trans, extent_root, start,
end + 1 - start, 0, ret > 0);
unlock_extent(extent_ins, start, end, GFP_NOFS);
BUG_ON(ret);
kfree(extent_op);
}
if (ret)
err = ret;
search = end + 1;
if (need_resched()) {
mutex_unlock(&info->extent_ins_mutex);
cond_resched();
mutex_lock(&info->extent_ins_mutex);
}
}
if (nr) {
ret = free_extents(trans, extent_root, &delete_list);
BUG_ON(ret);
}
if (all && skipped) {
INIT_LIST_HEAD(&delete_list);
search = 0;
nr = 0;
goto again;
}
return err;
}
/*
* remove an extent from the root, returns 0 on success
*/
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 ref_generation,
u64 owner_objectid, int pin)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
int pending_ret;
int ret;
WARN_ON(num_bytes < root->sectorsize);
if (root == extent_root) {
struct pending_extent_op *extent_op = NULL;
mutex_lock(&root->fs_info->extent_ins_mutex);
if (test_range_bit(&root->fs_info->extent_ins, bytenr,
bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) {
u64 priv;
ret = get_state_private(&root->fs_info->extent_ins,
bytenr, &priv);
BUG_ON(ret);
extent_op = (struct pending_extent_op *)
(unsigned long)priv;
extent_op->del = 1;
if (extent_op->type == PENDING_EXTENT_INSERT) {
mutex_unlock(&root->fs_info->extent_ins_mutex);
return 0;
}
}
if (extent_op) {
ref_generation = extent_op->orig_generation;
parent = extent_op->orig_parent;
}
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
BUG_ON(!extent_op);
extent_op->type = PENDING_EXTENT_DELETE;
extent_op->bytenr = bytenr;
extent_op->num_bytes = num_bytes;
extent_op->parent = parent;
extent_op->orig_parent = parent;
extent_op->generation = ref_generation;
extent_op->orig_generation = ref_generation;
extent_op->level = (int)owner_objectid;
INIT_LIST_HEAD(&extent_op->list);
extent_op->del = 0;
set_extent_bits(&root->fs_info->pending_del,
bytenr, bytenr + num_bytes - 1,
EXTENT_WRITEBACK, GFP_NOFS);
set_state_private(&root->fs_info->pending_del,
bytenr, (unsigned long)extent_op);
mutex_unlock(&root->fs_info->extent_ins_mutex);
return 0;
}
/* if metadata always pin */
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
struct btrfs_block_group_cache *cache;
/* btrfs_free_reserved_extent */
cache = btrfs_lookup_block_group(root->fs_info, bytenr);
BUG_ON(!cache);
btrfs_add_free_space(cache, bytenr, num_bytes);
put_block_group(cache);
update_reserved_extents(root, bytenr, num_bytes, 0);
return 0;
}
pin = 1;
}
/* if data pin when any transaction has committed this */
if (ref_generation != trans->transid)
pin = 1;
ret = __free_extent(trans, root, bytenr, num_bytes, parent,
root_objectid, ref_generation,
owner_objectid, pin, pin == 0);
finish_current_insert(trans, root->fs_info->extent_root, 0);
pending_ret = del_pending_extents(trans, root->fs_info->extent_root, 0);
return ret ? ret : pending_ret;
}
int btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 ref_generation,
u64 owner_objectid, int pin)
{
int ret;
ret = __btrfs_free_extent(trans, root, bytenr, num_bytes, parent,
root_objectid, ref_generation,
owner_objectid, pin);
return ret;
}
static u64 stripe_align(struct btrfs_root *root, u64 val)
{
u64 mask = ((u64)root->stripesize - 1);
u64 ret = (val + mask) & ~mask;
return ret;
}
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = BTRFS_EXTENT_ITEM_KEY
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
static int noinline find_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *orig_root,
u64 num_bytes, u64 empty_size,
u64 search_start, u64 search_end,
u64 hint_byte, struct btrfs_key *ins,
u64 exclude_start, u64 exclude_nr,
int data)
{
int ret = 0;
struct btrfs_root * root = orig_root->fs_info->extent_root;
u64 total_needed = num_bytes;
u64 *last_ptr = NULL;
u64 last_wanted = 0;
struct btrfs_block_group_cache *block_group = NULL;
int chunk_alloc_done = 0;
int empty_cluster = 2 * 1024 * 1024;
int allowed_chunk_alloc = 0;
struct list_head *head = NULL, *cur = NULL;
int loop = 0;
int extra_loop = 0;
struct btrfs_space_info *space_info;
WARN_ON(num_bytes < root->sectorsize);
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
ins->objectid = 0;
ins->offset = 0;
if (orig_root->ref_cows || empty_size)
allowed_chunk_alloc = 1;
if (data & BTRFS_BLOCK_GROUP_METADATA) {
last_ptr = &root->fs_info->last_alloc;
empty_cluster = 64 * 1024;
}
if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD))
last_ptr = &root->fs_info->last_data_alloc;
if (last_ptr) {
if (*last_ptr) {
hint_byte = *last_ptr;
last_wanted = *last_ptr;
} else
empty_size += empty_cluster;
} else {
empty_cluster = 0;
}
search_start = max(search_start, first_logical_byte(root, 0));
search_start = max(search_start, hint_byte);
if (last_wanted && search_start != last_wanted) {
last_wanted = 0;
empty_size += empty_cluster;
}
total_needed += empty_size;
block_group = btrfs_lookup_block_group(root->fs_info, search_start);
if (!block_group)
block_group = btrfs_lookup_first_block_group(root->fs_info,
search_start);
space_info = __find_space_info(root->fs_info, data);
down_read(&space_info->groups_sem);
while (1) {
struct btrfs_free_space *free_space;
/*
* the only way this happens if our hint points to a block
* group thats not of the proper type, while looping this
* should never happen
*/
if (empty_size)
extra_loop = 1;
if (!block_group)
goto new_group_no_lock;
if (unlikely(!block_group->cached)) {
mutex_lock(&block_group->cache_mutex);
ret = cache_block_group(root, block_group);
mutex_unlock(&block_group->cache_mutex);
if (ret)
break;
}
mutex_lock(&block_group->alloc_mutex);
if (unlikely(!block_group_bits(block_group, data)))
goto new_group;
if (unlikely(block_group->ro))
goto new_group;
free_space = btrfs_find_free_space(block_group, search_start,
total_needed);
if (free_space) {
u64 start = block_group->key.objectid;
u64 end = block_group->key.objectid +
block_group->key.offset;
search_start = stripe_align(root, free_space->offset);
/* move on to the next group */
if (search_start + num_bytes >= search_end)
goto new_group;
/* move on to the next group */
if (search_start + num_bytes > end)
goto new_group;
if (last_wanted && search_start != last_wanted) {
total_needed += empty_cluster;
empty_size += empty_cluster;
last_wanted = 0;
/*
* if search_start is still in this block group
* then we just re-search this block group
*/
if (search_start >= start &&
search_start < end) {
mutex_unlock(&block_group->alloc_mutex);
continue;
}
/* else we go to the next block group */
goto new_group;
}
if (exclude_nr > 0 &&
(search_start + num_bytes > exclude_start &&
search_start < exclude_start + exclude_nr)) {
search_start = exclude_start + exclude_nr;
/*
* if search_start is still in this block group
* then we just re-search this block group
*/
if (search_start >= start &&
search_start < end) {
mutex_unlock(&block_group->alloc_mutex);
last_wanted = 0;
continue;
}
/* else we go to the next block group */
goto new_group;
}
ins->objectid = search_start;
ins->offset = num_bytes;
btrfs_remove_free_space_lock(block_group, search_start,
num_bytes);
/* we are all good, lets return */
mutex_unlock(&block_group->alloc_mutex);
break;
}
new_group:
mutex_unlock(&block_group->alloc_mutex);
put_block_group(block_group);
block_group = NULL;
new_group_no_lock:
/* don't try to compare new allocations against the
* last allocation any more
*/
last_wanted = 0;
/*
* Here's how this works.
* loop == 0: we were searching a block group via a hint
* and didn't find anything, so we start at
* the head of the block groups and keep searching
* loop == 1: we're searching through all of the block groups
* if we hit the head again we have searched
* all of the block groups for this space and we
* need to try and allocate, if we cant error out.
* loop == 2: we allocated more space and are looping through
* all of the block groups again.
*/
if (loop == 0) {
head = &space_info->block_groups;
cur = head->next;
loop++;
} else if (loop == 1 && cur == head) {
int keep_going;
/* at this point we give up on the empty_size
* allocations and just try to allocate the min
* space.
*
* The extra_loop field was set if an empty_size
* allocation was attempted above, and if this
* is try we need to try the loop again without
* the additional empty_size.
*/
total_needed -= empty_size;
empty_size = 0;
keep_going = extra_loop;
loop++;
if (allowed_chunk_alloc && !chunk_alloc_done) {
up_read(&space_info->groups_sem);
ret = do_chunk_alloc(trans, root, num_bytes +
2 * 1024 * 1024, data, 1);
down_read(&space_info->groups_sem);
if (ret < 0)
goto loop_check;
head = &space_info->block_groups;
/*
* we've allocated a new chunk, keep
* trying
*/
keep_going = 1;
chunk_alloc_done = 1;
} else if (!allowed_chunk_alloc) {
space_info->force_alloc = 1;
}
loop_check:
if (keep_going) {
cur = head->next;
extra_loop = 0;
} else {
break;
}
} else if (cur == head) {
break;
}
block_group = list_entry(cur, struct btrfs_block_group_cache,
list);
atomic_inc(&block_group->count);
search_start = block_group->key.objectid;
cur = cur->next;
}
/* we found what we needed */
if (ins->objectid) {
if (!(data & BTRFS_BLOCK_GROUP_DATA))
trans->block_group = block_group->key.objectid;
if (last_ptr)
*last_ptr = ins->objectid + ins->offset;
ret = 0;
} else if (!ret) {
printk(KERN_ERR "we were searching for %Lu bytes, num_bytes %Lu,"
" loop %d, allowed_alloc %d\n", total_needed, num_bytes,
loop, allowed_chunk_alloc);
ret = -ENOSPC;
}
if (block_group)
put_block_group(block_group);
up_read(&space_info->groups_sem);
return ret;
}
static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
{
struct btrfs_block_group_cache *cache;
struct list_head *l;
printk(KERN_INFO "space_info has %Lu free, is %sfull\n",
info->total_bytes - info->bytes_used - info->bytes_pinned -
info->bytes_reserved, (info->full) ? "" : "not ");
down_read(&info->groups_sem);
list_for_each(l, &info->block_groups) {
cache = list_entry(l, struct btrfs_block_group_cache, list);
spin_lock(&cache->lock);
printk(KERN_INFO "block group %Lu has %Lu bytes, %Lu used "
"%Lu pinned %Lu reserved\n",
cache->key.objectid, cache->key.offset,
btrfs_block_group_used(&cache->item),
cache->pinned, cache->reserved);
btrfs_dump_free_space(cache, bytes);
spin_unlock(&cache->lock);
}
up_read(&info->groups_sem);
}
static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 min_alloc_size,
u64 empty_size, u64 hint_byte,
u64 search_end, struct btrfs_key *ins,
u64 data)
{
int ret;
u64 search_start = 0;
u64 alloc_profile;
struct btrfs_fs_info *info = root->fs_info;
if (data) {
alloc_profile = info->avail_data_alloc_bits &
info->data_alloc_profile;
data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
} else if (root == root->fs_info->chunk_root) {
alloc_profile = info->avail_system_alloc_bits &
info->system_alloc_profile;
data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
} else {
alloc_profile = info->avail_metadata_alloc_bits &
info->metadata_alloc_profile;
data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
}
again:
data = btrfs_reduce_alloc_profile(root, data);
/*
* the only place that sets empty_size is btrfs_realloc_node, which
* is not called recursively on allocations
*/
if (empty_size || root->ref_cows) {
if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2 * 1024 * 1024,
BTRFS_BLOCK_GROUP_METADATA |
(info->metadata_alloc_profile &
info->avail_metadata_alloc_bits), 0);
}
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
num_bytes + 2 * 1024 * 1024, data, 0);
}
WARN_ON(num_bytes < root->sectorsize);
ret = find_free_extent(trans, root, num_bytes, empty_size,
search_start, search_end, hint_byte, ins,
trans->alloc_exclude_start,
trans->alloc_exclude_nr, data);
if (ret == -ENOSPC && num_bytes > min_alloc_size) {
num_bytes = num_bytes >> 1;
num_bytes = num_bytes & ~(root->sectorsize - 1);
num_bytes = max(num_bytes, min_alloc_size);
do_chunk_alloc(trans, root->fs_info->extent_root,
num_bytes, data, 1);
goto again;
}
if (ret) {
struct btrfs_space_info *sinfo;
sinfo = __find_space_info(root->fs_info, data);
printk("allocation failed flags %Lu, wanted %Lu\n",
data, num_bytes);
dump_space_info(sinfo, num_bytes);
BUG();
}
return ret;
}
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
{
struct btrfs_block_group_cache *cache;
cache = btrfs_lookup_block_group(root->fs_info, start);
if (!cache) {
printk(KERN_ERR "Unable to find block group for %Lu\n", start);
return -ENOSPC;
}
btrfs_add_free_space(cache, start, len);
put_block_group(cache);
update_reserved_extents(root, start, len, 0);
return 0;
}
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 min_alloc_size,
u64 empty_size, u64 hint_byte,
u64 search_end, struct btrfs_key *ins,
u64 data)
{
int ret;
ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
empty_size, hint_byte, search_end, ins,
data);
update_reserved_extents(root, ins->objectid, ins->offset, 1);
return ret;
}
static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 parent,
u64 root_objectid, u64 ref_generation,
u64 owner, struct btrfs_key *ins)
{
int ret;
int pending_ret;
u64 super_used;
u64 root_used;
u64 num_bytes = ins->offset;
u32 sizes[2];
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct btrfs_extent_item *extent_item;
struct btrfs_extent_ref *ref;
struct btrfs_path *path;
struct btrfs_key keys[2];
if (parent == 0)
parent = ins->objectid;
/* block accounting for super block */
spin_lock_irq(&info->delalloc_lock);
super_used = btrfs_super_bytes_used(&info->super_copy);
btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes);
spin_unlock_irq(&info->delalloc_lock);
/* block accounting for root item */
root_used = btrfs_root_used(&root->root_item);
btrfs_set_root_used(&root->root_item, root_used + num_bytes);
if (root == extent_root) {
struct pending_extent_op *extent_op;
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
BUG_ON(!extent_op);
extent_op->type = PENDING_EXTENT_INSERT;
extent_op->bytenr = ins->objectid;
extent_op->num_bytes = ins->offset;
extent_op->parent = parent;
extent_op->orig_parent = 0;
extent_op->generation = ref_generation;
extent_op->orig_generation = 0;
extent_op->level = (int)owner;
INIT_LIST_HEAD(&extent_op->list);
extent_op->del = 0;
mutex_lock(&root->fs_info->extent_ins_mutex);
set_extent_bits(&root->fs_info->extent_ins, ins->objectid,
ins->objectid + ins->offset - 1,
EXTENT_WRITEBACK, GFP_NOFS);
set_state_private(&root->fs_info->extent_ins,
ins->objectid, (unsigned long)extent_op);
mutex_unlock(&root->fs_info->extent_ins_mutex);
goto update_block;
}
memcpy(&keys[0], ins, sizeof(*ins));
keys[1].objectid = ins->objectid;
keys[1].type = BTRFS_EXTENT_REF_KEY;
keys[1].offset = parent;
sizes[0] = sizeof(*extent_item);
sizes[1] = sizeof(*ref);
path = btrfs_alloc_path();
BUG_ON(!path);
ret = btrfs_insert_empty_items(trans, extent_root, path, keys,
sizes, 2);
BUG_ON(ret);
extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_extent_item);
btrfs_set_extent_refs(path->nodes[0], extent_item, 1);
ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
struct btrfs_extent_ref);
btrfs_set_ref_root(path->nodes[0], ref, root_objectid);
btrfs_set_ref_generation(path->nodes[0], ref, ref_generation);
btrfs_set_ref_objectid(path->nodes[0], ref, owner);
btrfs_set_ref_num_refs(path->nodes[0], ref, 1);
btrfs_mark_buffer_dirty(path->nodes[0]);
trans->alloc_exclude_start = 0;
trans->alloc_exclude_nr = 0;
btrfs_free_path(path);
finish_current_insert(trans, extent_root, 0);
pending_ret = del_pending_extents(trans, extent_root, 0);
if (ret)
goto out;
if (pending_ret) {
ret = pending_ret;
goto out;
}
update_block:
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1, 0);
if (ret) {
printk("update block group failed for %Lu %Lu\n",
ins->objectid, ins->offset);
BUG();
}
out:
return ret;
}
int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 parent,
u64 root_objectid, u64 ref_generation,
u64 owner, struct btrfs_key *ins)
{
int ret;
if (root_objectid == BTRFS_TREE_LOG_OBJECTID)
return 0;
ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
ref_generation, owner, ins);
update_reserved_extents(root, ins->objectid, ins->offset, 0);
return ret;
}
/*
* this is used by the tree logging recovery code. It records that
* an extent has been allocated and makes sure to clear the free
* space cache bits as well
*/
int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 parent,
u64 root_objectid, u64 ref_generation,
u64 owner, struct btrfs_key *ins)
{
int ret;
struct btrfs_block_group_cache *block_group;
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
mutex_lock(&block_group->cache_mutex);
cache_block_group(root, block_group);
mutex_unlock(&block_group->cache_mutex);
ret = btrfs_remove_free_space(block_group, ins->objectid,
ins->offset);
BUG_ON(ret);
put_block_group(block_group);
ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
ref_generation, owner, ins);
return ret;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns 0 if everything worked, non-zero otherwise.
*/
int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 parent, u64 min_alloc_size,
u64 root_objectid, u64 ref_generation,
u64 owner_objectid, u64 empty_size, u64 hint_byte,
u64 search_end, struct btrfs_key *ins, u64 data)
{
int ret;
ret = __btrfs_reserve_extent(trans, root, num_bytes,
min_alloc_size, empty_size, hint_byte,
search_end, ins, data);
BUG_ON(ret);
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
ret = __btrfs_alloc_reserved_extent(trans, root, parent,
root_objectid, ref_generation,
owner_objectid, ins);
BUG_ON(ret);
} else {
update_reserved_extents(root, ins->objectid, ins->offset, 1);
}
return ret;
}
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *buf;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return ERR_PTR(-ENOMEM);
btrfs_set_header_generation(buf, trans->transid);
btrfs_tree_lock(buf);
clean_tree_block(trans, root, buf);
btrfs_set_buffer_uptodate(buf);
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
set_extent_dirty(&root->dirty_log_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
} else {
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
}
trans->blocks_used++;
return buf;
}
/*
* helper function to allocate a block for a given tree
* returns the tree buffer or NULL.
*/
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u32 blocksize, u64 parent,
u64 root_objectid,
u64 ref_generation,
int level,
u64 hint,
u64 empty_size)
{
struct btrfs_key ins;
int ret;
struct extent_buffer *buf;
ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize,
root_objectid, ref_generation, level,
empty_size, hint, (u64)-1, &ins, 0);
if (ret) {
BUG_ON(ret > 0);
return ERR_PTR(ret);
}
buf = btrfs_init_new_buffer(trans, root, ins.objectid, blocksize);
return buf;
}
int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *leaf)
{
u64 leaf_owner;
u64 leaf_generation;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int i;
int nritems;
int ret;
BUG_ON(!btrfs_is_leaf(leaf));
nritems = btrfs_header_nritems(leaf);
leaf_owner = btrfs_header_owner(leaf);
leaf_generation = btrfs_header_generation(leaf);
for (i = 0; i < nritems; i++) {
u64 disk_bytenr;
cond_resched();
btrfs_item_key_to_cpu(leaf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
/*
* FIXME make sure to insert a trans record that
* repeats the snapshot del on crash
*/
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
if (disk_bytenr == 0)
continue;
ret = __btrfs_free_extent(trans, root, disk_bytenr,
btrfs_file_extent_disk_num_bytes(leaf, fi),
leaf->start, leaf_owner, leaf_generation,
key.objectid, 0);
BUG_ON(ret);
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
}
return 0;
}
static int noinline cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_leaf_ref *ref)
{
int i;
int ret;
struct btrfs_extent_info *info = ref->extents;
for (i = 0; i < ref->nritems; i++) {
ret = __btrfs_free_extent(trans, root, info->bytenr,
info->num_bytes, ref->bytenr,
ref->owner, ref->generation,
info->objectid, 0);
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
BUG_ON(ret);
info++;
}
return 0;
}
static int drop_snap_lookup_refcount(struct btrfs_root *root, u64 start, u64 len,
u32 *refs)
{
int ret;
ret = btrfs_lookup_extent_ref(NULL, root, start, len, refs);
BUG_ON(ret);
#if 0 // some debugging code in case we see problems here
/* if the refs count is one, it won't get increased again. But
* if the ref count is > 1, someone may be decreasing it at
* the same time we are.
*/
if (*refs != 1) {
struct extent_buffer *eb = NULL;
eb = btrfs_find_create_tree_block(root, start, len);
if (eb)
btrfs_tree_lock(eb);
mutex_lock(&root->fs_info->alloc_mutex);
ret = lookup_extent_ref(NULL, root, start, len, refs);
BUG_ON(ret);
mutex_unlock(&root->fs_info->alloc_mutex);
if (eb) {
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
}
if (*refs == 1) {
printk("block %llu went down to one during drop_snap\n",
(unsigned long long)start);
}
}
#endif
cond_resched();
return ret;
}
/*
* helper function for drop_snapshot, this walks down the tree dropping ref
* counts as it goes.
*/
static int noinline walk_down_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level)
{
u64 root_owner;
u64 root_gen;
u64 bytenr;
u64 ptr_gen;
struct extent_buffer *next;
struct extent_buffer *cur;
struct extent_buffer *parent;
struct btrfs_leaf_ref *ref;
u32 blocksize;
int ret;
u32 refs;
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
ret = drop_snap_lookup_refcount(root, path->nodes[*level]->start,
path->nodes[*level]->len, &refs);
BUG_ON(ret);
if (refs > 1)
goto out;
/*
* walk down to the last node level and free all the leaves
*/
while(*level >= 0) {
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
cur = path->nodes[*level];
if (btrfs_header_level(cur) != *level)
WARN_ON(1);
if (path->slots[*level] >=
btrfs_header_nritems(cur))
break;
if (*level == 0) {
ret = btrfs_drop_leaf_ref(trans, root, cur);
BUG_ON(ret);
break;
}
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
blocksize = btrfs_level_size(root, *level - 1);
ret = drop_snap_lookup_refcount(root, bytenr, blocksize, &refs);
BUG_ON(ret);
if (refs != 1) {
parent = path->nodes[*level];
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
path->slots[*level]++;
ret = __btrfs_free_extent(trans, root, bytenr,
blocksize, parent->start,
root_owner, root_gen,
*level - 1, 1);
BUG_ON(ret);
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
continue;
}
/*
* at this point, we have a single ref, and since the
* only place referencing this extent is a dead root
* the reference count should never go higher.
* So, we don't need to check it again
*/
if (*level == 1) {
ref = btrfs_lookup_leaf_ref(root, bytenr);
if (ref && ref->generation != ptr_gen) {
btrfs_free_leaf_ref(root, ref);
ref = NULL;
}
if (ref) {
ret = cache_drop_leaf_ref(trans, root, ref);
BUG_ON(ret);
btrfs_remove_leaf_ref(root, ref);
btrfs_free_leaf_ref(root, ref);
*level = 0;
break;
}
if (printk_ratelimit()) {
printk("leaf ref miss for bytenr %llu\n",
(unsigned long long)bytenr);
}
}
next = btrfs_find_tree_block(root, bytenr, blocksize);
if (!next || !btrfs_buffer_uptodate(next, ptr_gen)) {
free_extent_buffer(next);
next = read_tree_block(root, bytenr, blocksize,
ptr_gen);
cond_resched();
#if 0
/*
* this is a debugging check and can go away
* the ref should never go all the way down to 1
* at this point
*/
ret = lookup_extent_ref(NULL, root, bytenr, blocksize,
&refs);
BUG_ON(ret);
WARN_ON(refs != 1);
#endif
}
WARN_ON(*level <= 0);
if (path->nodes[*level-1])
free_extent_buffer(path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(next);
path->slots[*level] = 0;
cond_resched();
}
out:
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
if (path->nodes[*level] == root->node) {
parent = path->nodes[*level];
bytenr = path->nodes[*level]->start;
} else {
parent = path->nodes[*level + 1];
bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
}
blocksize = btrfs_level_size(root, *level);
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
ret = __btrfs_free_extent(trans, root, bytenr, blocksize,
parent->start, root_owner, root_gen,
*level, 1);
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
BUG_ON(ret);
cond_resched();
return 0;
}
/*
* helper function for drop_subtree, this function is similar to
* walk_down_tree. The main difference is that it checks reference
* counts while tree blocks are locked.
*/
static int noinline walk_down_subtree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level)
{
struct extent_buffer *next;
struct extent_buffer *cur;
struct extent_buffer *parent;
u64 bytenr;
u64 ptr_gen;
u32 blocksize;
u32 refs;
int ret;
cur = path->nodes[*level];
ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len,
&refs);
BUG_ON(ret);
if (refs > 1)
goto out;
while (*level >= 0) {
cur = path->nodes[*level];
if (*level == 0) {
ret = btrfs_drop_leaf_ref(trans, root, cur);
BUG_ON(ret);
clean_tree_block(trans, root, cur);
break;
}
if (path->slots[*level] >= btrfs_header_nritems(cur)) {
clean_tree_block(trans, root, cur);
break;
}
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
blocksize = btrfs_level_size(root, *level - 1);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
next = read_tree_block(root, bytenr, blocksize, ptr_gen);
btrfs_tree_lock(next);
ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize,
&refs);
BUG_ON(ret);
if (refs > 1) {
parent = path->nodes[*level];
ret = btrfs_free_extent(trans, root, bytenr,
blocksize, parent->start,
btrfs_header_owner(parent),
btrfs_header_generation(parent),
*level - 1, 1);
BUG_ON(ret);
path->slots[*level]++;
btrfs_tree_unlock(next);
free_extent_buffer(next);
continue;
}
*level = btrfs_header_level(next);
path->nodes[*level] = next;
path->slots[*level] = 0;
path->locks[*level] = 1;
cond_resched();
}
out:
parent = path->nodes[*level + 1];
bytenr = path->nodes[*level]->start;
blocksize = path->nodes[*level]->len;
ret = btrfs_free_extent(trans, root, bytenr, blocksize,
parent->start, btrfs_header_owner(parent),
btrfs_header_generation(parent), *level, 1);
BUG_ON(ret);
if (path->locks[*level]) {
btrfs_tree_unlock(path->nodes[*level]);
path->locks[*level] = 0;
}
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
cond_resched();
return 0;
}
/*
* helper for dropping snapshots. This walks back up the tree in the path
* to find the first node higher up where we haven't yet gone through
* all the slots
*/
static int noinline walk_up_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
int *level, int max_level)
{
u64 root_owner;
u64 root_gen;
struct btrfs_root_item *root_item = &root->root_item;
int i;
int slot;
int ret;
for (i = *level; i < max_level && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
struct extent_buffer *node;
struct btrfs_disk_key disk_key;
node = path->nodes[i];
path->slots[i]++;
*level = i;
WARN_ON(*level == 0);
btrfs_node_key(node, &disk_key, path->slots[i]);
memcpy(&root_item->drop_progress,
&disk_key, sizeof(disk_key));
root_item->drop_level = i;
return 0;
} else {
struct extent_buffer *parent;
if (path->nodes[*level] == root->node)
parent = path->nodes[*level];
else
parent = path->nodes[*level + 1];
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
clean_tree_block(trans, root, path->nodes[*level]);
ret = btrfs_free_extent(trans, root,
path->nodes[*level]->start,
path->nodes[*level]->len,
parent->start, root_owner,
root_gen, *level, 1);
BUG_ON(ret);
if (path->locks[*level]) {
btrfs_tree_unlock(path->nodes[*level]);
path->locks[*level] = 0;
}
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
*root)
{
int ret = 0;
int wret;
int level;
struct btrfs_path *path;
int i;
int orig_level;
struct btrfs_root_item *root_item = &root->root_item;
WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex));
path = btrfs_alloc_path();
BUG_ON(!path);
level = btrfs_header_level(root->node);
orig_level = level;
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
path->nodes[level] = root->node;
extent_buffer_get(root->node);
path->slots[level] = 0;
} else {
struct btrfs_key key;
struct btrfs_disk_key found_key;
struct extent_buffer *node;
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
level = root_item->drop_level;
path->lowest_level = level;
wret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (wret < 0) {
ret = wret;
goto out;
}
node = path->nodes[level];
btrfs_node_key(node, &found_key, path->slots[level]);
WARN_ON(memcmp(&found_key, &root_item->drop_progress,
sizeof(found_key)));
/*
* unlock our path, this is safe because only this
* function is allowed to delete this snapshot
*/
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
if (path->nodes[i] && path->locks[i]) {
path->locks[i] = 0;
btrfs_tree_unlock(path->nodes[i]);
}
}
}
while(1) {
wret = walk_down_tree(trans, root, path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
wret = walk_up_tree(trans, root, path, &level,
BTRFS_MAX_LEVEL);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
if (trans->transaction->in_commit) {
ret = -EAGAIN;
break;
}
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
}
for (i = 0; i <= orig_level; i++) {
if (path->nodes[i]) {
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
}
out:
btrfs_free_path(path);
return ret;
}
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *node,
struct extent_buffer *parent)
{
struct btrfs_path *path;
int level;
int parent_level;
int ret = 0;
int wret;
path = btrfs_alloc_path();
BUG_ON(!path);
BUG_ON(!btrfs_tree_locked(parent));
parent_level = btrfs_header_level(parent);
extent_buffer_get(parent);
path->nodes[parent_level] = parent;
path->slots[parent_level] = btrfs_header_nritems(parent);
BUG_ON(!btrfs_tree_locked(node));
level = btrfs_header_level(node);
extent_buffer_get(node);
path->nodes[level] = node;
path->slots[level] = 0;
while (1) {
wret = walk_down_subtree(trans, root, path, &level);
if (wret < 0)
ret = wret;
if (wret != 0)
break;
wret = walk_up_tree(trans, root, path, &level, parent_level);
if (wret < 0)
ret = wret;
if (wret != 0)
break;
}
btrfs_free_path(path);
return ret;
}
static unsigned long calc_ra(unsigned long start, unsigned long last,
unsigned long nr)
{
return min(last, start + nr - 1);
}
static int noinline relocate_inode_pages(struct inode *inode, u64 start,
u64 len)
{
u64 page_start;
u64 page_end;
unsigned long first_index;
unsigned long last_index;
unsigned long i;
struct page *page;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct file_ra_state *ra;
struct btrfs_ordered_extent *ordered;
unsigned int total_read = 0;
unsigned int total_dirty = 0;
int ret = 0;
ra = kzalloc(sizeof(*ra), GFP_NOFS);
mutex_lock(&inode->i_mutex);
first_index = start >> PAGE_CACHE_SHIFT;
last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
/* make sure the dirty trick played by the caller work */
ret = invalidate_inode_pages2_range(inode->i_mapping,
first_index, last_index);
if (ret)
goto out_unlock;
file_ra_state_init(ra, inode->i_mapping);
for (i = first_index ; i <= last_index; i++) {
if (total_read % ra->ra_pages == 0) {
btrfs_force_ra(inode->i_mapping, ra, NULL, i,
calc_ra(i, last_index, ra->ra_pages));
}
total_read++;
again:
if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
BUG_ON(1);
page = grab_cache_page(inode->i_mapping, i);
if (!page) {
ret = -ENOMEM;
goto out_unlock;
}
if (!PageUptodate(page)) {
btrfs_readpage(NULL, page);
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
page_cache_release(page);
ret = -EIO;
goto out_unlock;
}
}
wait_on_page_writeback(page);
page_start = (u64)page->index << PAGE_CACHE_SHIFT;
page_end = page_start + PAGE_CACHE_SIZE - 1;
lock_extent(io_tree, page_start, page_end, GFP_NOFS);
ordered = btrfs_lookup_ordered_extent(inode, page_start);
if (ordered) {
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
unlock_page(page);
page_cache_release(page);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
goto again;
}
set_page_extent_mapped(page);
btrfs_set_extent_delalloc(inode, page_start, page_end);
if (i == first_index)
set_extent_bits(io_tree, page_start, page_end,
EXTENT_BOUNDARY, GFP_NOFS);
set_page_dirty(page);
total_dirty++;
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
unlock_page(page);
page_cache_release(page);
}
out_unlock:
kfree(ra);
mutex_unlock(&inode->i_mutex);
balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
return ret;
}
static int noinline relocate_data_extent(struct inode *reloc_inode,
struct btrfs_key *extent_key,
u64 offset)
{
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
struct extent_map *em;
u64 start = extent_key->objectid - offset;
u64 end = start + extent_key->offset - 1;
em = alloc_extent_map(GFP_NOFS);
BUG_ON(!em || IS_ERR(em));
em->start = start;
em->len = extent_key->offset;
em->block_len = extent_key->offset;
em->block_start = extent_key->objectid;
em->bdev = root->fs_info->fs_devices->latest_bdev;
set_bit(EXTENT_FLAG_PINNED, &em->flags);
/* setup extent map to cheat btrfs_readpage */
lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
while (1) {
int ret;
spin_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
spin_unlock(&em_tree->lock);
if (ret != -EEXIST) {
free_extent_map(em);
break;
}
btrfs_drop_extent_cache(reloc_inode, start, end, 0);
}
unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
return relocate_inode_pages(reloc_inode, start, extent_key->offset);
}
struct btrfs_ref_path {
u64 extent_start;
u64 nodes[BTRFS_MAX_LEVEL];
u64 root_objectid;
u64 root_generation;
u64 owner_objectid;
u32 num_refs;
int lowest_level;
int current_level;
int shared_level;
struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
u64 new_nodes[BTRFS_MAX_LEVEL];
};
struct disk_extent {
u64 ram_bytes;
u64 disk_bytenr;
u64 disk_num_bytes;
u64 offset;
u64 num_bytes;
u8 compression;
u8 encryption;
u16 other_encoding;
};
static int is_cowonly_root(u64 root_objectid)
{
if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
root_objectid == BTRFS_DEV_TREE_OBJECTID ||
root_objectid == BTRFS_TREE_LOG_OBJECTID ||
root_objectid == BTRFS_CSUM_TREE_OBJECTID)
return 1;
return 0;
}
static int noinline __next_ref_path(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_ref_path *ref_path,
int first_time)
{
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_extent_ref *ref;
struct btrfs_key key;
struct btrfs_key found_key;
u64 bytenr;
u32 nritems;
int level;
int ret = 1;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (first_time) {
ref_path->lowest_level = -1;
ref_path->current_level = -1;
ref_path->shared_level = -1;
goto walk_up;
}
walk_down:
level = ref_path->current_level - 1;
while (level >= -1) {
u64 parent;
if (level < ref_path->lowest_level)
break;
if (level >= 0) {
bytenr = ref_path->nodes[level];
} else {
bytenr = ref_path->extent_start;
}
BUG_ON(bytenr == 0);
parent = ref_path->nodes[level + 1];
ref_path->nodes[level + 1] = 0;
ref_path->current_level = level;
BUG_ON(parent == 0);
key.objectid = bytenr;
key.offset = parent + 1;
key.type = BTRFS_EXTENT_REF_KEY;
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0);
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret > 0)
goto next;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid == bytenr &&
found_key.type == BTRFS_EXTENT_REF_KEY) {
if (level < ref_path->shared_level)
ref_path->shared_level = level;
goto found;
}
next:
level--;
btrfs_release_path(extent_root, path);
cond_resched();
}
/* reached lowest level */
ret = 1;
goto out;
walk_up:
level = ref_path->current_level;
while (level < BTRFS_MAX_LEVEL - 1) {
u64 ref_objectid;
if (level >= 0) {
bytenr = ref_path->nodes[level];
} else {
bytenr = ref_path->extent_start;
}
BUG_ON(bytenr == 0);
key.objectid = bytenr;
key.offset = 0;
key.type = BTRFS_EXTENT_REF_KEY;
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret > 0) {
/* the extent was freed by someone */
if (ref_path->lowest_level == level)
goto out;
btrfs_release_path(extent_root, path);
goto walk_down;
}
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != bytenr ||
found_key.type != BTRFS_EXTENT_REF_KEY) {
/* the extent was freed by someone */
if (ref_path->lowest_level == level) {
ret = 1;
goto out;
}
btrfs_release_path(extent_root, path);
goto walk_down;
}
found:
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref);
ref_objectid = btrfs_ref_objectid(leaf, ref);
if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
if (first_time) {
level = (int)ref_objectid;
BUG_ON(level >= BTRFS_MAX_LEVEL);
ref_path->lowest_level = level;
ref_path->current_level = level;
ref_path->nodes[level] = bytenr;
} else {
WARN_ON(ref_objectid != level);
}
} else {
WARN_ON(level != -1);
}
first_time = 0;
if (ref_path->lowest_level == level) {
ref_path->owner_objectid = ref_objectid;
ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
}
/*
* the block is tree root or the block isn't in reference
* counted tree.
*/
if (found_key.objectid == found_key.offset ||
is_cowonly_root(btrfs_ref_root(leaf, ref))) {
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
ref_path->root_generation =
btrfs_ref_generation(leaf, ref);
if (level < 0) {
/* special reference from the tree log */
ref_path->nodes[0] = found_key.offset;
ref_path->current_level = 0;
}
ret = 0;
goto out;
}
level++;
BUG_ON(ref_path->nodes[level] != 0);
ref_path->nodes[level] = found_key.offset;
ref_path->current_level = level;
/*
* the reference was created in the running transaction,
* no need to continue walking up.
*/
if (btrfs_ref_generation(leaf, ref) == trans->transid) {
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
ref_path->root_generation =
btrfs_ref_generation(leaf, ref);
ret = 0;
goto out;
}
btrfs_release_path(extent_root, path);
cond_resched();
}
/* reached max tree level, but no tree root found. */
BUG();
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_ref_path *ref_path,
u64 extent_start)
{
memset(ref_path, 0, sizeof(*ref_path));
ref_path->extent_start = extent_start;
return __next_ref_path(trans, extent_root, ref_path, 1);
}
static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_ref_path *ref_path)
{
return __next_ref_path(trans, extent_root, ref_path, 0);
}
static int noinline get_new_locations(struct inode *reloc_inode,
struct btrfs_key *extent_key,
u64 offset, int no_fragment,
struct disk_extent **extents,
int *nr_extents)
{
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct extent_buffer *leaf;
struct disk_extent *exts = *extents;
struct btrfs_key found_key;
u64 cur_pos;
u64 last_byte;
u32 nritems;
int nr = 0;
int max = *nr_extents;
int ret;
WARN_ON(!no_fragment && *extents);
if (!exts) {
max = 1;
exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
if (!exts)
return -ENOMEM;
}
path = btrfs_alloc_path();
BUG_ON(!path);
cur_pos = extent_key->objectid - offset;
last_byte = extent_key->objectid + extent_key->offset;
ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
cur_pos, 0);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
while (1) {
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret > 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.offset != cur_pos ||
found_key.type != BTRFS_EXTENT_DATA_KEY ||
found_key.objectid != reloc_inode->i_ino)
break;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_REG ||
btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
break;
if (nr == max) {
struct disk_extent *old = exts;
max *= 2;
exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
memcpy(exts, old, sizeof(*exts) * nr);
if (old != *extents)
kfree(old);
}
exts[nr].disk_bytenr =
btrfs_file_extent_disk_bytenr(leaf, fi);
exts[nr].disk_num_bytes =
btrfs_file_extent_disk_num_bytes(leaf, fi);
exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
fi);
BUG_ON(exts[nr].offset > 0);
BUG_ON(exts[nr].compression || exts[nr].encryption);
BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
cur_pos += exts[nr].num_bytes;
nr++;
if (cur_pos + offset >= last_byte)
break;
if (no_fragment) {
ret = 1;
goto out;
}
path->slots[0]++;
}
WARN_ON(cur_pos + offset > last_byte);
if (cur_pos + offset < last_byte) {
ret = -ENOENT;
goto out;
}
ret = 0;
out:
btrfs_free_path(path);
if (ret) {
if (exts != *extents)
kfree(exts);
} else {
*extents = exts;
*nr_extents = nr;
}
return ret;
}
static int noinline replace_one_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *extent_key,
struct btrfs_key *leaf_key,
struct btrfs_ref_path *ref_path,
struct disk_extent *new_extents,
int nr_extents)
{
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct inode *inode = NULL;
struct btrfs_key key;
u64 lock_start = 0;
u64 lock_end = 0;
u64 num_bytes;
u64 ext_offset;
u64 first_pos;
u32 nritems;
int nr_scaned = 0;
int extent_locked = 0;
int extent_type;
int ret;
memcpy(&key, leaf_key, sizeof(key));
first_pos = INT_LIMIT(loff_t) - extent_key->offset;
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
if (key.objectid < ref_path->owner_objectid ||
(key.objectid == ref_path->owner_objectid &&
key.type < BTRFS_EXTENT_DATA_KEY)) {
key.objectid = ref_path->owner_objectid;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = 0;
}
}
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
next:
if (extent_locked && ret > 0) {
/*
* the file extent item was modified by someone
* before the extent got locked.
*/
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
extent_locked = 0;
}
if (path->slots[0] >= nritems) {
if (++nr_scaned > 2)
break;
BUG_ON(extent_locked);
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret > 0)
break;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
if ((key.objectid > ref_path->owner_objectid) ||
(key.objectid == ref_path->owner_objectid &&
key.type > BTRFS_EXTENT_DATA_KEY) ||
(key.offset >= first_pos + extent_key->offset))
break;
}
if (inode && key.objectid != inode->i_ino) {
BUG_ON(extent_locked);
btrfs_release_path(root, path);
mutex_unlock(&inode->i_mutex);
iput(inode);
inode = NULL;
continue;
}
if (key.type != BTRFS_EXTENT_DATA_KEY) {
path->slots[0]++;
ret = 1;
goto next;
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if ((extent_type != BTRFS_FILE_EXTENT_REG &&
extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
(btrfs_file_extent_disk_bytenr(leaf, fi) !=
extent_key->objectid)) {
path->slots[0]++;
ret = 1;
goto next;
}
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
ext_offset = btrfs_file_extent_offset(leaf, fi);
if (first_pos > key.offset - ext_offset)
first_pos = key.offset - ext_offset;
if (!extent_locked) {
lock_start = key.offset;
lock_end = lock_start + num_bytes - 1;
} else {
if (lock_start > key.offset ||
lock_end + 1 < key.offset + num_bytes) {
unlock_extent(&BTRFS_I(inode)->io_tree,
lock_start, lock_end, GFP_NOFS);
extent_locked = 0;
}
}
if (!inode) {
btrfs_release_path(root, path);
inode = btrfs_iget_locked(root->fs_info->sb,
key.objectid, root);
if (inode->i_state & I_NEW) {
BTRFS_I(inode)->root = root;
BTRFS_I(inode)->location.objectid =
key.objectid;
BTRFS_I(inode)->location.type =
BTRFS_INODE_ITEM_KEY;
BTRFS_I(inode)->location.offset = 0;
btrfs_read_locked_inode(inode);
unlock_new_inode(inode);
}
/*
* some code call btrfs_commit_transaction while
* holding the i_mutex, so we can't use mutex_lock
* here.
*/
if (is_bad_inode(inode) ||
!mutex_trylock(&inode->i_mutex)) {
iput(inode);
inode = NULL;
key.offset = (u64)-1;
goto skip;
}
}
if (!extent_locked) {
struct btrfs_ordered_extent *ordered;
btrfs_release_path(root, path);
lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
ordered = btrfs_lookup_first_ordered_extent(inode,
lock_end);
if (ordered &&
ordered->file_offset <= lock_end &&
ordered->file_offset + ordered->len > lock_start) {
unlock_extent(&BTRFS_I(inode)->io_tree,
lock_start, lock_end, GFP_NOFS);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
key.offset += num_bytes;
goto skip;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
extent_locked = 1;
continue;
}
if (nr_extents == 1) {
/* update extent pointer in place */
btrfs_set_file_extent_disk_bytenr(leaf, fi,
new_extents[0].disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
new_extents[0].disk_num_bytes);
btrfs_mark_buffer_dirty(leaf);
btrfs_drop_extent_cache(inode, key.offset,
key.offset + num_bytes - 1, 0);
ret = btrfs_inc_extent_ref(trans, root,
new_extents[0].disk_bytenr,
new_extents[0].disk_num_bytes,
leaf->start,
root->root_key.objectid,
trans->transid,
key.objectid);
BUG_ON(ret);
ret = btrfs_free_extent(trans, root,
extent_key->objectid,
extent_key->offset,
leaf->start,
btrfs_header_owner(leaf),
btrfs_header_generation(leaf),
key.objectid, 0);
BUG_ON(ret);
btrfs_release_path(root, path);
key.offset += num_bytes;
} else {
BUG_ON(1);
#if 0
u64 alloc_hint;
u64 extent_len;
int i;
/*
* drop old extent pointer at first, then insert the
* new pointers one bye one
*/
btrfs_release_path(root, path);
ret = btrfs_drop_extents(trans, root, inode, key.offset,
key.offset + num_bytes,
key.offset, &alloc_hint);
BUG_ON(ret);
for (i = 0; i < nr_extents; i++) {
if (ext_offset >= new_extents[i].num_bytes) {
ext_offset -= new_extents[i].num_bytes;
continue;
}
extent_len = min(new_extents[i].num_bytes -
ext_offset, num_bytes);
ret = btrfs_insert_empty_item(trans, root,
path, &key,
sizeof(*fi));
BUG_ON(ret);
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_disk_bytenr(leaf, fi,
new_extents[i].disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
new_extents[i].disk_num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi,
new_extents[i].ram_bytes);
btrfs_set_file_extent_compression(leaf, fi,
new_extents[i].compression);
btrfs_set_file_extent_encryption(leaf, fi,
new_extents[i].encryption);
btrfs_set_file_extent_other_encoding(leaf, fi,
new_extents[i].other_encoding);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_len);
ext_offset += new_extents[i].offset;
btrfs_set_file_extent_offset(leaf, fi,
ext_offset);
btrfs_mark_buffer_dirty(leaf);
btrfs_drop_extent_cache(inode, key.offset,
key.offset + extent_len - 1, 0);
ret = btrfs_inc_extent_ref(trans, root,
new_extents[i].disk_bytenr,
new_extents[i].disk_num_bytes,
leaf->start,
root->root_key.objectid,
trans->transid, key.objectid);
BUG_ON(ret);
btrfs_release_path(root, path);
inode_add_bytes(inode, extent_len);
ext_offset = 0;
num_bytes -= extent_len;
key.offset += extent_len;
if (num_bytes == 0)
break;
}
BUG_ON(i >= nr_extents);
#endif
}
if (extent_locked) {
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
extent_locked = 0;
}
skip:
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
key.offset >= first_pos + extent_key->offset)
break;
cond_resched();
}
ret = 0;
out:
btrfs_release_path(root, path);
if (inode) {
mutex_unlock(&inode->i_mutex);
if (extent_locked) {
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
}
iput(inode);
}
return ret;
}
int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf, u64 orig_start)
{
int level;
int ret;
BUG_ON(btrfs_header_generation(buf) != trans->transid);
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
level = btrfs_header_level(buf);
if (level == 0) {
struct btrfs_leaf_ref *ref;
struct btrfs_leaf_ref *orig_ref;
orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
if (!orig_ref)
return -ENOENT;
ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
if (!ref) {
btrfs_free_leaf_ref(root, orig_ref);
return -ENOMEM;
}
ref->nritems = orig_ref->nritems;
memcpy(ref->extents, orig_ref->extents,
sizeof(ref->extents[0]) * ref->nritems);
btrfs_free_leaf_ref(root, orig_ref);
ref->root_gen = trans->transid;
ref->bytenr = buf->start;
ref->owner = btrfs_header_owner(buf);
ref->generation = btrfs_header_generation(buf);
ret = btrfs_add_leaf_ref(root, ref, 0);
WARN_ON(ret);
btrfs_free_leaf_ref(root, ref);
}
return 0;
}
static int noinline invalidate_extent_cache(struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_block_group_cache *group,
struct btrfs_root *target_root)
{
struct btrfs_key key;
struct inode *inode = NULL;
struct btrfs_file_extent_item *fi;
u64 num_bytes;
u64 skip_objectid = 0;
u32 nritems;
u32 i;
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(leaf, &key, i);
if (key.objectid == skip_objectid ||
key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
continue;
if (!inode || inode->i_ino != key.objectid) {
iput(inode);
inode = btrfs_ilookup(target_root->fs_info->sb,
key.objectid, target_root, 1);
}
if (!inode) {
skip_objectid = key.objectid;
continue;
}
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
key.offset + num_bytes - 1, GFP_NOFS);
btrfs_drop_extent_cache(inode, key.offset,
key.offset + num_bytes - 1, 1);
unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
key.offset + num_bytes - 1, GFP_NOFS);
cond_resched();
}
iput(inode);
return 0;
}
static int noinline replace_extents_in_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_block_group_cache *group,
struct inode *reloc_inode)
{
struct btrfs_key key;
struct btrfs_key extent_key;
struct btrfs_file_extent_item *fi;
struct btrfs_leaf_ref *ref;
struct disk_extent *new_extent;
u64 bytenr;
u64 num_bytes;
u32 nritems;
u32 i;
int ext_index;
int nr_extent;
int ret;
new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
BUG_ON(!new_extent);
ref = btrfs_lookup_leaf_ref(root, leaf->start);
BUG_ON(!ref);
ext_index = -1;
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(leaf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
if (bytenr == 0)
continue;
ext_index++;
if (bytenr >= group->key.objectid + group->key.offset ||
bytenr + num_bytes <= group->key.objectid)
continue;
extent_key.objectid = bytenr;
extent_key.offset = num_bytes;
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
nr_extent = 1;
ret = get_new_locations(reloc_inode, &extent_key,
group->key.objectid, 1,
&new_extent, &nr_extent);
if (ret > 0)
continue;
BUG_ON(ret < 0);
BUG_ON(ref->extents[ext_index].bytenr != bytenr);
BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
btrfs_set_file_extent_disk_bytenr(leaf, fi,
new_extent->disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
new_extent->disk_num_bytes);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_inc_extent_ref(trans, root,
new_extent->disk_bytenr,
new_extent->disk_num_bytes,
leaf->start,
root->root_key.objectid,
trans->transid, key.objectid);
BUG_ON(ret);
ret = btrfs_free_extent(trans, root,
bytenr, num_bytes, leaf->start,
btrfs_header_owner(leaf),
btrfs_header_generation(leaf),
key.objectid, 0);
BUG_ON(ret);
cond_resched();
}
kfree(new_extent);
BUG_ON(ext_index + 1 != ref->nritems);
btrfs_free_leaf_ref(root, ref);
return 0;
}
int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
int ret;
if (root->reloc_root) {
reloc_root = root->reloc_root;
root->reloc_root = NULL;
list_add(&reloc_root->dead_list,
&root->fs_info->dead_reloc_roots);
btrfs_set_root_bytenr(&reloc_root->root_item,
reloc_root->node->start);
btrfs_set_root_level(&root->root_item,
btrfs_header_level(reloc_root->node));
memset(&reloc_root->root_item.drop_progress, 0,
sizeof(struct btrfs_disk_key));
reloc_root->root_item.drop_level = 0;
ret = btrfs_update_root(trans, root->fs_info->tree_root,
&reloc_root->root_key,
&reloc_root->root_item);
BUG_ON(ret);
}
return 0;
}
int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *reloc_root;
struct btrfs_root *prev_root = NULL;
struct list_head dead_roots;
int ret;
unsigned long nr;
INIT_LIST_HEAD(&dead_roots);
list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
while (!list_empty(&dead_roots)) {
reloc_root = list_entry(dead_roots.prev,
struct btrfs_root, dead_list);
list_del_init(&reloc_root->dead_list);
BUG_ON(reloc_root->commit_root != NULL);
while (1) {
trans = btrfs_join_transaction(root, 1);
BUG_ON(!trans);
mutex_lock(&root->fs_info->drop_mutex);
ret = btrfs_drop_snapshot(trans, reloc_root);
if (ret != -EAGAIN)
break;
mutex_unlock(&root->fs_info->drop_mutex);
nr = trans->blocks_used;
ret = btrfs_end_transaction(trans, root);
BUG_ON(ret);
btrfs_btree_balance_dirty(root, nr);
}
free_extent_buffer(reloc_root->node);
ret = btrfs_del_root(trans, root->fs_info->tree_root,
&reloc_root->root_key);
BUG_ON(ret);
mutex_unlock(&root->fs_info->drop_mutex);
nr = trans->blocks_used;
ret = btrfs_end_transaction(trans, root);
BUG_ON(ret);
btrfs_btree_balance_dirty(root, nr);
kfree(prev_root);
prev_root = reloc_root;
}
if (prev_root) {
btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
kfree(prev_root);
}
return 0;
}
int btrfs_add_dead_reloc_root(struct btrfs_root *root)
{
list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
return 0;
}
int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
struct btrfs_trans_handle *trans;
struct btrfs_key location;
int found;
int ret;
mutex_lock(&root->fs_info->tree_reloc_mutex);
ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
BUG_ON(ret);
found = !list_empty(&root->fs_info->dead_reloc_roots);
mutex_unlock(&root->fs_info->tree_reloc_mutex);
if (found) {
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
ret = btrfs_commit_transaction(trans, root);
BUG_ON(ret);
}
location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
location.offset = (u64)-1;
location.type = BTRFS_ROOT_ITEM_KEY;
reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
BUG_ON(!reloc_root);
btrfs_orphan_cleanup(reloc_root);
return 0;
}
static int noinline init_reloc_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
struct extent_buffer *eb;
struct btrfs_root_item *root_item;
struct btrfs_key root_key;
int ret;
BUG_ON(!root->ref_cows);
if (root->reloc_root)
return 0;
root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
BUG_ON(!root_item);
ret = btrfs_copy_root(trans, root, root->commit_root,
&eb, BTRFS_TREE_RELOC_OBJECTID);
BUG_ON(ret);
root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
root_key.offset = root->root_key.objectid;
root_key.type = BTRFS_ROOT_ITEM_KEY;
memcpy(root_item, &root->root_item, sizeof(root_item));
btrfs_set_root_refs(root_item, 0);
btrfs_set_root_bytenr(root_item, eb->start);
btrfs_set_root_level(root_item, btrfs_header_level(eb));
btrfs_set_root_generation(root_item, trans->transid);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
&root_key, root_item);
BUG_ON(ret);
kfree(root_item);
reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
&root_key);
BUG_ON(!reloc_root);
reloc_root->last_trans = trans->transid;
reloc_root->commit_root = NULL;
reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
root->reloc_root = reloc_root;
return 0;
}
/*
* Core function of space balance.
*
* The idea is using reloc trees to relocate tree blocks in reference
* counted roots. There is one reloc tree for each subvol, and all
* reloc trees share same root key objectid. Reloc trees are snapshots
* of the latest committed roots of subvols (root->commit_root).
*
* To relocate a tree block referenced by a subvol, there are two steps.
* COW the block through subvol's reloc tree, then update block pointer
* in the subvol to point to the new block. Since all reloc trees share
* same root key objectid, doing special handing for tree blocks owned
* by them is easy. Once a tree block has been COWed in one reloc tree,
* we can use the resulting new block directly when the same block is
* required to COW again through other reloc trees. By this way, relocated
* tree blocks are shared between reloc trees, so they are also shared
* between subvols.
*/
static int noinline relocate_one_path(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *first_key,
struct btrfs_ref_path *ref_path,
struct btrfs_block_group_cache *group,
struct inode *reloc_inode)
{
struct btrfs_root *reloc_root;
struct extent_buffer *eb = NULL;
struct btrfs_key *keys;
u64 *nodes;
int level;
int shared_level;
int lowest_level = 0;
int ret;
if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
lowest_level = ref_path->owner_objectid;
if (!root->ref_cows) {
path->lowest_level = lowest_level;
ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
BUG_ON(ret < 0);
path->lowest_level = 0;
btrfs_release_path(root, path);
return 0;
}
mutex_lock(&root->fs_info->tree_reloc_mutex);
ret = init_reloc_tree(trans, root);
BUG_ON(ret);
reloc_root = root->reloc_root;
shared_level = ref_path->shared_level;
ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
keys = ref_path->node_keys;
nodes = ref_path->new_nodes;
memset(&keys[shared_level + 1], 0,
sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
memset(&nodes[shared_level + 1], 0,
sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
if (nodes[lowest_level] == 0) {
path->lowest_level = lowest_level;
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
0, 1);
BUG_ON(ret);
for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
eb = path->nodes[level];
if (!eb || eb == reloc_root->node)
break;
nodes[level] = eb->start;
if (level == 0)
btrfs_item_key_to_cpu(eb, &keys[level], 0);
else
btrfs_node_key_to_cpu(eb, &keys[level], 0);
}
if (nodes[0] &&
ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
eb = path->nodes[0];
ret = replace_extents_in_leaf(trans, reloc_root, eb,
group, reloc_inode);
BUG_ON(ret);
}
btrfs_release_path(reloc_root, path);
} else {
ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
lowest_level);
BUG_ON(ret);
}
/*
* replace tree blocks in the fs tree with tree blocks in
* the reloc tree.
*/
ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
BUG_ON(ret < 0);
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
0, 0);
BUG_ON(ret);
extent_buffer_get(path->nodes[0]);
eb = path->nodes[0];
btrfs_release_path(reloc_root, path);
ret = invalidate_extent_cache(reloc_root, eb, group, root);
BUG_ON(ret);
free_extent_buffer(eb);
}
mutex_unlock(&root->fs_info->tree_reloc_mutex);
path->lowest_level = 0;
return 0;
}
static int noinline relocate_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *first_key,
struct btrfs_ref_path *ref_path)
{
int ret;
ret = relocate_one_path(trans, root, path, first_key,
ref_path, NULL, NULL);
BUG_ON(ret);
if (root == root->fs_info->extent_root)
btrfs_extent_post_op(trans, root);
return 0;
}
static int noinline del_extent_zero(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_path *path,
struct btrfs_key *extent_key)
{
int ret;
ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
if (ret)
goto out;
ret = btrfs_del_item(trans, extent_root, path);
out:
btrfs_release_path(extent_root, path);
return ret;
}
static struct btrfs_root noinline *read_ref_root(struct btrfs_fs_info *fs_info,
struct btrfs_ref_path *ref_path)
{
struct btrfs_key root_key;
root_key.objectid = ref_path->root_objectid;
root_key.type = BTRFS_ROOT_ITEM_KEY;
if (is_cowonly_root(ref_path->root_objectid))
root_key.offset = 0;
else
root_key.offset = (u64)-1;
return btrfs_read_fs_root_no_name(fs_info, &root_key);
}
static int noinline relocate_one_extent(struct btrfs_root *extent_root,
struct btrfs_path *path,
struct btrfs_key *extent_key,
struct btrfs_block_group_cache *group,
struct inode *reloc_inode, int pass)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *found_root;
struct btrfs_ref_path *ref_path = NULL;
struct disk_extent *new_extents = NULL;
int nr_extents = 0;
int loops;
int ret;
int level;
struct btrfs_key first_key;
u64 prev_block = 0;
trans = btrfs_start_transaction(extent_root, 1);
BUG_ON(!trans);
if (extent_key->objectid == 0) {
ret = del_extent_zero(trans, extent_root, path, extent_key);
goto out;
}
ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
if (!ref_path) {
ret = -ENOMEM;
goto out;
}
for (loops = 0; ; loops++) {
if (loops == 0) {
ret = btrfs_first_ref_path(trans, extent_root, ref_path,
extent_key->objectid);
} else {
ret = btrfs_next_ref_path(trans, extent_root, ref_path);
}
if (ret < 0)
goto out;
if (ret > 0)
break;
if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
continue;
found_root = read_ref_root(extent_root->fs_info, ref_path);
BUG_ON(!found_root);
/*
* for reference counted tree, only process reference paths
* rooted at the latest committed root.
*/
if (found_root->ref_cows &&
ref_path->root_generation != found_root->root_key.offset)
continue;
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
if (pass == 0) {
/*
* copy data extents to new locations
*/
u64 group_start = group->key.objectid;
ret = relocate_data_extent(reloc_inode,
extent_key,
group_start);
if (ret < 0)
goto out;
break;
}
level = 0;
} else {
level = ref_path->owner_objectid;
}
if (prev_block != ref_path->nodes[level]) {
struct extent_buffer *eb;
u64 block_start = ref_path->nodes[level];
u64 block_size = btrfs_level_size(found_root, level);
eb = read_tree_block(found_root, block_start,
block_size, 0);
btrfs_tree_lock(eb);
BUG_ON(level != btrfs_header_level(eb));
if (level == 0)
btrfs_item_key_to_cpu(eb, &first_key, 0);
else
btrfs_node_key_to_cpu(eb, &first_key, 0);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
prev_block = block_start;
}
btrfs_record_root_in_trans(found_root);
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
/*
* try to update data extent references while
* keeping metadata shared between snapshots.
*/
if (pass == 1) {
ret = relocate_one_path(trans, found_root,
path, &first_key, ref_path,
group, reloc_inode);
if (ret < 0)
goto out;
continue;
}
/*
* use fallback method to process the remaining
* references.
*/
if (!new_extents) {
u64 group_start = group->key.objectid;
new_extents = kmalloc(sizeof(*new_extents),
GFP_NOFS);
nr_extents = 1;
ret = get_new_locations(reloc_inode,
extent_key,
group_start, 1,
&new_extents,
&nr_extents);
if (ret)
goto out;
}
ret = replace_one_extent(trans, found_root,
path, extent_key,
&first_key, ref_path,
new_extents, nr_extents);
} else {
ret = relocate_tree_block(trans, found_root, path,
&first_key, ref_path);
}
if (ret < 0)
goto out;
}
ret = 0;
out:
btrfs_end_transaction(trans, extent_root);
kfree(new_extents);
kfree(ref_path);
return ret;
}
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
{
u64 num_devices;
u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
num_devices = root->fs_info->fs_devices->rw_devices;
if (num_devices == 1) {
stripped |= BTRFS_BLOCK_GROUP_DUP;
stripped = flags & ~stripped;
/* turn raid0 into single device chunks */
if (flags & BTRFS_BLOCK_GROUP_RAID0)
return stripped;
/* turn mirroring into duplication */
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
return stripped | BTRFS_BLOCK_GROUP_DUP;
return flags;
} else {
/* they already had raid on here, just return */
if (flags & stripped)
return flags;
stripped |= BTRFS_BLOCK_GROUP_DUP;
stripped = flags & ~stripped;
/* switch duplicated blocks with raid1 */
if (flags & BTRFS_BLOCK_GROUP_DUP)
return stripped | BTRFS_BLOCK_GROUP_RAID1;
/* turn single device chunks into raid0 */
return stripped | BTRFS_BLOCK_GROUP_RAID0;
}
return flags;
}
static int __alloc_chunk_for_shrink(struct btrfs_root *root,
struct btrfs_block_group_cache *shrink_block_group,
int force)
{
struct btrfs_trans_handle *trans;
u64 new_alloc_flags;
u64 calc;
spin_lock(&shrink_block_group->lock);
if (btrfs_block_group_used(&shrink_block_group->item) > 0) {
spin_unlock(&shrink_block_group->lock);
trans = btrfs_start_transaction(root, 1);
spin_lock(&shrink_block_group->lock);
new_alloc_flags = update_block_group_flags(root,
shrink_block_group->flags);
if (new_alloc_flags != shrink_block_group->flags) {
calc =
btrfs_block_group_used(&shrink_block_group->item);
} else {
calc = shrink_block_group->key.offset;
}
spin_unlock(&shrink_block_group->lock);
do_chunk_alloc(trans, root->fs_info->extent_root,
calc + 2 * 1024 * 1024, new_alloc_flags, force);
btrfs_end_transaction(trans, root);
} else
spin_unlock(&shrink_block_group->lock);
return 0;
}
static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 size)
{
struct btrfs_path *path;
struct btrfs_inode_item *item;
struct extent_buffer *leaf;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_insert_empty_inode(trans, root, path, objectid);
if (ret)
goto out;
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
btrfs_set_inode_generation(leaf, item, 1);
btrfs_set_inode_size(leaf, item, size);
btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(root, path);
out:
btrfs_free_path(path);
return ret;
}
static struct inode noinline *create_reloc_inode(struct btrfs_fs_info *fs_info,
struct btrfs_block_group_cache *group)
{
struct inode *inode = NULL;
struct btrfs_trans_handle *trans;
struct btrfs_root *root;
struct btrfs_key root_key;
u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
int err = 0;
root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
root = btrfs_read_fs_root_no_name(fs_info, &root_key);
if (IS_ERR(root))
return ERR_CAST(root);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
if (err)
goto out;
err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
BUG_ON(err);
err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
group->key.offset, 0, group->key.offset,
0, 0, 0);
BUG_ON(err);
inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
if (inode->i_state & I_NEW) {
BTRFS_I(inode)->root = root;
BTRFS_I(inode)->location.objectid = objectid;
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
BTRFS_I(inode)->location.offset = 0;
btrfs_read_locked_inode(inode);
unlock_new_inode(inode);
BUG_ON(is_bad_inode(inode));
} else {
BUG_ON(1);
}
BTRFS_I(inode)->index_cnt = group->key.objectid;
err = btrfs_orphan_add(trans, inode);
out:
btrfs_end_transaction(trans, root);
if (err) {
if (inode)
iput(inode);
inode = ERR_PTR(err);
}
return inode;
}
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
{
struct btrfs_ordered_sum *sums;
struct btrfs_sector_sum *sector_sum;
struct btrfs_ordered_extent *ordered;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct list_head list;
size_t offset;
int ret;
u64 disk_bytenr;
INIT_LIST_HEAD(&list);
ordered = btrfs_lookup_ordered_extent(inode, file_pos);
BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
ret = btrfs_lookup_csums_range(root, disk_bytenr,
disk_bytenr + len - 1, &list);
while (!list_empty(&list)) {
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
list_del_init(&sums->list);
sector_sum = sums->sums;
sums->bytenr = ordered->start;
offset = 0;
while (offset < sums->len) {
sector_sum->bytenr += ordered->start - disk_bytenr;
sector_sum++;
offset += root->sectorsize;
}
btrfs_add_ordered_sum(inode, ordered, sums);
}
btrfs_put_ordered_extent(ordered);
return 0;
}
int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
{
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_fs_info *info = root->fs_info;
struct extent_buffer *leaf;
struct inode *reloc_inode;
struct btrfs_block_group_cache *block_group;
struct btrfs_key key;
u64 skipped;
u64 cur_byte;
u64 total_found;
u32 nritems;
int ret;
int progress;
int pass = 0;
root = root->fs_info->extent_root;
block_group = btrfs_lookup_block_group(info, group_start);
BUG_ON(!block_group);
printk("btrfs relocating block group %llu flags %llu\n",
(unsigned long long)block_group->key.objectid,
(unsigned long long)block_group->flags);
path = btrfs_alloc_path();
BUG_ON(!path);
reloc_inode = create_reloc_inode(info, block_group);
BUG_ON(IS_ERR(reloc_inode));
__alloc_chunk_for_shrink(root, block_group, 1);
set_block_group_readonly(block_group);
btrfs_start_delalloc_inodes(info->tree_root);
btrfs_wait_ordered_extents(info->tree_root, 0);
again:
skipped = 0;
total_found = 0;
progress = 0;
key.objectid = block_group->key.objectid;
key.offset = 0;
key.type = 0;
cur_byte = key.objectid;
trans = btrfs_start_transaction(info->tree_root, 1);
btrfs_commit_transaction(trans, info->tree_root);
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_clean_old_snapshots(info->tree_root);
btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
mutex_unlock(&root->fs_info->cleaner_mutex);
while(1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
next:
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret == 1) {
ret = 0;
break;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid >= block_group->key.objectid +
block_group->key.offset)
break;
if (progress && need_resched()) {
btrfs_release_path(root, path);
cond_resched();
progress = 0;
continue;
}
progress = 1;
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
key.objectid + key.offset <= cur_byte) {
path->slots[0]++;
goto next;
}
total_found++;
cur_byte = key.objectid + key.offset;
btrfs_release_path(root, path);
__alloc_chunk_for_shrink(root, block_group, 0);
ret = relocate_one_extent(root, path, &key, block_group,
reloc_inode, pass);
BUG_ON(ret < 0);
if (ret > 0)
skipped++;
key.objectid = cur_byte;
key.type = 0;
key.offset = 0;
}
btrfs_release_path(root, path);
if (pass == 0) {
btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
WARN_ON(reloc_inode->i_mapping->nrpages);
}
if (total_found > 0) {
printk("btrfs found %llu extents in pass %d\n",
(unsigned long long)total_found, pass);
pass++;
if (total_found == skipped && pass > 2) {
iput(reloc_inode);
reloc_inode = create_reloc_inode(info, block_group);
pass = 0;
}
goto again;
}
/* delete reloc_inode */
iput(reloc_inode);
/* unpin extents in this range */
trans = btrfs_start_transaction(info->tree_root, 1);
btrfs_commit_transaction(trans, info->tree_root);
spin_lock(&block_group->lock);
WARN_ON(block_group->pinned > 0);
WARN_ON(block_group->reserved > 0);
WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
spin_unlock(&block_group->lock);
put_block_group(block_group);
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
static int find_first_block_group(struct btrfs_root *root,
struct btrfs_path *path, struct btrfs_key *key)
{
int ret = 0;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int slot;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret < 0)
goto out;
while(1) {
slot = path->slots[0];
leaf = path->nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid >= key->objectid &&
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
ret = 0;
goto out;
}
path->slots[0]++;
}
ret = -ENOENT;
out:
return ret;
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_block_group_cache *block_group;
struct rb_node *n;
spin_lock(&info->block_group_cache_lock);
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
block_group = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
rb_erase(&block_group->cache_node,
&info->block_group_cache_tree);
spin_unlock(&info->block_group_cache_lock);
btrfs_remove_free_space_cache(block_group);
down_write(&block_group->space_info->groups_sem);
list_del(&block_group->list);
up_write(&block_group->space_info->groups_sem);
WARN_ON(atomic_read(&block_group->count) != 1);
kfree(block_group);
spin_lock(&info->block_group_cache_lock);
}
spin_unlock(&info->block_group_cache_lock);
return 0;
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_space_info *space_info;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf;
root = info->extent_root;
key.objectid = 0;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while(1) {
ret = find_first_block_group(root, path, &key);
if (ret > 0) {
ret = 0;
goto error;
}
if (ret != 0)
goto error;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache) {
ret = -ENOMEM;
break;
}
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
mutex_init(&cache->alloc_mutex);
mutex_init(&cache->cache_mutex);
INIT_LIST_HEAD(&cache->list);
read_extent_buffer(leaf, &cache->item,
btrfs_item_ptr_offset(leaf, path->slots[0]),
sizeof(cache->item));
memcpy(&cache->key, &found_key, sizeof(found_key));
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(root, path);
cache->flags = btrfs_block_group_flags(&cache->item);
ret = update_space_info(info, cache->flags, found_key.offset,
btrfs_block_group_used(&cache->item),
&space_info);
BUG_ON(ret);
cache->space_info = space_info;
down_write(&space_info->groups_sem);
list_add_tail(&cache->list, &space_info->block_groups);
up_write(&space_info->groups_sem);
ret = btrfs_add_block_group_cache(root->fs_info, cache);
BUG_ON(ret);
set_avail_alloc_bits(root->fs_info, cache->flags);
if (btrfs_chunk_readonly(root, cache->key.objectid))
set_block_group_readonly(cache);
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytes_used,
u64 type, u64 chunk_objectid, u64 chunk_offset,
u64 size)
{
int ret;
struct btrfs_root *extent_root;
struct btrfs_block_group_cache *cache;
extent_root = root->fs_info->extent_root;
root->fs_info->last_trans_new_blockgroup = trans->transid;
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache)
return -ENOMEM;
cache->key.objectid = chunk_offset;
cache->key.offset = size;
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
mutex_init(&cache->alloc_mutex);
mutex_init(&cache->cache_mutex);
INIT_LIST_HEAD(&cache->list);
btrfs_set_block_group_used(&cache->item, bytes_used);
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
cache->flags = type;
btrfs_set_block_group_flags(&cache->item, type);
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
&cache->space_info);
BUG_ON(ret);
down_write(&cache->space_info->groups_sem);
list_add_tail(&cache->list, &cache->space_info->block_groups);
up_write(&cache->space_info->groups_sem);
ret = btrfs_add_block_group_cache(root->fs_info, cache);
BUG_ON(ret);
ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
sizeof(cache->item));
BUG_ON(ret);
finish_current_insert(trans, extent_root, 0);
ret = del_pending_extents(trans, extent_root, 0);
BUG_ON(ret);
set_avail_alloc_bits(extent_root->fs_info, type);
return 0;
}
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 group_start)
{
struct btrfs_path *path;
struct btrfs_block_group_cache *block_group;
struct btrfs_key key;
int ret;
root = root->fs_info->extent_root;
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
BUG_ON(!block_group);
BUG_ON(!block_group->ro);
memcpy(&key, &block_group->key, sizeof(key));
path = btrfs_alloc_path();
BUG_ON(!path);
btrfs_remove_free_space_cache(block_group);
rb_erase(&block_group->cache_node,
&root->fs_info->block_group_cache_tree);
down_write(&block_group->space_info->groups_sem);
list_del(&block_group->list);
up_write(&block_group->space_info->groups_sem);
spin_lock(&block_group->space_info->lock);
block_group->space_info->total_bytes -= block_group->key.offset;
block_group->space_info->bytes_readonly -= block_group->key.offset;
spin_unlock(&block_group->space_info->lock);
block_group->space_info->full = 0;
put_block_group(block_group);
put_block_group(block_group);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -EIO;
if (ret < 0)
goto out;
ret = btrfs_del_item(trans, root, path);
out:
btrfs_free_path(path);
return ret;
}