#include <linux/module.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf)
{
struct btrfs_node *node = btrfs_buffer_node(buf);
if (buf->b_blocknr != btrfs_header_blocknr(&node->header)) {
BUG();
}
if (root->node && btrfs_header_parentid(&node->header) !=
btrfs_header_parentid(btrfs_buffer_header(root->node))) {
BUG();
}
return 0;
}
struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr)
{
struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
int blockbits = root->fs_info->sb->s_blocksize_bits;
unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
struct page *page;
struct buffer_head *bh;
struct buffer_head *head;
struct buffer_head *ret = NULL;
page = find_lock_page(mapping, index);
if (!page)
return NULL;
if (!page_has_buffers(page))
goto out_unlock;
head = page_buffers(page);
bh = head;
do {
if (buffer_mapped(bh) && bh->b_blocknr == blocknr) {
ret = bh;
get_bh(bh);
goto out_unlock;
}
bh = bh->b_this_page;
} while (bh != head);
out_unlock:
unlock_page(page);
page_cache_release(page);
return ret;
}
struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root,
u64 blocknr)
{
struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
int blockbits = root->fs_info->sb->s_blocksize_bits;
unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
struct page *page;
struct buffer_head *bh;
struct buffer_head *head;
struct buffer_head *ret = NULL;
u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits);
page = grab_cache_page(mapping, index);
if (!page)
return NULL;
if (!page_has_buffers(page))
create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0);
head = page_buffers(page);
bh = head;
do {
if (!buffer_mapped(bh)) {
bh->b_bdev = root->fs_info->sb->s_bdev;
bh->b_blocknr = first_block;
set_buffer_mapped(bh);
}
if (bh->b_blocknr == blocknr) {
ret = bh;
get_bh(bh);
goto out_unlock;
}
bh = bh->b_this_page;
first_block++;
} while (bh != head);
out_unlock:
unlock_page(page);
page_cache_release(page);
return ret;
}
static sector_t max_block(struct block_device *bdev)
{
sector_t retval = ~((sector_t)0);
loff_t sz = i_size_read(bdev->bd_inode);
if (sz) {
unsigned int size = block_size(bdev);
unsigned int sizebits = blksize_bits(size);
retval = (sz >> sizebits);
}
return retval;
}
static int btree_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
if (iblock >= max_block(inode->i_sb->s_bdev)) {
if (create)
return -EIO;
/*
* for reads, we're just trying to fill a partial page.
* return a hole, they will have to call get_block again
* before they can fill it, and they will get -EIO at that
* time
*/
return 0;
}
bh->b_bdev = inode->i_sb->s_bdev;
bh->b_blocknr = iblock;
set_buffer_mapped(bh);
return 0;
}
static int csum_tree_block(struct btrfs_root * root, struct buffer_head *bh,
int verify)
{
struct btrfs_node *node = btrfs_buffer_node(bh);
struct scatterlist sg;
struct crypto_hash *tfm = root->fs_info->hash_tfm;
struct hash_desc desc;
int ret;
char result[32];
desc.tfm = tfm;
desc.flags = 0;
sg_init_one(&sg, bh->b_data + 32, bh->b_size - 32);
spin_lock(&root->fs_info->hash_lock);
ret = crypto_hash_digest(&desc, &sg, bh->b_size - 32, result);
spin_unlock(&root->fs_info->hash_lock);
if (ret) {
printk("sha256 digest failed\n");
}
if (verify) {
if (memcmp(node->header.csum, result, sizeof(result)))
printk("csum verify failed on %Lu\n", bh->b_blocknr);
return -EINVAL;
} else
memcpy(node->header.csum, result, sizeof(node->header.csum));
return 0;
}
static int btree_writepage(struct page *page, struct writeback_control *wbc)
{
struct buffer_head *bh;
struct btrfs_root *root = btrfs_sb(page->mapping->host->i_sb);
struct buffer_head *head;
if (!page_has_buffers(page)) {
create_empty_buffers(page, root->fs_info->sb->s_blocksize,
(1 << BH_Dirty)|(1 << BH_Uptodate));
}
head = page_buffers(page);
bh = head;
do {
if (buffer_dirty(bh))
csum_tree_block(root, bh, 0);
bh = bh->b_this_page;
} while (bh != head);
return block_write_full_page(page, btree_get_block, wbc);
}
static int btree_readpage(struct file * file, struct page * page)
{
return block_read_full_page(page, btree_get_block);
}
static struct address_space_operations btree_aops = {
.readpage = btree_readpage,
.writepage = btree_writepage,
.sync_page = block_sync_page,
};
struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr)
{
struct buffer_head *bh = NULL;
bh = btrfs_find_create_tree_block(root, blocknr);
if (!bh)
return bh;
lock_buffer(bh);
if (!buffer_uptodate(bh)) {
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
submit_bh(READ, bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
goto fail;
csum_tree_block(root, bh, 1);
} else {
unlock_buffer(bh);
}
if (check_tree_block(root, bh))
BUG();
return bh;
fail:
brelse(bh);
return NULL;
}
int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct buffer_head *buf)
{
mark_buffer_dirty(buf);
return 0;
}
int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct buffer_head *buf)
{
clear_buffer_dirty(buf);
return 0;
}
static int __setup_root(struct btrfs_super_block *super,
struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
root->node = NULL;
root->commit_root = NULL;
root->blocksize = btrfs_super_blocksize(super);
root->ref_cows = 0;
root->fs_info = fs_info;
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
return 0;
}
static int find_and_setup_root(struct btrfs_super_block *super,
struct btrfs_root *tree_root,
struct btrfs_fs_info *fs_info,
u64 objectid,
struct btrfs_root *root)
{
int ret;
__setup_root(super, root, fs_info, objectid);
ret = btrfs_find_last_root(tree_root, objectid,
&root->root_item, &root->root_key);
BUG_ON(ret);
root->node = read_tree_block(root,
btrfs_root_blocknr(&root->root_item));
BUG_ON(!root->node);
return 0;
}
struct btrfs_root *open_ctree(struct super_block *sb,
struct buffer_head *sb_buffer,
struct btrfs_super_block *disk_super)
{
struct btrfs_root *root = kmalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *inode_root = kmalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
GFP_NOFS);
int ret;
if (!btrfs_super_root(disk_super)) {
return NULL;
}
init_bit_radix(&fs_info->pinned_radix);
init_bit_radix(&fs_info->pending_del_radix);
sb_set_blocksize(sb, sb_buffer->b_size);
fs_info->running_transaction = NULL;
fs_info->fs_root = root;
fs_info->tree_root = tree_root;
fs_info->extent_root = extent_root;
fs_info->inode_root = inode_root;
fs_info->last_inode_alloc = 0;
fs_info->last_inode_alloc_dirid = 0;
fs_info->disk_super = disk_super;
fs_info->sb = sb;
fs_info->btree_inode = new_inode(sb);
fs_info->btree_inode->i_ino = 1;
fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
spin_lock_init(&fs_info->hash_lock);
if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) {
printk("failed to allocate sha256 hash\n");
return NULL;
}
mutex_init(&fs_info->trans_mutex);
mutex_init(&fs_info->fs_mutex);
memset(&fs_info->current_insert, 0, sizeof(fs_info->current_insert));
memset(&fs_info->last_insert, 0, sizeof(fs_info->last_insert));
__setup_root(disk_super, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
fs_info->sb_buffer = read_tree_block(tree_root, sb_buffer->b_blocknr);
if (!fs_info->sb_buffer) {
printk("failed2\n");
return NULL;
}
brelse(sb_buffer);
sb_buffer = NULL;
disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data;
fs_info->disk_super = disk_super;
tree_root->node = read_tree_block(tree_root,
btrfs_super_root(disk_super));
BUG_ON(!tree_root->node);
ret = find_and_setup_root(disk_super, tree_root, fs_info,
BTRFS_EXTENT_TREE_OBJECTID, extent_root);
BUG_ON(ret);
ret = find_and_setup_root(disk_super, tree_root, fs_info,
BTRFS_INODE_MAP_OBJECTID, inode_root);
BUG_ON(ret);
ret = find_and_setup_root(disk_super, tree_root, fs_info,
BTRFS_FS_TREE_OBJECTID, root);
BUG_ON(ret);
root->commit_root = root->node;
get_bh(root->node);
root->ref_cows = 1;
root->fs_info->generation = root->root_key.offset + 1;
return root;
}
int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
*root)
{
struct buffer_head *bh = root->fs_info->sb_buffer;
btrfs_set_super_root(root->fs_info->disk_super,
root->fs_info->tree_root->node->b_blocknr);
lock_buffer(bh);
clear_buffer_dirty(bh);
csum_tree_block(root, bh, 0);
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
submit_bh(WRITE, bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
WARN_ON(1);
return -EIO;
}
return 0;
}
int close_ctree(struct btrfs_root *root)
{
int ret;
struct btrfs_trans_handle *trans;
trans = btrfs_start_transaction(root, 1);
btrfs_commit_transaction(trans, root);
/* run commit again to drop the original snapshot */
trans = btrfs_start_transaction(root, 1);
btrfs_commit_transaction(trans, root);
ret = btrfs_write_and_wait_transaction(NULL, root);
BUG_ON(ret);
write_ctree_super(NULL, root);
if (root->node)
btrfs_block_release(root, root->node);
if (root->fs_info->extent_root->node)
btrfs_block_release(root->fs_info->extent_root,
root->fs_info->extent_root->node);
if (root->fs_info->inode_root->node)
btrfs_block_release(root->fs_info->inode_root,
root->fs_info->inode_root->node);
if (root->fs_info->tree_root->node)
btrfs_block_release(root->fs_info->tree_root,
root->fs_info->tree_root->node);
btrfs_block_release(root, root->commit_root);
btrfs_block_release(root, root->fs_info->sb_buffer);
crypto_free_hash(root->fs_info->hash_tfm);
truncate_inode_pages(root->fs_info->btree_inode->i_mapping, 0);
iput(root->fs_info->btree_inode);
kfree(root->fs_info->extent_root);
kfree(root->fs_info->inode_root);
kfree(root->fs_info->tree_root);
kfree(root->fs_info);
kfree(root);
return 0;
}
void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf)
{
brelse(buf);
}