// SPDX-License-Identifier: GPL-2.0
/*
* Code for manipulating bucket marks for garbage collection.
*
* Copyright 2014 Datera, Inc.
*
* Bucket states:
* - free bucket: mark == 0
* The bucket contains no data and will not be read
*
* - allocator bucket: owned_by_allocator == 1
* The bucket is on a free list, or it is an open bucket
*
* - cached bucket: owned_by_allocator == 0 &&
* dirty_sectors == 0 &&
* cached_sectors > 0
* The bucket contains data but may be safely discarded as there are
* enough replicas of the data on other cache devices, or it has been
* written back to the backing device
*
* - dirty bucket: owned_by_allocator == 0 &&
* dirty_sectors > 0
* The bucket contains data that we must not discard (either only copy,
* or one of the 'main copies' for data requiring multiple replicas)
*
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
* This is a btree node, journal or gen/prio bucket
*
* Lifecycle:
*
* bucket invalidated => bucket on freelist => open bucket =>
* [dirty bucket =>] cached bucket => bucket invalidated => ...
*
* Note that cache promotion can skip the dirty bucket step, as data
* is copied from a deeper tier to a shallower tier, onto a cached
* bucket.
* Note also that a cached bucket can spontaneously become dirty --
* see below.
*
* Only a traversal of the key space can determine whether a bucket is
* truly dirty or cached.
*
* Transitions:
*
* - free => allocator: bucket was invalidated
* - cached => allocator: bucket was invalidated
*
* - allocator => dirty: open bucket was filled up
* - allocator => cached: open bucket was filled up
* - allocator => metadata: metadata was allocated
*
* - dirty => cached: dirty sectors were copied to a deeper tier
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
* - cached => free: cached sectors were overwritten
*
* - metadata => free: metadata was freed
*
* Oddities:
* - cached => dirty: a device was removed so formerly replicated data
* is no longer sufficiently replicated
* - free => cached: cannot happen
* - free => dirty: cannot happen
* - free => metadata: cannot happen
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "bset.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "buckets.h"
#include "ec.h"
#include "error.h"
#include "movinggc.h"
#include "replicas.h"
#include "trace.h"
#include <linux/preempt.h>
/*
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
* wraparound:
*/
void bch2_bucket_seq_cleanup(struct bch_fs *c)
{
u64 journal_seq = atomic64_read(&c->journal.seq);
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
struct bch_dev *ca;
struct bucket_array *buckets;
struct bucket *g;
struct bucket_mark m;
unsigned i;
if (journal_seq - c->last_bucket_seq_cleanup <
(1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
return;
c->last_bucket_seq_cleanup = journal_seq;
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets) {
bucket_cmpxchg(g, m, ({
if (!m.journal_seq_valid ||
bucket_needs_journal_commit(m, last_seq_ondisk))
break;
m.journal_seq_valid = 0;
}));
}
up_read(&ca->bucket_lock);
}
}
void bch2_fs_usage_initialize(struct bch_fs *c)
{
struct bch_fs_usage *usage;
unsigned i, nr;
percpu_down_write(&c->mark_lock);
nr = sizeof(struct bch_fs_usage) / sizeof(u64) + c->replicas.nr;
usage = (void *) bch2_acc_percpu_u64s((void *) c->usage[0], nr);
for (i = 0; i < BCH_REPLICAS_MAX; i++)
usage->reserved += usage->persistent_reserved[i];
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
switch (e->data_type) {
case BCH_DATA_BTREE:
case BCH_DATA_USER:
usage->data += usage->replicas[i];
break;
case BCH_DATA_CACHED:
usage->cached += usage->replicas[i];
break;
}
}
percpu_up_write(&c->mark_lock);
}
struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_dev_usage ret;
memset(&ret, 0, sizeof(ret));
acc_u64s_percpu((u64 *) &ret,
(u64 __percpu *) ca->usage[0],
sizeof(ret) / sizeof(u64));
return ret;
}
struct bch_fs_usage *bch2_fs_usage_read(struct bch_fs *c)
{
struct bch_fs_usage *ret;
unsigned nr = READ_ONCE(c->replicas.nr);
retry:
ret = kzalloc(sizeof(*ret) + nr * sizeof(u64), GFP_NOFS);
if (unlikely(!ret))
return NULL;
percpu_down_read(&c->mark_lock);
if (unlikely(nr < c->replicas.nr)) {
nr = c->replicas.nr;
percpu_up_read(&c->mark_lock);
kfree(ret);
goto retry;
}
acc_u64s_percpu((u64 *) ret,
(u64 __percpu *) c->usage[0],
sizeof(*ret) / sizeof(u64) + nr);
return ret;
}
#define RESERVE_FACTOR 6
static u64 reserve_factor(u64 r)
{
return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
}
static u64 avail_factor(u64 r)
{
return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1);
}
u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage *fs_usage)
{
return min(fs_usage->hidden +
fs_usage->data +
reserve_factor(fs_usage->reserved +
fs_usage->online_reserved),
c->capacity);
}
static struct bch_fs_usage_short
__bch2_fs_usage_read_short(struct bch_fs *c)
{
struct bch_fs_usage_short ret;
u64 data, reserved;
ret.capacity = c->capacity -
percpu_u64_get(&c->usage[0]->hidden);
data = percpu_u64_get(&c->usage[0]->data);
reserved = percpu_u64_get(&c->usage[0]->reserved) +
percpu_u64_get(&c->usage[0]->online_reserved);
ret.used = min(ret.capacity, data + reserve_factor(reserved));
ret.free = ret.capacity - ret.used;
ret.nr_inodes = percpu_u64_get(&c->usage[0]->nr_inodes);
return ret;
}
struct bch_fs_usage_short
bch2_fs_usage_read_short(struct bch_fs *c)
{
struct bch_fs_usage_short ret;
percpu_down_read(&c->mark_lock);
ret = __bch2_fs_usage_read_short(c);
percpu_up_read(&c->mark_lock);
return ret;
}
static inline int is_unavailable_bucket(struct bucket_mark m)
{
return !is_available_bucket(m);
}
static inline int is_fragmented_bucket(struct bucket_mark m,
struct bch_dev *ca)
{
if (!m.owned_by_allocator &&
m.data_type == BCH_DATA_USER &&
bucket_sectors_used(m))
return max_t(int, 0, (int) ca->mi.bucket_size -
bucket_sectors_used(m));
return 0;
}
static inline enum bch_data_type bucket_type(struct bucket_mark m)
{
return m.cached_sectors && !m.dirty_sectors
? BCH_DATA_CACHED
: m.data_type;
}
static bool bucket_became_unavailable(struct bucket_mark old,
struct bucket_mark new)
{
return is_available_bucket(old) &&
!is_available_bucket(new);
}
int bch2_fs_usage_apply(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
struct disk_reservation *disk_res)
{
s64 added = fs_usage->data + fs_usage->reserved;
s64 should_not_have_added;
int ret = 0;
percpu_rwsem_assert_held(&c->mark_lock);
/*
* Not allowed to reduce sectors_available except by getting a
* reservation:
*/
should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0);
if (WARN_ONCE(should_not_have_added > 0,
"disk usage increased without a reservation")) {
atomic64_sub(should_not_have_added, &c->sectors_available);
added -= should_not_have_added;
ret = -1;
}
if (added > 0) {
disk_res->sectors -= added;
fs_usage->online_reserved -= added;
}
preempt_disable();
acc_u64s((u64 *) this_cpu_ptr(c->usage[0]),
(u64 *) fs_usage,
sizeof(*fs_usage) / sizeof(u64) + c->replicas.nr);
preempt_enable();
return ret;
}
static inline void account_bucket(struct bch_fs_usage *fs_usage,
struct bch_dev_usage *dev_usage,
enum bch_data_type type,
int nr, s64 size)
{
if (type == BCH_DATA_SB || type == BCH_DATA_JOURNAL)
fs_usage->hidden += size;
dev_usage->buckets[type] += nr;
}
static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
struct bch_fs_usage *fs_usage,
struct bucket_mark old, struct bucket_mark new,
bool gc)
{
struct bch_dev_usage *dev_usage;
percpu_rwsem_assert_held(&c->mark_lock);
bch2_fs_inconsistent_on(old.data_type && new.data_type &&
old.data_type != new.data_type, c,
"different types of data in same bucket: %s, %s",
bch2_data_types[old.data_type],
bch2_data_types[new.data_type]);
preempt_disable();
dev_usage = this_cpu_ptr(ca->usage[gc]);
if (bucket_type(old))
account_bucket(fs_usage, dev_usage, bucket_type(old),
-1, -ca->mi.bucket_size);
if (bucket_type(new))
account_bucket(fs_usage, dev_usage, bucket_type(new),
1, ca->mi.bucket_size);
dev_usage->buckets_alloc +=
(int) new.owned_by_allocator - (int) old.owned_by_allocator;
dev_usage->buckets_ec +=
(int) new.stripe - (int) old.stripe;
dev_usage->buckets_unavailable +=
is_unavailable_bucket(new) - is_unavailable_bucket(old);
dev_usage->sectors[old.data_type] -= old.dirty_sectors;
dev_usage->sectors[new.data_type] += new.dirty_sectors;
dev_usage->sectors[BCH_DATA_CACHED] +=
(int) new.cached_sectors - (int) old.cached_sectors;
dev_usage->sectors_fragmented +=
is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca);
preempt_enable();
if (!is_available_bucket(old) && is_available_bucket(new))
bch2_wake_allocator(ca);
}
void bch2_dev_usage_from_buckets(struct bch_fs *c, struct bch_dev *ca)
{
struct bucket_mark old = { .v.counter = 0 };
struct bch_fs_usage *fs_usage;
struct bucket_array *buckets;
struct bucket *g;
percpu_down_read(&c->mark_lock);
fs_usage = this_cpu_ptr(c->usage[0]);
buckets = bucket_array(ca);
for_each_bucket(g, buckets)
if (g->mark.data_type)
bch2_dev_usage_update(c, ca, fs_usage, old, g->mark, false);
percpu_up_read(&c->mark_lock);
}
#define bucket_data_cmpxchg(c, ca, fs_usage, g, new, expr) \
({ \
struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \
\
bch2_dev_usage_update(c, ca, fs_usage, _old, new, gc); \
_old; \
})
static inline void update_replicas(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
struct bch_replicas_entry *r,
s64 sectors)
{
int idx = bch2_replicas_entry_idx(c, r);
BUG_ON(idx < 0);
BUG_ON(!sectors);
if (r->data_type == BCH_DATA_CACHED)
fs_usage->cached += sectors;
else
fs_usage->data += sectors;
fs_usage->replicas[idx] += sectors;
}
static inline void update_cached_sectors(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
unsigned dev, s64 sectors)
{
struct bch_replicas_padded r;
bch2_replicas_entry_cached(&r.e, dev);
update_replicas(c, fs_usage, &r.e, sectors);
}
#define do_mark_fn(fn, c, pos, flags, ...) \
({ \
int gc, ret = 0; \
\
percpu_rwsem_assert_held(&c->mark_lock); \
\
for (gc = 0; gc < 2 && !ret; gc++) \
if (!gc == !(flags & BCH_BUCKET_MARK_GC) || \
(gc && gc_visited(c, pos))) \
ret = fn(c, __VA_ARGS__, gc); \
ret; \
})
static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, struct bucket_mark *ret,
bool gc)
{
struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
BUG_ON(!is_available_bucket(new));
new.owned_by_allocator = true;
new.dirty = true;
new.data_type = 0;
new.cached_sectors = 0;
new.dirty_sectors = 0;
new.gen++;
}));
if (old.cached_sectors)
update_cached_sectors(c, fs_usage, ca->dev_idx,
-((s64) old.cached_sectors));
if (!gc)
*ret = old;
return 0;
}
void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, struct bucket_mark *old)
{
do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0,
ca, b, old);
if (!old->owned_by_allocator && old->cached_sectors)
trace_invalidate(ca, bucket_to_sector(ca, b),
old->cached_sectors);
}
static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
bool gc)
{
struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
new.owned_by_allocator = owned_by_allocator;
}));
BUG_ON(!gc &&
!owned_by_allocator && !old.owned_by_allocator);
return 0;
}
void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
struct gc_pos pos, unsigned flags)
{
do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags,
ca, b, owned_by_allocator);
}
static int bch2_mark_alloc(struct bch_fs *c, struct bkey_s_c k,
bool inserting,
struct bch_fs_usage *fs_usage,
unsigned journal_seq, unsigned flags,
bool gc)
{
struct bkey_alloc_unpacked u;
struct bch_dev *ca;
struct bucket *g;
struct bucket_mark old, m;
if (!inserting)
return 0;
/*
* alloc btree is read in by bch2_alloc_read, not gc:
*/
if (flags & BCH_BUCKET_MARK_GC)
return 0;
u = bch2_alloc_unpack(bkey_s_c_to_alloc(k).v);
ca = bch_dev_bkey_exists(c, k.k->p.inode);
g = __bucket(ca, k.k->p.offset, gc);
/*
* this should currently only be getting called from the bucket
* invalidate path:
*/
BUG_ON(u.dirty_sectors);
BUG_ON(u.cached_sectors);
BUG_ON(!g->mark.owned_by_allocator);
old = bucket_data_cmpxchg(c, ca, fs_usage, g, m, ({
m.gen = u.gen;
m.data_type = u.data_type;
m.dirty_sectors = u.dirty_sectors;
m.cached_sectors = u.cached_sectors;
}));
g->io_time[READ] = u.read_time;
g->io_time[WRITE] = u.write_time;
g->oldest_gen = u.oldest_gen;
g->gen_valid = 1;
if (old.cached_sectors) {
update_cached_sectors(c, fs_usage, ca->dev_idx,
-old.cached_sectors);
trace_invalidate(ca, bucket_to_sector(ca, k.k->p.offset),
old.cached_sectors);
}
return 0;
}
#define checked_add(a, b) \
do { \
unsigned _res = (unsigned) (a) + (b); \
(a) = _res; \
BUG_ON((a) != _res); \
} while (0)
static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type type,
unsigned sectors, bool gc)
{
struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark new;
BUG_ON(type != BCH_DATA_SB &&
type != BCH_DATA_JOURNAL);
bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
new.dirty = true;
new.data_type = type;
checked_add(new.dirty_sectors, sectors);
}));
return 0;
}
void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type type,
unsigned sectors, struct gc_pos pos,
unsigned flags)
{
BUG_ON(type != BCH_DATA_SB &&
type != BCH_DATA_JOURNAL);
preempt_disable();
if (likely(c)) {
do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags,
ca, b, type, sectors);
} else {
struct bucket *g;
struct bucket_mark new;
rcu_read_lock();
g = bucket(ca, b);
bucket_cmpxchg(g, new, ({
new.dirty = true;
new.data_type = type;
checked_add(new.dirty_sectors, sectors);
}));
rcu_read_unlock();
}
preempt_enable();
}
static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p,
s64 delta)
{
if (delta > 0) {
/*
* marking a new extent, which _will have size_ @delta
*
* in the bch2_mark_update -> BCH_EXTENT_OVERLAP_MIDDLE
* case, we haven't actually created the key we'll be inserting
* yet (for the split) - so we don't want to be using
* k->size/crc.live_size here:
*/
return __ptr_disk_sectors(p, delta);
} else {
BUG_ON(-delta > p.crc.live_size);
return (s64) __ptr_disk_sectors(p, p.crc.live_size + delta) -
(s64) ptr_disk_sectors(p);
}
}
/*
* Checking against gc's position has to be done here, inside the cmpxchg()
* loop, to avoid racing with the start of gc clearing all the marks - GC does
* that with the gc pos seqlock held.
*/
static bool bch2_mark_pointer(struct bch_fs *c,
struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
unsigned journal_seq, unsigned flags,
bool gc)
{
struct bucket_mark old, new;
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
size_t b = PTR_BUCKET_NR(ca, &p.ptr);
struct bucket *g = __bucket(ca, b, gc);
u64 v;
v = atomic64_read(&g->_mark.v);
do {
new.v.counter = old.v.counter = v;
new.dirty = true;
/*
* Check this after reading bucket mark to guard against
* the allocator invalidating a bucket after we've already
* checked the gen
*/
if (gen_after(new.gen, p.ptr.gen)) {
BUG_ON(!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags));
EBUG_ON(!p.ptr.cached &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags));
return true;
}
if (!p.ptr.cached)
checked_add(new.dirty_sectors, sectors);
else
checked_add(new.cached_sectors, sectors);
if (!new.dirty_sectors &&
!new.cached_sectors) {
new.data_type = 0;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
} else {
new.data_type = data_type;
}
if (flags & BCH_BUCKET_MARK_NOATOMIC) {
g->_mark = new;
break;
}
} while ((v = atomic64_cmpxchg(&g->_mark.v,
old.v.counter,
new.v.counter)) != old.v.counter);
bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
BUG_ON(!gc && bucket_became_unavailable(old, new));
return false;
}
static int bch2_mark_stripe_ptr(struct bch_fs *c,
struct bch_extent_stripe_ptr p,
enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
s64 sectors, unsigned flags,
bool gc)
{
struct stripe *m;
unsigned old, new, nr_data;
int blocks_nonempty_delta;
s64 parity_sectors;
BUG_ON(!sectors);
m = genradix_ptr(&c->stripes[gc], p.idx);
spin_lock(&c->ec_stripes_heap_lock);
if (!m || !m->alive) {
spin_unlock(&c->ec_stripes_heap_lock);
bch_err_ratelimited(c, "pointer to nonexistent stripe %llu",
(u64) p.idx);
return -1;
}
BUG_ON(m->r.e.data_type != data_type);
nr_data = m->nr_blocks - m->nr_redundant;
parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data);
if (sectors < 0)
parity_sectors = -parity_sectors;
sectors += parity_sectors;
old = m->block_sectors[p.block];
m->block_sectors[p.block] += sectors;
new = m->block_sectors[p.block];
blocks_nonempty_delta = (int) !!new - (int) !!old;
if (blocks_nonempty_delta) {
m->blocks_nonempty += blocks_nonempty_delta;
if (!gc)
bch2_stripes_heap_update(c, m, p.idx);
}
m->dirty = true;
spin_unlock(&c->ec_stripes_heap_lock);
update_replicas(c, fs_usage, &m->r.e, sectors);
return 0;
}
static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k,
s64 sectors, enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
unsigned journal_seq, unsigned flags,
bool gc)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
struct bch_replicas_padded r;
s64 dirty_sectors = 0;
unsigned i;
int ret;
r.e.data_type = data_type;
r.e.nr_devs = 0;
r.e.nr_required = 1;
BUG_ON(!sectors);
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
s64 disk_sectors = data_type == BCH_DATA_BTREE
? sectors
: ptr_disk_sectors_delta(p, sectors);
bool stale = bch2_mark_pointer(c, p, disk_sectors, data_type,
fs_usage, journal_seq, flags, gc);
if (p.ptr.cached) {
if (disk_sectors && !stale)
update_cached_sectors(c, fs_usage, p.ptr.dev,
disk_sectors);
} else if (!p.ec_nr) {
dirty_sectors += disk_sectors;
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
} else {
for (i = 0; i < p.ec_nr; i++) {
ret = bch2_mark_stripe_ptr(c, p.ec[i],
data_type, fs_usage,
disk_sectors, flags, gc);
if (ret)
return ret;
}
r.e.nr_required = 0;
}
}
if (dirty_sectors)
update_replicas(c, fs_usage, &r.e, dirty_sectors);
return 0;
}
static void bucket_set_stripe(struct bch_fs *c,
const struct bch_stripe *v,
bool enabled,
struct bch_fs_usage *fs_usage,
u64 journal_seq,
bool gc)
{
unsigned i;
for (i = 0; i < v->nr_blocks; i++) {
const struct bch_extent_ptr *ptr = v->ptrs + i;
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
size_t b = PTR_BUCKET_NR(ca, ptr);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark new, old;
BUG_ON(ptr_stale(ca, ptr));
old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({
new.dirty = true;
new.stripe = enabled;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
}));
}
}
static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k,
bool inserting,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags,
bool gc)
{
struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
size_t idx = s.k->p.offset;
struct stripe *m = genradix_ptr(&c->stripes[gc], idx);
unsigned i;
spin_lock(&c->ec_stripes_heap_lock);
if (!m || (!inserting && !m->alive)) {
spin_unlock(&c->ec_stripes_heap_lock);
bch_err_ratelimited(c, "error marking nonexistent stripe %zu",
idx);
return -1;
}
if (m->alive)
bch2_stripes_heap_del(c, m, idx);
memset(m, 0, sizeof(*m));
if (inserting) {
m->sectors = le16_to_cpu(s.v->sectors);
m->algorithm = s.v->algorithm;
m->nr_blocks = s.v->nr_blocks;
m->nr_redundant = s.v->nr_redundant;
memset(&m->r, 0, sizeof(m->r));
m->r.e.data_type = BCH_DATA_USER;
m->r.e.nr_devs = s.v->nr_blocks;
m->r.e.nr_required = s.v->nr_blocks - s.v->nr_redundant;
for (i = 0; i < s.v->nr_blocks; i++)
m->r.e.devs[i] = s.v->ptrs[i].dev;
/*
* XXX: account for stripes somehow here
*/
#if 0
update_replicas(c, fs_usage, &m->r.e, stripe_sectors);
#endif
/* gc recalculates these fields: */
if (!(flags & BCH_BUCKET_MARK_GC)) {
for (i = 0; i < s.v->nr_blocks; i++) {
m->block_sectors[i] =
stripe_blockcount_get(s.v, i);
m->blocks_nonempty += !!m->block_sectors[i];
}
}
if (!gc)
bch2_stripes_heap_insert(c, m, idx);
else
m->alive = true;
}
spin_unlock(&c->ec_stripes_heap_lock);
bucket_set_stripe(c, s.v, inserting, fs_usage, 0, gc);
return 0;
}
static int __bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
bool inserting, s64 sectors,
struct bch_fs_usage *fs_usage,
unsigned journal_seq, unsigned flags,
bool gc)
{
if (!fs_usage || gc)
fs_usage = this_cpu_ptr(c->usage[gc]);
switch (k.k->type) {
case KEY_TYPE_alloc:
return bch2_mark_alloc(c, k, inserting,
fs_usage, journal_seq, flags, gc);
case KEY_TYPE_btree_ptr:
return bch2_mark_extent(c, k, inserting
? c->opts.btree_node_size
: -c->opts.btree_node_size,
BCH_DATA_BTREE,
fs_usage, journal_seq, flags, gc);
case KEY_TYPE_extent:
return bch2_mark_extent(c, k, sectors, BCH_DATA_USER,
fs_usage, journal_seq, flags, gc);
case KEY_TYPE_stripe:
return bch2_mark_stripe(c, k, inserting,
fs_usage, journal_seq, flags, gc);
case KEY_TYPE_inode:
if (inserting)
fs_usage->nr_inodes++;
else
fs_usage->nr_inodes--;
return 0;
case KEY_TYPE_reservation: {
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
sectors *= replicas;
replicas = clamp_t(unsigned, replicas, 1,
ARRAY_SIZE(fs_usage->persistent_reserved));
fs_usage->reserved += sectors;
fs_usage->persistent_reserved[replicas - 1] += sectors;
return 0;
}
default:
return 0;
}
}
int bch2_mark_key_locked(struct bch_fs *c,
struct bkey_s_c k,
bool inserting, s64 sectors,
struct gc_pos pos,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
return do_mark_fn(__bch2_mark_key, c, pos, flags,
k, inserting, sectors, fs_usage,
journal_seq, flags);
}
int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
bool inserting, s64 sectors,
struct gc_pos pos,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
int ret;
percpu_down_read(&c->mark_lock);
ret = bch2_mark_key_locked(c, k, inserting, sectors,
pos, fs_usage, journal_seq, flags);
percpu_up_read(&c->mark_lock);
return ret;
}
void bch2_mark_update(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree *b = iter->l[0].b;
struct btree_node_iter node_iter = iter->l[0].iter;
struct bch_fs_usage *fs_usage;
struct gc_pos pos = gc_pos_btree_node(b);
struct bkey_packed *_k;
u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0;
static int warned_disk_usage = 0;
if (!btree_node_type_needs_gc(iter->btree_id))
return;
percpu_down_read(&c->mark_lock);
preempt_disable();
fs_usage = bch2_fs_usage_get_scratch(c);
if (!(trans->flags & BTREE_INSERT_NOMARK))
bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k), true,
bpos_min(insert->k->k.p, b->key.k.p).offset -
bkey_start_offset(&insert->k->k),
pos, fs_usage, trans->journal_res.seq, 0);
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_discard))) {
struct bkey unpacked;
struct bkey_s_c k;
s64 sectors = 0;
k = bkey_disassemble(b, _k, &unpacked);
if (btree_node_is_extents(b)
? bkey_cmp(insert->k->k.p, bkey_start_pos(k.k)) <= 0
: bkey_cmp(insert->k->k.p, k.k->p))
break;
if (btree_node_is_extents(b)) {
switch (bch2_extent_overlap(&insert->k->k, k.k)) {
case BCH_EXTENT_OVERLAP_ALL:
sectors = -((s64) k.k->size);
break;
case BCH_EXTENT_OVERLAP_BACK:
sectors = bkey_start_offset(&insert->k->k) -
k.k->p.offset;
break;
case BCH_EXTENT_OVERLAP_FRONT:
sectors = bkey_start_offset(k.k) -
insert->k->k.p.offset;
break;
case BCH_EXTENT_OVERLAP_MIDDLE:
sectors = k.k->p.offset - insert->k->k.p.offset;
BUG_ON(sectors <= 0);
bch2_mark_key_locked(c, k, true, sectors,
pos, fs_usage, trans->journal_res.seq, 0);
sectors = bkey_start_offset(&insert->k->k) -
k.k->p.offset;
break;
}
BUG_ON(sectors >= 0);
}
bch2_mark_key_locked(c, k, false, sectors,
pos, fs_usage, trans->journal_res.seq, 0);
bch2_btree_node_iter_advance(&node_iter, b);
}
if (bch2_fs_usage_apply(c, fs_usage, trans->disk_res) &&
!warned_disk_usage &&
!xchg(&warned_disk_usage, 1)) {
char buf[200];
pr_err("disk usage increased more than %llu sectors reserved", disk_res_sectors);
pr_err("while inserting");
bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(insert->k));
pr_err("%s", buf);
pr_err("overlapping with");
node_iter = iter->l[0].iter;
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_discard))) {
struct bkey unpacked;
struct bkey_s_c k;
k = bkey_disassemble(b, _k, &unpacked);
if (btree_node_is_extents(b)
? bkey_cmp(insert->k->k.p, bkey_start_pos(k.k)) <= 0
: bkey_cmp(insert->k->k.p, k.k->p))
break;
bch2_bkey_val_to_text(&PBUF(buf), c, k);
pr_err("%s", buf);
bch2_btree_node_iter_advance(&node_iter, b);
}
}
preempt_enable();
percpu_up_read(&c->mark_lock);
}
/* Disk reservations: */
static u64 bch2_recalc_sectors_available(struct bch_fs *c)
{
percpu_u64_set(&c->pcpu->sectors_available, 0);
return avail_factor(__bch2_fs_usage_read_short(c).free);
}
void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res)
{
percpu_down_read(&c->mark_lock);
this_cpu_sub(c->usage[0]->online_reserved, res->sectors);
percpu_up_read(&c->mark_lock);
res->sectors = 0;
}
#define SECTORS_CACHE 1024
int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
unsigned sectors, int flags)
{
struct bch_fs_pcpu *pcpu;
u64 old, v, get;
s64 sectors_available;
int ret;
percpu_down_read(&c->mark_lock);
preempt_disable();
pcpu = this_cpu_ptr(c->pcpu);
if (sectors <= pcpu->sectors_available)
goto out;
v = atomic64_read(&c->sectors_available);
do {
old = v;
get = min((u64) sectors + SECTORS_CACHE, old);
if (get < sectors) {
preempt_enable();
percpu_up_read(&c->mark_lock);
goto recalculate;
}
} while ((v = atomic64_cmpxchg(&c->sectors_available,
old, old - get)) != old);
pcpu->sectors_available += get;
out:
pcpu->sectors_available -= sectors;
this_cpu_add(c->usage[0]->online_reserved, sectors);
res->sectors += sectors;
preempt_enable();
percpu_up_read(&c->mark_lock);
return 0;
recalculate:
percpu_down_write(&c->mark_lock);
sectors_available = bch2_recalc_sectors_available(c);
if (sectors <= sectors_available ||
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
atomic64_set(&c->sectors_available,
max_t(s64, 0, sectors_available - sectors));
this_cpu_add(c->usage[0]->online_reserved, sectors);
res->sectors += sectors;
ret = 0;
} else {
atomic64_set(&c->sectors_available, sectors_available);
ret = -ENOSPC;
}
percpu_up_write(&c->mark_lock);
return ret;
}
/* Startup/shutdown: */
static void buckets_free_rcu(struct rcu_head *rcu)
{
struct bucket_array *buckets =
container_of(rcu, struct bucket_array, rcu);
kvpfree(buckets,
sizeof(struct bucket_array) +
buckets->nbuckets * sizeof(struct bucket));
}
int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
{
struct bucket_array *buckets = NULL, *old_buckets = NULL;
unsigned long *buckets_nouse = NULL;
unsigned long *buckets_written = NULL;
alloc_fifo free[RESERVE_NR];
alloc_fifo free_inc;
alloc_heap alloc_heap;
copygc_heap copygc_heap;
size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
ca->mi.bucket_size / c->opts.btree_node_size);
/* XXX: these should be tunable */
size_t reserve_none = max_t(size_t, 1, nbuckets >> 9);
size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7);
size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12),
btree_reserve * 2);
bool resize = ca->buckets[0] != NULL,
start_copygc = ca->copygc_thread != NULL;
int ret = -ENOMEM;
unsigned i;
memset(&free, 0, sizeof(free));
memset(&free_inc, 0, sizeof(free_inc));
memset(&alloc_heap, 0, sizeof(alloc_heap));
memset(©gc_heap, 0, sizeof(copygc_heap));
if (!(buckets = kvpmalloc(sizeof(struct bucket_array) +
nbuckets * sizeof(struct bucket),
GFP_KERNEL|__GFP_ZERO)) ||
!(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) *
sizeof(unsigned long),
GFP_KERNEL|__GFP_ZERO)) ||
!(buckets_written = kvpmalloc(BITS_TO_LONGS(nbuckets) *
sizeof(unsigned long),
GFP_KERNEL|__GFP_ZERO)) ||
!init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_MOVINGGC],
copygc_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
!init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) ||
!init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
!init_heap(©gc_heap, copygc_reserve, GFP_KERNEL))
goto err;
buckets->first_bucket = ca->mi.first_bucket;
buckets->nbuckets = nbuckets;
bch2_copygc_stop(ca);
if (resize) {
down_write(&c->gc_lock);
down_write(&ca->bucket_lock);
percpu_down_write(&c->mark_lock);
}
old_buckets = bucket_array(ca);
if (resize) {
size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
memcpy(buckets->b,
old_buckets->b,
n * sizeof(struct bucket));
memcpy(buckets_nouse,
ca->buckets_nouse,
BITS_TO_LONGS(n) * sizeof(unsigned long));
memcpy(buckets_written,
ca->buckets_written,
BITS_TO_LONGS(n) * sizeof(unsigned long));
}
rcu_assign_pointer(ca->buckets[0], buckets);
buckets = old_buckets;
swap(ca->buckets_nouse, buckets_nouse);
swap(ca->buckets_written, buckets_written);
if (resize)
percpu_up_write(&c->mark_lock);
spin_lock(&c->freelist_lock);
for (i = 0; i < RESERVE_NR; i++) {
fifo_move(&free[i], &ca->free[i]);
swap(ca->free[i], free[i]);
}
fifo_move(&free_inc, &ca->free_inc);
swap(ca->free_inc, free_inc);
spin_unlock(&c->freelist_lock);
/* with gc lock held, alloc_heap can't be in use: */
swap(ca->alloc_heap, alloc_heap);
/* and we shut down copygc: */
swap(ca->copygc_heap, copygc_heap);
nbuckets = ca->mi.nbuckets;
if (resize) {
up_write(&ca->bucket_lock);
up_write(&c->gc_lock);
}
if (start_copygc &&
bch2_copygc_start(c, ca))
bch_err(ca, "error restarting copygc thread");
ret = 0;
err:
free_heap(©gc_heap);
free_heap(&alloc_heap);
free_fifo(&free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&free[i]);
kvpfree(buckets_nouse,
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
kvpfree(buckets_written,
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
if (buckets)
call_rcu(&old_buckets->rcu, buckets_free_rcu);
return ret;
}
void bch2_dev_buckets_free(struct bch_dev *ca)
{
unsigned i;
free_heap(&ca->copygc_heap);
free_heap(&ca->alloc_heap);
free_fifo(&ca->free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&ca->free[i]);
kvpfree(ca->buckets_written,
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
kvpfree(ca->buckets_nouse,
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
kvpfree(rcu_dereference_protected(ca->buckets[0], 1),
sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket));
free_percpu(ca->usage[0]);
}
int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
{
if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage)))
return -ENOMEM;
return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
}