/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
#include "btree_cache.h"
#include "btree_locking.h"
#include "btree_update.h"
struct btree_reserve {
struct disk_reservation disk_res;
unsigned nr;
struct btree *b[BTREE_RESERVE_MAX];
};
void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
struct bkey_format *);
/* Btree node freeing/allocation: */
/*
* Tracks a btree node that has been (or is about to be) freed in memory, but
* has _not_ yet been freed on disk (because the write that makes the new
* node(s) visible and frees the old hasn't completed yet)
*/
struct pending_btree_node_free {
bool index_update_done;
__le64 seq;
enum btree_id btree_id;
unsigned level;
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
};
/*
* Tracks an in progress split/rewrite of a btree node and the update to the
* parent node:
*
* When we split/rewrite a node, we do all the updates in memory without
* waiting for any writes to complete - we allocate the new node(s) and update
* the parent node, possibly recursively up to the root.
*
* The end result is that we have one or more new nodes being written -
* possibly several, if there were multiple splits - and then a write (updating
* an interior node) which will make all these new nodes visible.
*
* Additionally, as we split/rewrite nodes we free the old nodes - but the old
* nodes can't be freed (their space on disk can't be reclaimed) until the
* update to the interior node that makes the new node visible completes -
* until then, the old nodes are still reachable on disk.
*
*/
struct btree_update {
struct closure cl;
struct bch_fs *c;
struct list_head list;
/* What kind of update are we doing? */
enum {
BTREE_INTERIOR_NO_UPDATE,
BTREE_INTERIOR_UPDATING_NODE,
BTREE_INTERIOR_UPDATING_ROOT,
BTREE_INTERIOR_UPDATING_AS,
} mode;
unsigned must_rewrite:1;
unsigned nodes_written:1;
enum btree_id btree_id;
struct btree_reserve *reserve;
/*
* BTREE_INTERIOR_UPDATING_NODE:
* The update that made the new nodes visible was a regular update to an
* existing interior node - @b. We can't write out the update to @b
* until the new nodes we created are finished writing, so we block @b
* from writing by putting this btree_interior update on the
* @b->write_blocked list with @write_blocked_list:
*/
struct btree *b;
struct list_head write_blocked_list;
/*
* BTREE_INTERIOR_UPDATING_AS: btree node we updated was freed, so now
* we're now blocking another btree_update
* @parent_as - btree_update that's waiting on our nodes to finish
* writing, before it can make new nodes visible on disk
* @wait - list of child btree_updates that are waiting on this
* btree_update to make all the new nodes visible before they can free
* their old btree nodes
*/
struct btree_update *parent_as;
struct closure_waitlist wait;
/*
* We may be freeing nodes that were dirty, and thus had journal entries
* pinned: we need to transfer the oldest of those pins to the
* btree_update operation, and release it when the new node(s)
* are all persistent and reachable:
*/
struct journal_entry_pin journal;
u64 journal_seq;
/*
* Nodes being freed:
* Protected by c->btree_node_pending_free_lock
*/
struct pending_btree_node_free pending[BTREE_MAX_DEPTH + GC_MERGE_NODES];
unsigned nr_pending;
/* New nodes, that will be made reachable by this update: */
struct btree *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES];
unsigned nr_new_nodes;
/* Only here to reduce stack usage on recursive splits: */
struct keylist parent_keys;
/*
* Enough room for btree_split's keys without realloc - btree node
* pointers never have crc/compression info, so we only need to acount
* for the pointers for three keys
*/
u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
};
#define for_each_pending_btree_node_free(c, as, p) \
list_for_each_entry(as, &c->btree_interior_update_list, list) \
for (p = as->pending; p < as->pending + as->nr_pending; p++)
void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *,
struct btree_iter *);
void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *);
struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
struct btree *,
struct bkey_format);
void bch2_btree_update_done(struct btree_update *);
struct btree_update *
bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned,
unsigned, struct closure *);
void bch2_btree_interior_update_will_free_node(struct btree_update *,
struct btree *);
void bch2_btree_insert_node(struct btree_update *, struct btree *,
struct btree_iter *, struct keylist *,
unsigned);
int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned);
void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *,
unsigned, unsigned, enum btree_node_sibling);
static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c,
struct btree_iter *iter,
unsigned level, unsigned flags,
enum btree_node_sibling sib)
{
struct btree *b;
if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
return;
if (!bch2_btree_node_relock(iter, level))
return;
b = iter->l[level].b;
if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
return;
__bch2_foreground_maybe_merge(c, iter, level, flags, sib);
}
static inline void bch2_foreground_maybe_merge(struct bch_fs *c,
struct btree_iter *iter,
unsigned level,
unsigned flags)
{
bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
btree_prev_sib);
bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
btree_next_sib);
}
void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
static inline unsigned btree_update_reserve_required(struct bch_fs *c,
struct btree *b)
{
unsigned depth = btree_node_root(c, b)->c.level + 1;
/*
* Number of nodes we might have to allocate in a worst case btree
* split operation - we split all the way up to the root, then allocate
* a new root, unless we're already at max depth:
*/
if (depth < BTREE_MAX_DEPTH)
return (depth - b->c.level) * 2 + 1;
else
return (depth - b->c.level) * 2 - 1;
}
static inline void btree_node_reset_sib_u64s(struct btree *b)
{
b->sib_u64s[0] = b->nr.live_u64s;
b->sib_u64s[1] = b->nr.live_u64s;
}
static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
{
return (void *) b->data + btree_bytes(c);
}
static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
struct btree *b)
{
return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
}
static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
struct btree *b)
{
return btree_data_end(c, b);
}
static inline void *write_block(struct btree *b)
{
return (void *) b->data + (b->written << 9);
}
static inline bool __btree_addr_written(struct btree *b, void *p)
{
return p < write_block(b);
}
static inline bool bset_written(struct btree *b, struct bset *i)
{
return __btree_addr_written(b, i);
}
static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
{
return __btree_addr_written(b, k);
}
static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
struct btree *b,
void *end)
{
ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
b->whiteout_u64s +
b->uncompacted_whiteout_u64s;
ssize_t total = c->opts.btree_node_size << 6;
return total - used;
}
static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
struct btree *b)
{
ssize_t remaining = __bch_btree_u64s_remaining(c, b,
btree_bkey_last(b, bset_tree_last(b)));
BUG_ON(remaining < 0);
if (bset_written(b, btree_bset_last(b)))
return 0;
return remaining;
}
static inline unsigned btree_write_set_buffer(struct btree *b)
{
/*
* Could buffer up larger amounts of keys for btrees with larger keys,
* pending benchmarking:
*/
return 4 << 10;
}
static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
struct btree *b)
{
struct bset_tree *t = bset_tree_last(b);
struct btree_node_entry *bne = max(write_block(b),
(void *) btree_bkey_last(b, bset_tree_last(b)));
ssize_t remaining_space =
__bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
if (unlikely(bset_written(b, bset(b, t)))) {
if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
return bne;
} else {
if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
return bne;
}
return NULL;
}
static inline void unreserve_whiteout(struct btree *b, struct bkey_packed *k)
{
if (bkey_written(b, k)) {
EBUG_ON(b->uncompacted_whiteout_u64s <
bkeyp_key_u64s(&b->format, k));
b->uncompacted_whiteout_u64s -=
bkeyp_key_u64s(&b->format, k);
}
}
static inline void reserve_whiteout(struct btree *b, struct bkey_packed *k)
{
if (bkey_written(b, k)) {
BUG_ON(!k->needs_whiteout);
b->uncompacted_whiteout_u64s +=
bkeyp_key_u64s(&b->format, k);
}
}
/*
* write lock must be held on @b (else the dirty bset that we were going to
* insert into could be written out from under us)
*/
static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
struct btree *b, unsigned u64s)
{
if (unlikely(btree_node_fake(b)))
return false;
return u64s <= bch_btree_keys_u64s_remaining(c, b);
}
ssize_t bch2_btree_updates_print(struct bch_fs *, char *);
size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *);
#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */