/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_LOCKING_H
#define _BCACHEFS_BTREE_LOCKING_H
/*
* Only for internal btree use:
*
* The btree iterator tracks what locks it wants to take, and what locks it
* currently has - here we have wrappers for locking/unlocking btree nodes and
* updating the iterator state
*/
#include "btree_iter.h"
#include "six.h"
/* matches six lock types */
enum btree_node_locked_type {
BTREE_NODE_UNLOCKED = -1,
BTREE_NODE_READ_LOCKED = SIX_LOCK_read,
BTREE_NODE_INTENT_LOCKED = SIX_LOCK_intent,
};
static inline int btree_node_locked_type(struct btree_path *path,
unsigned level)
{
/*
* We're relying on the fact that if nodes_intent_locked is set
* nodes_locked must be set as well, so that we can compute without
* branches:
*/
return BTREE_NODE_UNLOCKED +
((path->nodes_locked >> level) & 1) +
((path->nodes_intent_locked >> level) & 1);
}
static inline bool btree_node_intent_locked(struct btree_path *path,
unsigned level)
{
return btree_node_locked_type(path, level) == BTREE_NODE_INTENT_LOCKED;
}
static inline bool btree_node_read_locked(struct btree_path *path,
unsigned level)
{
return btree_node_locked_type(path, level) == BTREE_NODE_READ_LOCKED;
}
static inline bool btree_node_locked(struct btree_path *path, unsigned level)
{
return path->nodes_locked & (1 << level);
}
static inline void mark_btree_node_unlocked(struct btree_path *path,
unsigned level)
{
path->nodes_locked &= ~(1 << level);
path->nodes_intent_locked &= ~(1 << level);
}
static inline void mark_btree_node_locked_noreset(struct btree_trans *trans,
struct btree_path *path,
unsigned level,
enum six_lock_type type)
{
/* relying on this to avoid a branch */
BUILD_BUG_ON(SIX_LOCK_read != 0);
BUILD_BUG_ON(SIX_LOCK_intent != 1);
path->nodes_locked |= 1 << level;
path->nodes_intent_locked |= type << level;
}
static inline void mark_btree_node_locked(struct btree_trans *trans,
struct btree_path *path,
unsigned level,
enum six_lock_type type)
{
mark_btree_node_locked_noreset(trans, path, level, type);
#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS
path->l[level].lock_taken_time = ktime_get_ns();
#endif
}
static inline void mark_btree_node_intent_locked(struct btree_trans *trans,
struct btree_path *path,
unsigned level)
{
mark_btree_node_locked_noreset(trans, path, level, SIX_LOCK_intent);
}
static inline enum six_lock_type __btree_lock_want(struct btree_path *path, int level)
{
return level < path->locks_want
? SIX_LOCK_intent
: SIX_LOCK_read;
}
static inline enum btree_node_locked_type
btree_lock_want(struct btree_path *path, int level)
{
if (level < path->level)
return BTREE_NODE_UNLOCKED;
if (level < path->locks_want)
return BTREE_NODE_INTENT_LOCKED;
if (level == path->level)
return BTREE_NODE_READ_LOCKED;
return BTREE_NODE_UNLOCKED;
}
static inline void btree_node_unlock(struct btree_trans *trans,
struct btree_path *path, unsigned level)
{
int lock_type = btree_node_locked_type(path, level);
EBUG_ON(level >= BTREE_MAX_DEPTH);
if (lock_type != BTREE_NODE_UNLOCKED) {
six_unlock_type(&path->l[level].b->c.lock, lock_type);
#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS
if (trans->lock_name_idx < BCH_LOCK_TIME_NR) {
struct bch_fs *c = trans->c;
__bch2_time_stats_update(&c->lock_held_stats.times[trans->lock_name_idx],
path->l[level].lock_taken_time,
ktime_get_ns());
}
#endif
}
mark_btree_node_unlocked(path, level);
}
static inline void __bch2_btree_path_unlock(struct btree_trans *trans,
struct btree_path *path)
{
btree_path_set_dirty(path, BTREE_ITER_NEED_RELOCK);
while (path->nodes_locked)
btree_node_unlock(trans, path, __ffs(path->nodes_locked));
}
static inline enum bch_time_stats lock_to_time_stat(enum six_lock_type type)
{
switch (type) {
case SIX_LOCK_read:
return BCH_TIME_btree_lock_contended_read;
case SIX_LOCK_intent:
return BCH_TIME_btree_lock_contended_intent;
case SIX_LOCK_write:
return BCH_TIME_btree_lock_contended_write;
default:
BUG();
}
}
static inline int btree_node_lock_type(struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct bpos pos, unsigned level,
enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p)
{
struct bch_fs *c = trans->c;
u64 start_time;
int ret;
if (six_trylock_type(&b->c.lock, type))
return 0;
start_time = local_clock();
trans->locking_path_idx = path->idx;
trans->locking_pos = pos;
trans->locking_btree_id = path->btree_id;
trans->locking_level = level;
trans->locking_lock_type = type;
trans->locking = &b->c;
ret = six_lock_type(&b->c.lock, type, should_sleep_fn, p);
trans->locking = NULL;
if (ret)
return ret;
bch2_time_stats_update(&c->times[lock_to_time_stat(type)], start_time);
return 0;
}
/*
* Lock a btree node if we already have it locked on one of our linked
* iterators:
*/
static inline bool btree_node_lock_increment(struct btree_trans *trans,
struct btree *b, unsigned level,
enum btree_node_locked_type want)
{
struct btree_path *path;
trans_for_each_path(trans, path)
if (path->l[level].b == b &&
btree_node_locked_type(path, level) >= want) {
six_lock_increment(&b->c.lock, want);
return true;
}
return false;
}
int __bch2_btree_node_lock(struct btree_trans *, struct btree_path *,
struct btree *, struct bpos, unsigned,
enum six_lock_type,
six_lock_should_sleep_fn, void *,
unsigned long);
static inline int btree_node_lock(struct btree_trans *trans,
struct btree_path *path,
struct btree *b, struct bpos pos, unsigned level,
enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p,
unsigned long ip)
{
int ret = 0;
EBUG_ON(level >= BTREE_MAX_DEPTH);
EBUG_ON(!(trans->paths_allocated & (1ULL << path->idx)));
if (likely(six_trylock_type(&b->c.lock, type)) ||
btree_node_lock_increment(trans, b, level, type) ||
!(ret = __bch2_btree_node_lock(trans, path, b, pos, level, type,
should_sleep_fn, p, ip))) {
#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS
path->l[b->c.level].lock_taken_time = ktime_get_ns();
#endif
}
return ret;
}
bool __bch2_btree_node_relock(struct btree_trans *, struct btree_path *, unsigned);
static inline bool bch2_btree_node_relock(struct btree_trans *trans,
struct btree_path *path, unsigned level)
{
EBUG_ON(btree_node_locked(path, level) &&
btree_node_locked_type(path, level) !=
__btree_lock_want(path, level));
return likely(btree_node_locked(path, level)) ||
__bch2_btree_node_relock(trans, path, level);
}
/*
* Updates the saved lock sequence number, so that bch2_btree_node_relock() will
* succeed:
*/
static inline void
bch2_btree_node_unlock_write_inlined(struct btree_trans *trans, struct btree_path *path,
struct btree *b)
{
struct btree_path *linked;
EBUG_ON(path->l[b->c.level].b != b);
EBUG_ON(path->l[b->c.level].lock_seq + 1 != b->c.lock.state.seq);
trans_for_each_path_with_node(trans, b, linked)
linked->l[b->c.level].lock_seq += 2;
six_unlock_write(&b->c.lock);
}
void bch2_btree_node_unlock_write(struct btree_trans *,
struct btree_path *, struct btree *);
void __bch2_btree_node_lock_write(struct btree_trans *, struct btree *);
static inline void bch2_btree_node_lock_write(struct btree_trans *trans,
struct btree_path *path,
struct btree *b)
{
EBUG_ON(path->l[b->c.level].b != b);
EBUG_ON(path->l[b->c.level].lock_seq != b->c.lock.state.seq);
EBUG_ON(!btree_node_intent_locked(path, b->c.level));
if (unlikely(!six_trylock_write(&b->c.lock)))
__bch2_btree_node_lock_write(trans, b);
}
static inline void btree_path_set_should_be_locked(struct btree_path *path)
{
EBUG_ON(!btree_node_locked(path, path->level));
EBUG_ON(path->uptodate);
path->should_be_locked = true;
}
static inline void __btree_path_set_level_up(struct btree_trans *trans,
struct btree_path *path,
unsigned l)
{
btree_node_unlock(trans, path, l);
path->l[l].b = ERR_PTR(-BCH_ERR_no_btree_node_up);
}
static inline void btree_path_set_level_up(struct btree_trans *trans,
struct btree_path *path)
{
__btree_path_set_level_up(trans, path, path->level++);
btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
}
#endif /* _BCACHEFS_BTREE_LOCKING_H */