#include "bcachefs.h"
#include "btree_cache.h"
#include "btree_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "error.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "trace.h"
#include <linux/sched/mm.h>
static struct kmem_cache *bch2_key_cache;
static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
const void *obj)
{
const struct bkey_cached *ck = obj;
const struct bkey_cached_key *key = arg->key;
return cmp_int(ck->key.btree_id, key->btree_id) ?:
bpos_cmp(ck->key.pos, key->pos);
}
static const struct rhashtable_params bch2_btree_key_cache_params = {
.head_offset = offsetof(struct bkey_cached, hash),
.key_offset = offsetof(struct bkey_cached, key),
.key_len = sizeof(struct bkey_cached_key),
.obj_cmpfn = bch2_btree_key_cache_cmp_fn,
};
__flatten
inline struct bkey_cached *
bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
{
struct bkey_cached_key key = {
.btree_id = btree_id,
.pos = pos,
};
return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
bch2_btree_key_cache_params);
}
static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
{
if (!six_trylock_intent(&ck->c.lock))
return false;
if (!six_trylock_write(&ck->c.lock)) {
six_unlock_intent(&ck->c.lock);
return false;
}
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
six_unlock_write(&ck->c.lock);
six_unlock_intent(&ck->c.lock);
return false;
}
return true;
}
static void bkey_cached_evict(struct btree_key_cache *c,
struct bkey_cached *ck)
{
BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
bch2_btree_key_cache_params));
memset(&ck->key, ~0, sizeof(ck->key));
atomic_long_dec(&c->nr_keys);
}
static void bkey_cached_free(struct btree_key_cache *bc,
struct bkey_cached *ck)
{
struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
ck->btree_trans_barrier_seq =
start_poll_synchronize_srcu(&c->btree_trans_barrier);
list_move_tail(&ck->list, &bc->freed);
bc->nr_freed++;
kfree(ck->k);
ck->k = NULL;
ck->u64s = 0;
six_unlock_write(&ck->c.lock);
six_unlock_intent(&ck->c.lock);
}
static struct bkey_cached *
bkey_cached_alloc(struct btree_key_cache *c)
{
struct bkey_cached *ck;
ck = kmem_cache_alloc(bch2_key_cache, GFP_NOFS|__GFP_ZERO);
if (likely(ck)) {
INIT_LIST_HEAD(&ck->list);
six_lock_init(&ck->c.lock);
lockdep_set_novalidate_class(&ck->c.lock);
BUG_ON(!six_trylock_intent(&ck->c.lock));
BUG_ON(!six_trylock_write(&ck->c.lock));
return ck;
}
return NULL;
}
static struct bkey_cached *
bkey_cached_reuse(struct btree_key_cache *c)
{
struct bucket_table *tbl;
struct rhash_head *pos;
struct bkey_cached *ck;
unsigned i;
mutex_lock(&c->lock);
list_for_each_entry_reverse(ck, &c->freed, list)
if (bkey_cached_lock_for_evict(ck)) {
c->nr_freed--;
list_del(&ck->list);
mutex_unlock(&c->lock);
return ck;
}
mutex_unlock(&c->lock);
rcu_read_lock();
tbl = rht_dereference_rcu(c->table.tbl, &c->table);
for (i = 0; i < tbl->size; i++)
rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
bkey_cached_lock_for_evict(ck)) {
bkey_cached_evict(c, ck);
rcu_read_unlock();
return ck;
}
}
rcu_read_unlock();
return NULL;
}
static struct bkey_cached *
btree_key_cache_create(struct bch_fs *c,
enum btree_id btree_id,
struct bpos pos)
{
struct btree_key_cache *bc = &c->btree_key_cache;
struct bkey_cached *ck;
bool was_new = true;
ck = bkey_cached_alloc(bc);
if (unlikely(!ck)) {
ck = bkey_cached_reuse(bc);
if (unlikely(!ck)) {
bch_err(c, "error allocating memory for key cache item, btree %s",
bch2_btree_ids[btree_id]);
return ERR_PTR(-ENOMEM);
}
was_new = false;
}
if (btree_id == BTREE_ID_subvolumes)
six_lock_pcpu_alloc(&ck->c.lock);
else
six_lock_pcpu_free(&ck->c.lock);
ck->c.level = 0;
ck->c.btree_id = btree_id;
ck->key.btree_id = btree_id;
ck->key.pos = pos;
ck->valid = false;
ck->flags = 1U << BKEY_CACHED_ACCESSED;
if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
&ck->hash,
bch2_btree_key_cache_params))) {
/* We raced with another fill: */
if (likely(was_new)) {
six_unlock_write(&ck->c.lock);
six_unlock_intent(&ck->c.lock);
kfree(ck);
} else {
mutex_lock(&bc->lock);
bkey_cached_free(bc, ck);
mutex_unlock(&bc->lock);
}
return NULL;
}
atomic_long_inc(&bc->nr_keys);
six_unlock_write(&ck->c.lock);
return ck;
}
static int btree_key_cache_fill(struct btree_trans *trans,
struct btree_path *ck_path,
struct bkey_cached *ck)
{
struct btree_path *path;
struct bkey_s_c k;
unsigned new_u64s = 0;
struct bkey_i *new_k = NULL;
struct bkey u;
int ret;
path = bch2_path_get(trans, ck->key.btree_id, ck->key.pos, 0, 0, 0);
ret = bch2_btree_path_traverse(trans, path, 0);
if (ret)
goto err;
k = bch2_btree_path_peek_slot(path, &u);
if (!bch2_btree_node_relock(trans, ck_path, 0)) {
trace_trans_restart_relock_key_cache_fill(trans->fn,
_THIS_IP_, ck_path->btree_id, &ck_path->pos);
ret = btree_trans_restart(trans);
goto err;
}
/*
* bch2_varint_decode can read past the end of the buffer by at
* most 7 bytes (it won't be used):
*/
new_u64s = k.k->u64s + 1;
if (new_u64s > ck->u64s) {
new_u64s = roundup_pow_of_two(new_u64s);
new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOFS);
if (!new_k) {
bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
bch2_btree_ids[ck->key.btree_id], new_u64s);
ret = -ENOMEM;
goto err;
}
}
/*
* XXX: not allowed to be holding read locks when we take a write lock,
* currently
*/
bch2_btree_node_lock_write(trans, ck_path, ck_path->l[0].b);
if (new_k) {
kfree(ck->k);
ck->u64s = new_u64s;
ck->k = new_k;
}
bkey_reassemble(ck->k, k);
ck->valid = true;
bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
/* We're not likely to need this iterator again: */
path->preserve = false;
err:
bch2_path_put(trans, path, 0);
return ret;
}
static int bkey_cached_check_fn(struct six_lock *lock, void *p)
{
struct bkey_cached *ck = container_of(lock, struct bkey_cached, c.lock);
const struct btree_path *path = p;
return ck->key.btree_id == path->btree_id &&
!bpos_cmp(ck->key.pos, path->pos) ? 0 : -1;
}
__flatten
int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct bkey_cached *ck;
int ret = 0;
BUG_ON(path->level);
path->l[1].b = NULL;
if (bch2_btree_node_relock(trans, path, 0)) {
ck = (void *) path->l[0].b;
goto fill;
}
retry:
ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
if (!ck) {
if (flags & BTREE_ITER_CACHED_NOCREATE) {
path->l[0].b = NULL;
return 0;
}
ck = btree_key_cache_create(c, path->btree_id, path->pos);
ret = PTR_ERR_OR_ZERO(ck);
if (ret)
goto err;
if (!ck)
goto retry;
mark_btree_node_locked(path, 0, SIX_LOCK_intent);
path->locks_want = 1;
} else {
enum six_lock_type lock_want = __btree_lock_want(path, 0);
if (!btree_node_lock(trans, path, (void *) ck, path->pos, 0,
lock_want,
bkey_cached_check_fn, path, _THIS_IP_)) {
if (!trans->restarted)
goto retry;
ret = -EINTR;
goto err;
}
if (ck->key.btree_id != path->btree_id ||
bpos_cmp(ck->key.pos, path->pos)) {
six_unlock_type(&ck->c.lock, lock_want);
goto retry;
}
mark_btree_node_locked(path, 0, lock_want);
}
path->l[0].lock_seq = ck->c.lock.state.seq;
path->l[0].b = (void *) ck;
fill:
if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
if (!path->locks_want &&
!__bch2_btree_path_upgrade(trans, path, 1)) {
trace_transaction_restart_ip(trans->fn, _THIS_IP_);
ret = btree_trans_restart(trans);
goto err;
}
ret = btree_key_cache_fill(trans, path, ck);
if (ret)
goto err;
}
if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
path->uptodate = BTREE_ITER_UPTODATE;
BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
return ret;
err:
if (ret != -EINTR) {
btree_node_unlock(path, 0);
path->l[0].b = BTREE_ITER_NO_NODE_ERROR;
}
return ret;
}
static int btree_key_cache_flush_pos(struct btree_trans *trans,
struct bkey_cached_key key,
u64 journal_seq,
unsigned commit_flags,
bool evict)
{
struct bch_fs *c = trans->c;
struct journal *j = &c->journal;
struct btree_iter c_iter, b_iter;
struct bkey_cached *ck = NULL;
int ret;
bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
BTREE_ITER_SLOTS|
BTREE_ITER_INTENT|
BTREE_ITER_ALL_SNAPSHOTS);
bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
BTREE_ITER_CACHED|
BTREE_ITER_CACHED_NOFILL|
BTREE_ITER_CACHED_NOCREATE|
BTREE_ITER_INTENT);
b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
ret = bch2_btree_iter_traverse(&c_iter);
if (ret)
goto out;
ck = (void *) c_iter.path->l[0].b;
if (!ck)
goto out;
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
if (evict)
goto evict;
goto out;
}
BUG_ON(!ck->valid);
if (journal_seq && ck->journal.seq != journal_seq)
goto out;
/*
* Since journal reclaim depends on us making progress here, and the
* allocator/copygc depend on journal reclaim making progress, we need
* to be using alloc reserves:
* */
ret = bch2_btree_iter_traverse(&b_iter) ?:
bch2_trans_update(trans, &b_iter, ck->k,
BTREE_UPDATE_KEY_CACHE_RECLAIM|
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
BTREE_TRIGGER_NORUN) ?:
bch2_trans_commit(trans, NULL, NULL,
BTREE_INSERT_NOCHECK_RW|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE|
(ck->journal.seq == journal_last_seq(j)
? BTREE_INSERT_JOURNAL_RESERVED
: 0)|
commit_flags);
if (ret) {
bch2_fs_fatal_err_on(ret != -EINTR &&
ret != -EAGAIN &&
!bch2_journal_error(j), c,
"error flushing key cache: %i", ret);
goto out;
}
bch2_journal_pin_drop(j, &ck->journal);
bch2_journal_preres_put(j, &ck->res);
BUG_ON(!btree_node_locked(c_iter.path, 0));
if (!evict) {
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
atomic_long_dec(&c->btree_key_cache.nr_dirty);
}
} else {
evict:
BUG_ON(!btree_node_intent_locked(c_iter.path, 0));
mark_btree_node_unlocked(c_iter.path, 0);
c_iter.path->l[0].b = NULL;
six_lock_write(&ck->c.lock, NULL, NULL);
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
atomic_long_dec(&c->btree_key_cache.nr_dirty);
}
bkey_cached_evict(&c->btree_key_cache, ck);
mutex_lock(&c->btree_key_cache.lock);
bkey_cached_free(&c->btree_key_cache, ck);
mutex_unlock(&c->btree_key_cache.lock);
}
out:
bch2_trans_iter_exit(trans, &b_iter);
bch2_trans_iter_exit(trans, &c_iter);
return ret;
}
int bch2_btree_key_cache_journal_flush(struct journal *j,
struct journal_entry_pin *pin, u64 seq)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct bkey_cached *ck =
container_of(pin, struct bkey_cached, journal);
struct bkey_cached_key key;
int ret = 0;
int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
six_lock_read(&ck->c.lock, NULL, NULL);
key = ck->key;
if (ck->journal.seq != seq ||
!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
six_unlock_read(&ck->c.lock);
goto unlock;
}
if (ck->seq != seq) {
bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
bch2_btree_key_cache_journal_flush);
six_unlock_read(&ck->c.lock);
goto unlock;
}
six_unlock_read(&ck->c.lock);
ret = bch2_trans_do(c, NULL, NULL, 0,
btree_key_cache_flush_pos(&trans, key, seq,
BTREE_INSERT_JOURNAL_RECLAIM, false));
unlock:
srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
return ret;
}
/*
* Flush and evict a key from the key cache:
*/
int bch2_btree_key_cache_flush(struct btree_trans *trans,
enum btree_id id, struct bpos pos)
{
struct bch_fs *c = trans->c;
struct bkey_cached_key key = { id, pos };
/* Fastpath - assume it won't be found: */
if (!bch2_btree_key_cache_find(c, id, pos))
return 0;
return btree_key_cache_flush_pos(trans, key, 0, 0, true);
}
bool bch2_btree_insert_key_cached(struct btree_trans *trans,
struct btree_path *path,
struct bkey_i *insert)
{
struct bch_fs *c = trans->c;
struct bkey_cached *ck = (void *) path->l[0].b;
bool kick_reclaim = false;
BUG_ON(insert->u64s > ck->u64s);
if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) {
int difference;
BUG_ON(jset_u64s(insert->u64s) > trans->journal_preres.u64s);
difference = jset_u64s(insert->u64s) - ck->res.u64s;
if (difference > 0) {
trans->journal_preres.u64s -= difference;
ck->res.u64s += difference;
}
}
bkey_copy(ck->k, insert);
ck->valid = true;
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
set_bit(BKEY_CACHED_DIRTY, &ck->flags);
atomic_long_inc(&c->btree_key_cache.nr_dirty);
if (bch2_nr_btree_keys_need_flush(c))
kick_reclaim = true;
}
bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
&ck->journal, bch2_btree_key_cache_journal_flush);
ck->seq = trans->journal_res.seq;
if (kick_reclaim)
journal_reclaim_kick(&c->journal);
return true;
}
void bch2_btree_key_cache_drop(struct btree_trans *trans,
struct btree_path *path)
{
struct bkey_cached *ck = (void *) path->l[0].b;
ck->valid = false;
BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
}
static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct bch_fs *c = container_of(shrink, struct bch_fs,
btree_key_cache.shrink);
struct btree_key_cache *bc = &c->btree_key_cache;
struct bucket_table *tbl;
struct bkey_cached *ck, *t;
size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
unsigned start, flags;
int srcu_idx;
/* Return -1 if we can't do anything right now */
if (sc->gfp_mask & __GFP_FS)
mutex_lock(&bc->lock);
else if (!mutex_trylock(&bc->lock))
return -1;
srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
flags = memalloc_nofs_save();
/*
* Newest freed entries are at the end of the list - once we hit one
* that's too new to be freed, we can bail out:
*/
list_for_each_entry_safe(ck, t, &bc->freed, list) {
if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
ck->btree_trans_barrier_seq))
break;
list_del(&ck->list);
kmem_cache_free(bch2_key_cache, ck);
bc->nr_freed--;
scanned++;
freed++;
}
if (scanned >= nr)
goto out;
rcu_read_lock();
tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
if (bc->shrink_iter >= tbl->size)
bc->shrink_iter = 0;
start = bc->shrink_iter;
do {
struct rhash_head *pos, *next;
pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
while (!rht_is_a_nulls(pos)) {
next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
ck = container_of(pos, struct bkey_cached, hash);
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
goto next;
if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
else if (bkey_cached_lock_for_evict(ck)) {
bkey_cached_evict(bc, ck);
bkey_cached_free(bc, ck);
}
scanned++;
if (scanned >= nr)
break;
next:
pos = next;
}
bc->shrink_iter++;
if (bc->shrink_iter >= tbl->size)
bc->shrink_iter = 0;
} while (scanned < nr && bc->shrink_iter != start);
rcu_read_unlock();
out:
memalloc_nofs_restore(flags);
srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
mutex_unlock(&bc->lock);
return freed;
}
static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct bch_fs *c = container_of(shrink, struct bch_fs,
btree_key_cache.shrink);
struct btree_key_cache *bc = &c->btree_key_cache;
long nr = atomic_long_read(&bc->nr_keys) -
atomic_long_read(&bc->nr_dirty);
return max(0L, nr);
}
void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
{
struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
struct bucket_table *tbl;
struct bkey_cached *ck, *n;
struct rhash_head *pos;
unsigned i;
if (bc->shrink.list.next)
unregister_shrinker(&bc->shrink);
mutex_lock(&bc->lock);
rcu_read_lock();
tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
if (tbl)
for (i = 0; i < tbl->size; i++)
rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
bkey_cached_evict(bc, ck);
list_add(&ck->list, &bc->freed);
}
rcu_read_unlock();
list_for_each_entry_safe(ck, n, &bc->freed, list) {
cond_resched();
bch2_journal_pin_drop(&c->journal, &ck->journal);
bch2_journal_preres_put(&c->journal, &ck->res);
list_del(&ck->list);
kfree(ck->k);
kmem_cache_free(bch2_key_cache, ck);
}
BUG_ON(atomic_long_read(&bc->nr_dirty) &&
!bch2_journal_error(&c->journal) &&
test_bit(BCH_FS_WAS_RW, &c->flags));
BUG_ON(atomic_long_read(&bc->nr_keys));
mutex_unlock(&bc->lock);
if (bc->table_init_done)
rhashtable_destroy(&bc->table);
}
void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
{
mutex_init(&c->lock);
INIT_LIST_HEAD(&c->freed);
}
int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
{
struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
int ret;
ret = rhashtable_init(&bc->table, &bch2_btree_key_cache_params);
if (ret)
return ret;
bc->table_init_done = true;
bc->shrink.seeks = 1;
bc->shrink.count_objects = bch2_btree_key_cache_count;
bc->shrink.scan_objects = bch2_btree_key_cache_scan;
return register_shrinker(&bc->shrink, "%s/btree_key_cache", c->name);
}
void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
{
pr_buf(out, "nr_freed:\t%zu\n", c->nr_freed);
pr_buf(out, "nr_keys:\t%zu\n", atomic_long_read(&c->nr_keys));
pr_buf(out, "nr_dirty:\t%zu\n", atomic_long_read(&c->nr_dirty));
}
void bch2_btree_key_cache_exit(void)
{
if (bch2_key_cache)
kmem_cache_destroy(bch2_key_cache);
}
int __init bch2_btree_key_cache_init(void)
{
bch2_key_cache = KMEM_CACHE(bkey_cached, 0);
if (!bch2_key_cache)
return -ENOMEM;
return 0;
}