summaryrefslogblamecommitdiff
path: root/fs/bcachefs/btree_gc.c
blob: 2526118fe9ce51c754106432e8fab67686df9e34 (plain) (tree)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045




























































































































                                                                                                  

                                                            




                                                                   
                                                                        





















































































                                                                                      













































































































                                                                                




                                                                                


                                                 

                                  


























                                                                               

                                 































                                                                              

                                                              



























































































                                                                                            

                                                            













































































                                                                                






















































































































































































































































































































































































































































































                                                                                 




























































                                                                               
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright (C) 2014 Datera Inc.
 */

#include "bcachefs.h"
#include "alloc.h"
#include "bkey_methods.h"
#include "btree_locking.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"

#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>

struct range_checks {
	struct range_level {
		struct bpos	min;
		struct bpos	max;
	}			l[BTREE_MAX_DEPTH];
	unsigned		depth;
};

static void btree_node_range_checks_init(struct range_checks *r, unsigned depth)
{
	unsigned i;

	for (i = 0; i < BTREE_MAX_DEPTH; i++)
		r->l[i].min = r->l[i].max = POS_MIN;
	r->depth = depth;
}

static void btree_node_range_checks(struct bch_fs *c, struct btree *b,
				    struct range_checks *r)
{
	struct range_level *l = &r->l[b->level];

	struct bpos expected_min = bkey_cmp(l->min, l->max)
		? btree_type_successor(b->btree_id, l->max)
		: l->max;

	bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c,
		"btree node has incorrect min key: %llu:%llu != %llu:%llu",
		b->data->min_key.inode,
		b->data->min_key.offset,
		expected_min.inode,
		expected_min.offset);

	l->max = b->data->max_key;

	if (b->level > r->depth) {
		l = &r->l[b->level - 1];

		bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c,
			"btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu",
			b->data->min_key.inode,
			b->data->min_key.offset,
			l->min.inode,
			l->min.offset);

		bch2_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c,
			"btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu",
			b->data->max_key.inode,
			b->data->max_key.offset,
			l->max.inode,
			l->max.offset);

		if (bkey_cmp(b->data->max_key, POS_MAX))
			l->min = l->max =
				btree_type_successor(b->btree_id,
						     b->data->max_key);
	}
}

u8 bch2_btree_key_recalc_oldest_gen(struct bch_fs *c, struct bkey_s_c k)
{
	const struct bch_extent_ptr *ptr;
	u8 max_stale = 0;

	if (bkey_extent_is_data(k.k)) {
		struct bkey_s_c_extent e = bkey_s_c_to_extent(k);

		extent_for_each_ptr(e, ptr) {
			struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
			size_t b = PTR_BUCKET_NR(ca, ptr);

			if (gen_after(ca->oldest_gens[b], ptr->gen))
				ca->oldest_gens[b] = ptr->gen;

			max_stale = max(max_stale, ptr_stale(ca, ptr));
		}
	}

	return max_stale;
}

/*
 * For runtime mark and sweep:
 */
static u8 bch2_gc_mark_key(struct bch_fs *c, enum bkey_type type,
			   struct bkey_s_c k, unsigned flags)
{
	struct gc_pos pos = { 0 };
	u8 ret = 0;

	switch (type) {
	case BKEY_TYPE_BTREE:
		bch2_mark_key(c, k, c->opts.btree_node_size,
			      BCH_DATA_BTREE, pos, NULL,
			      0, flags|
			      BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
			      BCH_BUCKET_MARK_GC_LOCK_HELD);
		break;
	case BKEY_TYPE_EXTENTS:
		bch2_mark_key(c, k, k.k->size, BCH_DATA_USER, pos, NULL,
			      0, flags|
			      BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
			      BCH_BUCKET_MARK_GC_LOCK_HELD);
		ret = bch2_btree_key_recalc_oldest_gen(c, k);
		break;
	default:
		BUG();
	}

	return ret;
}

int bch2_btree_mark_key_initial(struct bch_fs *c, enum bkey_type type,
				struct bkey_s_c k)
{
	enum bch_data_type data_type = type == BKEY_TYPE_BTREE
		? BCH_DATA_BTREE : BCH_DATA_USER;
	int ret = 0;

	BUG_ON(journal_seq_verify(c) &&
	       k.k->version.lo > journal_cur_seq(&c->journal));

	if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
	    fsck_err_on(!bch2_bkey_replicas_marked(c, data_type, k), c,
			"superblock not marked as containing replicas (type %u)",
			data_type)) {
		ret = bch2_mark_bkey_replicas(c, data_type, k);
		if (ret)
			return ret;
	}

	switch (k.k->type) {
	case BCH_EXTENT:
	case BCH_EXTENT_CACHED: {
		struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
		const struct bch_extent_ptr *ptr;

		extent_for_each_ptr(e, ptr) {
			struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
			size_t b = PTR_BUCKET_NR(ca, ptr);
			struct bucket *g = PTR_BUCKET(ca, ptr);

			if (mustfix_fsck_err_on(!g->mark.gen_valid, c,
					"found ptr with missing gen in alloc btree,\n"
					"type %s gen %u",
					bch2_data_types[data_type],
					ptr->gen)) {
				g->_mark.gen = ptr->gen;
				g->_mark.gen_valid = 1;
				set_bit(b, ca->buckets_dirty);
			}

			if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c,
					"%s ptr gen in the future: %u > %u",
					bch2_data_types[data_type],
					ptr->gen, g->mark.gen)) {
				g->_mark.gen = ptr->gen;
				g->_mark.gen_valid = 1;
				set_bit(b, ca->buckets_dirty);
				set_bit(BCH_FS_FIXED_GENS, &c->flags);
			}

		}
		break;
	}
	}

	atomic64_set(&c->key_version,
		     max_t(u64, k.k->version.lo,
			   atomic64_read(&c->key_version)));

	bch2_gc_mark_key(c, type, k, BCH_BUCKET_MARK_NOATOMIC);
fsck_err:
	return ret;
}

static unsigned btree_gc_mark_node(struct bch_fs *c, struct btree *b)
{
	enum bkey_type type = btree_node_type(b);
	struct btree_node_iter iter;
	struct bkey unpacked;
	struct bkey_s_c k;
	u8 stale = 0;

	if (btree_node_has_ptrs(b))
		for_each_btree_node_key_unpack(b, k, &iter,
					       &unpacked) {
			bch2_bkey_debugcheck(c, b, k);
			stale = max(stale, bch2_gc_mark_key(c, type, k, 0));
		}

	return stale;
}

static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
	preempt_disable();
	write_seqcount_begin(&c->gc_pos_lock);
	c->gc_pos = new_pos;
	write_seqcount_end(&c->gc_pos_lock);
	preempt_enable();
}

static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
	BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
	__gc_pos_set(c, new_pos);
}

static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id)
{
	struct btree_iter iter;
	struct btree *b;
	struct range_checks r;
	unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1;
	unsigned max_stale;
	int ret = 0;

	gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));

	if (!c->btree_roots[btree_id].b)
		return 0;

	/*
	 * if expensive_debug_checks is on, run range_checks on all leaf nodes:
	 */
	if (expensive_debug_checks(c))
		depth = 0;

	btree_node_range_checks_init(&r, depth);

	__for_each_btree_node(&iter, c, btree_id, POS_MIN,
			      0, depth, BTREE_ITER_PREFETCH, b) {
		btree_node_range_checks(c, b, &r);

		bch2_verify_btree_nr_keys(b);

		max_stale = btree_gc_mark_node(c, b);

		gc_pos_set(c, gc_pos_btree_node(b));

		if (max_stale > 64)
			bch2_btree_node_rewrite(c, &iter,
					b->data->keys.seq,
					BTREE_INSERT_USE_RESERVE|
					BTREE_INSERT_NOWAIT|
					BTREE_INSERT_GC_LOCK_HELD);
		else if (!btree_gc_rewrite_disabled(c) &&
			 (btree_gc_always_rewrite(c) || max_stale > 16))
			bch2_btree_node_rewrite(c, &iter,
					b->data->keys.seq,
					BTREE_INSERT_NOWAIT|
					BTREE_INSERT_GC_LOCK_HELD);

		bch2_btree_iter_cond_resched(&iter);
	}
	ret = bch2_btree_iter_unlock(&iter);
	if (ret)
		return ret;

	mutex_lock(&c->btree_root_lock);

	b = c->btree_roots[btree_id].b;
	if (!btree_node_fake(b))
		bch2_gc_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key), 0);
	gc_pos_set(c, gc_pos_btree_root(b->btree_id));

	mutex_unlock(&c->btree_root_lock);
	return 0;
}

static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
				  u64 start, u64 end,
				  enum bch_data_type type,
				  unsigned flags)
{
	u64 b = sector_to_bucket(ca, start);

	do {
		unsigned sectors =
			min_t(u64, bucket_to_sector(ca, b + 1), end) - start;

		bch2_mark_metadata_bucket(c, ca, b, type, sectors,
					  gc_phase(GC_PHASE_SB), flags);
		b++;
		start += sectors;
	} while (start < end);
}

void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
			      unsigned flags)
{
	struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
	unsigned i;
	u64 b;

	/*
	 * This conditional is kind of gross, but we may be called from the
	 * device add path, before the new device has actually been added to the
	 * running filesystem:
	 */
	if (c) {
		lockdep_assert_held(&c->sb_lock);
		percpu_down_read(&c->usage_lock);
	} else {
		preempt_disable();
	}

	for (i = 0; i < layout->nr_superblocks; i++) {
		u64 offset = le64_to_cpu(layout->sb_offset[i]);

		if (offset == BCH_SB_SECTOR)
			mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
					      BCH_DATA_SB, flags);

		mark_metadata_sectors(c, ca, offset,
				      offset + (1 << layout->sb_max_size_bits),
				      BCH_DATA_SB, flags);
	}

	if (c)
		spin_lock(&c->journal.lock);

	for (i = 0; i < ca->journal.nr; i++) {
		b = ca->journal.buckets[i];
		bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_JOURNAL,
					  ca->mi.bucket_size,
					  gc_phase(GC_PHASE_SB), flags);
	}

	if (c) {
		spin_unlock(&c->journal.lock);
		percpu_up_read(&c->usage_lock);
	} else {
		preempt_enable();
	}
}

static void bch2_mark_superblocks(struct bch_fs *c)
{
	struct bch_dev *ca;
	unsigned i;

	mutex_lock(&c->sb_lock);
	gc_pos_set(c, gc_phase(GC_PHASE_SB));

	for_each_online_member(ca, c, i)
		bch2_mark_dev_superblock(c, ca,
					 BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
					 BCH_BUCKET_MARK_GC_LOCK_HELD);
	mutex_unlock(&c->sb_lock);
}

/* Also see bch2_pending_btree_node_free_insert_done() */
static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
{
	struct gc_pos pos = { 0 };
	struct bch_fs_usage stats = { 0 };
	struct btree_update *as;
	struct pending_btree_node_free *d;

	mutex_lock(&c->btree_interior_update_lock);
	gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));

	for_each_pending_btree_node_free(c, as, d)
		if (d->index_update_done)
			bch2_mark_key(c, bkey_i_to_s_c(&d->key),
				      c->opts.btree_node_size,
				      BCH_DATA_BTREE, pos,
				      &stats, 0,
				      BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
				      BCH_BUCKET_MARK_GC_LOCK_HELD);
	/*
	 * Don't apply stats - pending deletes aren't tracked in
	 * bch_alloc_stats:
	 */

	mutex_unlock(&c->btree_interior_update_lock);
}

static void bch2_mark_allocator_buckets(struct bch_fs *c)
{
	struct bch_dev *ca;
	struct open_bucket *ob;
	size_t i, j, iter;
	unsigned ci;

	percpu_down_read(&c->usage_lock);

	spin_lock(&c->freelist_lock);
	gc_pos_set(c, gc_pos_alloc(c, NULL));

	for_each_member_device(ca, c, ci) {
		fifo_for_each_entry(i, &ca->free_inc, iter)
			bch2_mark_alloc_bucket(c, ca, i, true,
					       gc_pos_alloc(c, NULL),
					       BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
					       BCH_BUCKET_MARK_GC_LOCK_HELD);



		for (j = 0; j < RESERVE_NR; j++)
			fifo_for_each_entry(i, &ca->free[j], iter)
				bch2_mark_alloc_bucket(c, ca, i, true,
						       gc_pos_alloc(c, NULL),
						       BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
						       BCH_BUCKET_MARK_GC_LOCK_HELD);
	}

	spin_unlock(&c->freelist_lock);

	for (ob = c->open_buckets;
	     ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
	     ob++) {
		spin_lock(&ob->lock);
		if (ob->valid) {
			gc_pos_set(c, gc_pos_alloc(c, ob));
			ca = bch_dev_bkey_exists(c, ob->ptr.dev);
			bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
					       gc_pos_alloc(c, ob),
					       BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
					       BCH_BUCKET_MARK_GC_LOCK_HELD);
		}
		spin_unlock(&ob->lock);
	}

	percpu_up_read(&c->usage_lock);
}

static void bch2_gc_start(struct bch_fs *c)
{
	struct bch_dev *ca;
	struct bucket_array *buckets;
	struct bucket_mark new;
	unsigned i;
	size_t b;
	int cpu;

	percpu_down_write(&c->usage_lock);

	/*
	 * Indicates to buckets code that gc is now in progress - done under
	 * usage_lock to avoid racing with bch2_mark_key():
	 */
	__gc_pos_set(c, gc_phase(GC_PHASE_START));

	/* Save a copy of the existing bucket stats while we recompute them: */
	for_each_member_device(ca, c, i) {
		ca->usage_cached = __bch2_dev_usage_read(ca);
		for_each_possible_cpu(cpu) {
			struct bch_dev_usage *p =
				per_cpu_ptr(ca->usage_percpu, cpu);
			memset(p, 0, sizeof(*p));
		}
	}

	c->usage_cached = __bch2_fs_usage_read(c);
	for_each_possible_cpu(cpu) {
		struct bch_fs_usage *p =
			per_cpu_ptr(c->usage_percpu, cpu);

		memset(p->replicas, 0, sizeof(p->replicas));
		memset(p->buckets, 0, sizeof(p->buckets));
	}

	percpu_up_write(&c->usage_lock);

	/* Clear bucket marks: */
	for_each_member_device(ca, c, i) {
		down_read(&ca->bucket_lock);
		buckets = bucket_array(ca);

		for (b = buckets->first_bucket; b < buckets->nbuckets; b++) {
			bucket_cmpxchg(buckets->b + b, new, ({
				new.owned_by_allocator	= 0;
				new.data_type		= 0;
				new.cached_sectors	= 0;
				new.dirty_sectors	= 0;
			}));
			ca->oldest_gens[b] = new.gen;
		}
		up_read(&ca->bucket_lock);
	}
}

/**
 * bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes
 */
void bch2_gc(struct bch_fs *c)
{
	struct bch_dev *ca;
	u64 start_time = local_clock();
	unsigned i;

	/*
	 * Walk _all_ references to buckets, and recompute them:
	 *
	 * Order matters here:
	 *  - Concurrent GC relies on the fact that we have a total ordering for
	 *    everything that GC walks - see  gc_will_visit_node(),
	 *    gc_will_visit_root()
	 *
	 *  - also, references move around in the course of index updates and
	 *    various other crap: everything needs to agree on the ordering
	 *    references are allowed to move around in - e.g., we're allowed to
	 *    start with a reference owned by an open_bucket (the allocator) and
	 *    move it to the btree, but not the reverse.
	 *
	 *    This is necessary to ensure that gc doesn't miss references that
	 *    move around - if references move backwards in the ordering GC
	 *    uses, GC could skip past them
	 */
	trace_gc_start(c);

	/*
	 * Do this before taking gc_lock - bch2_disk_reservation_get() blocks on
	 * gc_lock if sectors_available goes to 0:
	 */
	bch2_recalc_sectors_available(c);

	down_write(&c->gc_lock);
	if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
		goto out;

	bch2_gc_start(c);

	bch2_mark_superblocks(c);

	/* Walk btree: */
	for (i = 0; i < BTREE_ID_NR; i++) {
		int ret = bch2_gc_btree(c, i);
		if (ret) {
			bch_err(c, "btree gc failed: %d", ret);
			set_bit(BCH_FS_GC_FAILURE, &c->flags);
			goto out;
		}
	}

	bch2_mark_pending_btree_node_frees(c);
	bch2_mark_allocator_buckets(c);

	/* Indicates that gc is no longer in progress: */
	gc_pos_set(c, gc_phase(GC_PHASE_DONE));
	c->gc_count++;
out:
	up_write(&c->gc_lock);
	trace_gc_end(c);
	bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);

	/*
	 * Wake up allocator in case it was waiting for buckets
	 * because of not being able to inc gens
	 */
	for_each_member_device(ca, c, i)
		bch2_wake_allocator(ca);

	/*
	 * At startup, allocations can happen directly instead of via the
	 * allocator thread - issue wakeup in case they blocked on gc_lock:
	 */
	closure_wake_up(&c->freelist_wait);
}

/* Btree coalescing */

static void recalc_packed_keys(struct btree *b)
{
	struct bkey_packed *k;

	memset(&b->nr, 0, sizeof(b->nr));

	BUG_ON(b->nsets != 1);

	for (k =  btree_bkey_first(b, b->set);
	     k != btree_bkey_last(b, b->set);
	     k = bkey_next(k))
		btree_keys_account_key_add(&b->nr, 0, k);
}

static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
				struct btree *old_nodes[GC_MERGE_NODES])
{
	struct btree *parent = btree_node_parent(iter, old_nodes[0]);
	unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
	unsigned blocks = btree_blocks(c) * 2 / 3;
	struct btree *new_nodes[GC_MERGE_NODES];
	struct btree_update *as;
	struct keylist keylist;
	struct bkey_format_state format_state;
	struct bkey_format new_format;

	memset(new_nodes, 0, sizeof(new_nodes));
	bch2_keylist_init(&keylist, NULL);

	/* Count keys that are not deleted */
	for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
		u64s += old_nodes[i]->nr.live_u64s;

	nr_old_nodes = nr_new_nodes = i;

	/* Check if all keys in @old_nodes could fit in one fewer node */
	if (nr_old_nodes <= 1 ||
	    __vstruct_blocks(struct btree_node, c->block_bits,
			     DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
		return;

	/* Find a format that all keys in @old_nodes can pack into */
	bch2_bkey_format_init(&format_state);

	for (i = 0; i < nr_old_nodes; i++)
		__bch2_btree_calc_format(&format_state, old_nodes[i]);

	new_format = bch2_bkey_format_done(&format_state);

	/* Check if repacking would make any nodes too big to fit */
	for (i = 0; i < nr_old_nodes; i++)
		if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
			trace_btree_gc_coalesce_fail(c,
					BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
			return;
		}

	if (bch2_keylist_realloc(&keylist, NULL, 0,
			(BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
		trace_btree_gc_coalesce_fail(c,
				BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
		return;
	}

	as = bch2_btree_update_start(c, iter->btree_id,
			btree_update_reserve_required(c, parent) + nr_old_nodes,
			BTREE_INSERT_NOFAIL|
			BTREE_INSERT_USE_RESERVE,
			NULL);
	if (IS_ERR(as)) {
		trace_btree_gc_coalesce_fail(c,
				BTREE_GC_COALESCE_FAIL_RESERVE_GET);
		bch2_keylist_free(&keylist, NULL);
		return;
	}

	trace_btree_gc_coalesce(c, old_nodes[0]);

	for (i = 0; i < nr_old_nodes; i++)
		bch2_btree_interior_update_will_free_node(as, old_nodes[i]);

	/* Repack everything with @new_format and sort down to one bset */
	for (i = 0; i < nr_old_nodes; i++)
		new_nodes[i] =
			__bch2_btree_node_alloc_replacement(as, old_nodes[i],
							    new_format);

	/*
	 * Conceptually we concatenate the nodes together and slice them
	 * up at different boundaries.
	 */
	for (i = nr_new_nodes - 1; i > 0; --i) {
		struct btree *n1 = new_nodes[i];
		struct btree *n2 = new_nodes[i - 1];

		struct bset *s1 = btree_bset_first(n1);
		struct bset *s2 = btree_bset_first(n2);
		struct bkey_packed *k, *last = NULL;

		/* Calculate how many keys from @n2 we could fit inside @n1 */
		u64s = 0;

		for (k = s2->start;
		     k < vstruct_last(s2) &&
		     vstruct_blocks_plus(n1->data, c->block_bits,
					 u64s + k->u64s) <= blocks;
		     k = bkey_next(k)) {
			last = k;
			u64s += k->u64s;
		}

		if (u64s == le16_to_cpu(s2->u64s)) {
			/* n2 fits entirely in n1 */
			n1->key.k.p = n1->data->max_key = n2->data->max_key;

			memcpy_u64s(vstruct_last(s1),
				    s2->start,
				    le16_to_cpu(s2->u64s));
			le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));

			set_btree_bset_end(n1, n1->set);

			six_unlock_write(&n2->lock);
			bch2_btree_node_free_never_inserted(c, n2);
			six_unlock_intent(&n2->lock);

			memmove(new_nodes + i - 1,
				new_nodes + i,
				sizeof(new_nodes[0]) * (nr_new_nodes - i));
			new_nodes[--nr_new_nodes] = NULL;
		} else if (u64s) {
			/* move part of n2 into n1 */
			n1->key.k.p = n1->data->max_key =
				bkey_unpack_pos(n1, last);

			n2->data->min_key =
				btree_type_successor(iter->btree_id,
						     n1->data->max_key);

			memcpy_u64s(vstruct_last(s1),
				    s2->start, u64s);
			le16_add_cpu(&s1->u64s, u64s);

			memmove(s2->start,
				vstruct_idx(s2, u64s),
				(le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
			s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);

			set_btree_bset_end(n1, n1->set);
			set_btree_bset_end(n2, n2->set);
		}
	}

	for (i = 0; i < nr_new_nodes; i++) {
		struct btree *n = new_nodes[i];

		recalc_packed_keys(n);
		btree_node_reset_sib_u64s(n);

		bch2_btree_build_aux_trees(n);
		six_unlock_write(&n->lock);

		bch2_btree_node_write(c, n, SIX_LOCK_intent);
	}

	/*
	 * The keys for the old nodes get deleted. We don't want to insert keys
	 * that compare equal to the keys for the new nodes we'll also be
	 * inserting - we can't because keys on a keylist must be strictly
	 * greater than the previous keys, and we also don't need to since the
	 * key for the new node will serve the same purpose (overwriting the key
	 * for the old node).
	 */
	for (i = 0; i < nr_old_nodes; i++) {
		struct bkey_i delete;
		unsigned j;

		for (j = 0; j < nr_new_nodes; j++)
			if (!bkey_cmp(old_nodes[i]->key.k.p,
				      new_nodes[j]->key.k.p))
				goto next;

		bkey_init(&delete.k);
		delete.k.p = old_nodes[i]->key.k.p;
		bch2_keylist_add_in_order(&keylist, &delete);
next:
		i = i;
	}

	/*
	 * Keys for the new nodes get inserted: bch2_btree_insert_keys() only
	 * does the lookup once and thus expects the keys to be in sorted order
	 * so we have to make sure the new keys are correctly ordered with
	 * respect to the deleted keys added in the previous loop
	 */
	for (i = 0; i < nr_new_nodes; i++)
		bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);

	/* Insert the newly coalesced nodes */
	bch2_btree_insert_node(as, parent, iter, &keylist, 0);

	BUG_ON(!bch2_keylist_empty(&keylist));

	BUG_ON(iter->l[old_nodes[0]->level].b != old_nodes[0]);

	bch2_btree_iter_node_replace(iter, new_nodes[0]);

	for (i = 0; i < nr_new_nodes; i++)
		bch2_btree_open_bucket_put(c, new_nodes[i]);

	/* Free the old nodes and update our sliding window */
	for (i = 0; i < nr_old_nodes; i++) {
		bch2_btree_node_free_inmem(c, old_nodes[i], iter);
		six_unlock_intent(&old_nodes[i]->lock);

		/*
		 * the index update might have triggered a split, in which case
		 * the nodes we coalesced - the new nodes we just created -
		 * might not be sibling nodes anymore - don't add them to the
		 * sliding window (except the first):
		 */
		if (!i) {
			old_nodes[i] = new_nodes[i];
		} else {
			old_nodes[i] = NULL;
			if (new_nodes[i])
				six_unlock_intent(&new_nodes[i]->lock);
		}
	}

	bch2_btree_update_done(as);
	bch2_keylist_free(&keylist, NULL);
}

static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
{
	struct btree_iter iter;
	struct btree *b;
	bool kthread = (current->flags & PF_KTHREAD) != 0;
	unsigned i;

	/* Sliding window of adjacent btree nodes */
	struct btree *merge[GC_MERGE_NODES];
	u32 lock_seq[GC_MERGE_NODES];

	/*
	 * XXX: We don't have a good way of positively matching on sibling nodes
	 * that have the same parent - this code works by handling the cases
	 * where they might not have the same parent, and is thus fragile. Ugh.
	 *
	 * Perhaps redo this to use multiple linked iterators?
	 */
	memset(merge, 0, sizeof(merge));

	__for_each_btree_node(&iter, c, btree_id, POS_MIN,
			      BTREE_MAX_DEPTH, 0,
			      BTREE_ITER_PREFETCH, b) {
		memmove(merge + 1, merge,
			sizeof(merge) - sizeof(merge[0]));
		memmove(lock_seq + 1, lock_seq,
			sizeof(lock_seq) - sizeof(lock_seq[0]));

		merge[0] = b;

		for (i = 1; i < GC_MERGE_NODES; i++) {
			if (!merge[i] ||
			    !six_relock_intent(&merge[i]->lock, lock_seq[i]))
				break;

			if (merge[i]->level != merge[0]->level) {
				six_unlock_intent(&merge[i]->lock);
				break;
			}
		}
		memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));

		bch2_coalesce_nodes(c, &iter, merge);

		for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
			lock_seq[i] = merge[i]->lock.state.seq;
			six_unlock_intent(&merge[i]->lock);
		}

		lock_seq[0] = merge[0]->lock.state.seq;

		if (kthread && kthread_should_stop()) {
			bch2_btree_iter_unlock(&iter);
			return -ESHUTDOWN;
		}

		bch2_btree_iter_cond_resched(&iter);

		/*
		 * If the parent node wasn't relocked, it might have been split
		 * and the nodes in our sliding window might not have the same
		 * parent anymore - blow away the sliding window:
		 */
		if (btree_iter_node(&iter, iter.level + 1) &&
		    !btree_node_intent_locked(&iter, iter.level + 1))
			memset(merge + 1, 0,
			       (GC_MERGE_NODES - 1) * sizeof(merge[0]));
	}
	return bch2_btree_iter_unlock(&iter);
}

/**
 * bch_coalesce - coalesce adjacent nodes with low occupancy
 */
void bch2_coalesce(struct bch_fs *c)
{
	enum btree_id id;

	if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
		return;

	down_read(&c->gc_lock);
	trace_gc_coalesce_start(c);

	for (id = 0; id < BTREE_ID_NR; id++) {
		int ret = c->btree_roots[id].b
			? bch2_coalesce_btree(c, id)
			: 0;

		if (ret) {
			if (ret != -ESHUTDOWN)
				bch_err(c, "btree coalescing failed: %d", ret);
			set_bit(BCH_FS_GC_FAILURE, &c->flags);
			return;
		}
	}

	trace_gc_coalesce_end(c);
	up_read(&c->gc_lock);
}

static int bch2_gc_thread(void *arg)
{
	struct bch_fs *c = arg;
	struct io_clock *clock = &c->io_clock[WRITE];
	unsigned long last = atomic_long_read(&clock->now);
	unsigned last_kick = atomic_read(&c->kick_gc);

	set_freezable();

	while (1) {
		while (1) {
			set_current_state(TASK_INTERRUPTIBLE);

			if (kthread_should_stop()) {
				__set_current_state(TASK_RUNNING);
				return 0;
			}

			if (atomic_read(&c->kick_gc) != last_kick)
				break;

			if (c->btree_gc_periodic) {
				unsigned long next = last + c->capacity / 16;

				if (atomic_long_read(&clock->now) >= next)
					break;

				bch2_io_clock_schedule_timeout(clock, next);
			} else {
				schedule();
			}

			try_to_freeze();
		}
		__set_current_state(TASK_RUNNING);

		last = atomic_long_read(&clock->now);
		last_kick = atomic_read(&c->kick_gc);

		bch2_gc(c);

		debug_check_no_locks_held();
	}

	return 0;
}

void bch2_gc_thread_stop(struct bch_fs *c)
{
	struct task_struct *p;

	p = c->gc_thread;
	c->gc_thread = NULL;

	if (p) {
		kthread_stop(p);
		put_task_struct(p);
	}
}

int bch2_gc_thread_start(struct bch_fs *c)
{
	struct task_struct *p;

	BUG_ON(c->gc_thread);

	p = kthread_create(bch2_gc_thread, c, "bch_gc");
	if (IS_ERR(p))
		return PTR_ERR(p);

	get_task_struct(p);
	c->gc_thread = p;
	wake_up_process(p);
	return 0;
}

/* Initial GC computes bucket marks during startup */

static int bch2_initial_gc_btree(struct bch_fs *c, enum btree_id id)
{
	struct btree_iter iter;
	struct btree *b;
	struct range_checks r;
	int ret = 0;

	btree_node_range_checks_init(&r, 0);

	gc_pos_set(c, gc_pos_btree(id, POS_MIN, 0));

	if (!c->btree_roots[id].b)
		return 0;

	b = c->btree_roots[id].b;
	if (!btree_node_fake(b))
		ret = bch2_btree_mark_key_initial(c, BKEY_TYPE_BTREE,
						  bkey_i_to_s_c(&b->key));
	if (ret)
		return ret;

	/*
	 * We have to hit every btree node before starting journal replay, in
	 * order for the journal seq blacklist machinery to work:
	 */
	for_each_btree_node(&iter, c, id, POS_MIN, BTREE_ITER_PREFETCH, b) {
		btree_node_range_checks(c, b, &r);

		if (btree_node_has_ptrs(b)) {
			struct btree_node_iter node_iter;
			struct bkey unpacked;
			struct bkey_s_c k;

			for_each_btree_node_key_unpack(b, k, &node_iter,
						       &unpacked) {
				ret = bch2_btree_mark_key_initial(c,
							btree_node_type(b), k);
				if (ret)
					goto err;
			}
		}

		bch2_btree_iter_cond_resched(&iter);
	}
err:
	return bch2_btree_iter_unlock(&iter) ?: ret;
}

int bch2_initial_gc(struct bch_fs *c, struct list_head *journal)
{
	unsigned iter = 0;
	enum btree_id id;
	int ret = 0;

	down_write(&c->gc_lock);
again:
	bch2_gc_start(c);

	bch2_mark_superblocks(c);

	for (id = 0; id < BTREE_ID_NR; id++) {
		ret = bch2_initial_gc_btree(c, id);
		if (ret)
			goto err;
	}

	ret = bch2_journal_mark(c, journal);
	if (ret)
		goto err;

	if (test_bit(BCH_FS_FIXED_GENS, &c->flags)) {
		if (iter++ > 2) {
			bch_info(c, "Unable to fix bucket gens, looping");
			ret = -EINVAL;
			goto err;
		}

		bch_info(c, "Fixed gens, restarting initial mark and sweep:");
		clear_bit(BCH_FS_FIXED_GENS, &c->flags);
		goto again;
	}

	/*
	 * Skip past versions that might have possibly been used (as nonces),
	 * but hadn't had their pointers written:
	 */
	if (c->sb.encryption_type)
		atomic64_add(1 << 16, &c->key_version);

	gc_pos_set(c, gc_phase(GC_PHASE_DONE));
	set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
err:
	up_write(&c->gc_lock);
	return ret;
}