summaryrefslogblamecommitdiff
path: root/fs/bcachefs/bcachefs_format.h
blob: d74f1e5c21e0e722b6dfa9e07c311fe11d59271e (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463













































































































































































































































































































































































































































































                                                                                  





                                                 
                            

                                         
  


























































































































                                                                       


                                          

















































































































































































































































































































                                                                                
                                        









































































































                                                                                

                                          












































































































































































































                                                                                  
                                                                         



































































































































































                                                                                
                                         











































































































                                                                                
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_FORMAT_H
#define _BCACHEFS_FORMAT_H

/*
 * bcachefs on disk data structures
 *
 * OVERVIEW:
 *
 * There are three main types of on disk data structures in bcachefs (this is
 * reduced from 5 in bcache)
 *
 *  - superblock
 *  - journal
 *  - btree
 *
 * The btree is the primary structure; most metadata exists as keys in the
 * various btrees. There are only a small number of btrees, they're not
 * sharded - we have one btree for extents, another for inodes, et cetera.
 *
 * SUPERBLOCK:
 *
 * The superblock contains the location of the journal, the list of devices in
 * the filesystem, and in general any metadata we need in order to decide
 * whether we can start a filesystem or prior to reading the journal/btree
 * roots.
 *
 * The superblock is extensible, and most of the contents of the superblock are
 * in variable length, type tagged fields; see struct bch_sb_field.
 *
 * Backup superblocks do not reside in a fixed location; also, superblocks do
 * not have a fixed size. To locate backup superblocks we have struct
 * bch_sb_layout; we store a copy of this inside every superblock, and also
 * before the first superblock.
 *
 * JOURNAL:
 *
 * The journal primarily records btree updates in the order they occurred;
 * journal replay consists of just iterating over all the keys in the open
 * journal entries and re-inserting them into the btrees.
 *
 * The journal also contains entry types for the btree roots, and blacklisted
 * journal sequence numbers (see journal_seq_blacklist.c).
 *
 * BTREE:
 *
 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
 * 128k-256k) and log structured. We use struct btree_node for writing the first
 * entry in a given node (offset 0), and struct btree_node_entry for all
 * subsequent writes.
 *
 * After the header, btree node entries contain a list of keys in sorted order.
 * Values are stored inline with the keys; since values are variable length (and
 * keys effectively are variable length too, due to packing) we can't do random
 * access without building up additional in memory tables in the btree node read
 * path.
 *
 * BTREE KEYS (struct bkey):
 *
 * The various btrees share a common format for the key - so as to avoid
 * switching in fastpath lookup/comparison code - but define their own
 * structures for the key values.
 *
 * The size of a key/value pair is stored as a u8 in units of u64s, so the max
 * size is just under 2k. The common part also contains a type tag for the
 * value, and a format field indicating whether the key is packed or not (and
 * also meant to allow adding new key fields in the future, if desired).
 *
 * bkeys, when stored within a btree node, may also be packed. In that case, the
 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
 * be generous with field sizes in the common part of the key format (64 bit
 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
 */

#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/uuid.h>

#ifdef __KERNEL__
typedef uuid_t __uuid_t;
#endif

#define LE_BITMASK(_bits, name, type, field, offset, end)		\
static const unsigned	name##_OFFSET = offset;				\
static const unsigned	name##_BITS = (end - offset);			\
static const __u##_bits	name##_MAX = (1ULL << (end - offset)) - 1;	\
									\
static inline __u64 name(const type *k)					\
{									\
	return (__le##_bits##_to_cpu(k->field) >> offset) &		\
		~(~0ULL << (end - offset));				\
}									\
									\
static inline void SET_##name(type *k, __u64 v)				\
{									\
	__u##_bits new = __le##_bits##_to_cpu(k->field);		\
									\
	new &= ~(~(~0ULL << (end - offset)) << offset);			\
	new |= (v & ~(~0ULL << (end - offset))) << offset;		\
	k->field = __cpu_to_le##_bits(new);				\
}

#define LE16_BITMASK(n, t, f, o, e)	LE_BITMASK(16, n, t, f, o, e)
#define LE32_BITMASK(n, t, f, o, e)	LE_BITMASK(32, n, t, f, o, e)
#define LE64_BITMASK(n, t, f, o, e)	LE_BITMASK(64, n, t, f, o, e)

struct bkey_format {
	__u8		key_u64s;
	__u8		nr_fields;
	/* One unused slot for now: */
	__u8		bits_per_field[6];
	__le64		field_offset[6];
};

/* Btree keys - all units are in sectors */

struct bpos {
	/*
	 * Word order matches machine byte order - btree code treats a bpos as a
	 * single large integer, for search/comparison purposes
	 *
	 * Note that wherever a bpos is embedded in another on disk data
	 * structure, it has to be byte swabbed when reading in metadata that
	 * wasn't written in native endian order:
	 */
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	__u32		snapshot;
	__u64		offset;
	__u64		inode;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	__u64		inode;
	__u64		offset;		/* Points to end of extent - sectors */
	__u32		snapshot;
#else
#error edit for your odd byteorder.
#endif
} __attribute__((packed, aligned(4)));

#define KEY_INODE_MAX			((__u64)~0ULL)
#define KEY_OFFSET_MAX			((__u64)~0ULL)
#define KEY_SNAPSHOT_MAX		((__u32)~0U)
#define KEY_SIZE_MAX			((__u32)~0U)

static inline struct bpos POS(__u64 inode, __u64 offset)
{
	struct bpos ret;

	ret.inode	= inode;
	ret.offset	= offset;
	ret.snapshot	= 0;

	return ret;
}

#define POS_MIN				POS(0, 0)
#define POS_MAX				POS(KEY_INODE_MAX, KEY_OFFSET_MAX)

/* Empty placeholder struct, for container_of() */
struct bch_val {
	__u64		__nothing[0];
};

struct bversion {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	__u64		lo;
	__u32		hi;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	__u32		hi;
	__u64		lo;
#endif
} __attribute__((packed, aligned(4)));

struct bkey {
	/* Size of combined key and value, in u64s */
	__u8		u64s;

	/* Format of key (0 for format local to btree node) */
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u8		format:7,
			needs_whiteout:1;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u8		needs_whiteout:1,
			format:7;
#else
#error edit for your odd byteorder.
#endif

	/* Type of the value */
	__u8		type;

#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	__u8		pad[1];

	struct bversion	version;
	__u32		size;		/* extent size, in sectors */
	struct bpos	p;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	struct bpos	p;
	__u32		size;		/* extent size, in sectors */
	struct bversion	version;

	__u8		pad[1];
#endif
} __attribute__((packed, aligned(8)));

struct bkey_packed {
	__u64		_data[0];

	/* Size of combined key and value, in u64s */
	__u8		u64s;

	/* Format of key (0 for format local to btree node) */

	/*
	 * XXX: next incompat on disk format change, switch format and
	 * needs_whiteout - bkey_packed() will be cheaper if format is the high
	 * bits of the bitfield
	 */
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u8		format:7,
			needs_whiteout:1;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u8		needs_whiteout:1,
			format:7;
#endif

	/* Type of the value */
	__u8		type;
	__u8		key_start[0];

	/*
	 * We copy bkeys with struct assignment in various places, and while
	 * that shouldn't be done with packed bkeys we can't disallow it in C,
	 * and it's legal to cast a bkey to a bkey_packed  - so padding it out
	 * to the same size as struct bkey should hopefully be safest.
	 */
	__u8		pad[sizeof(struct bkey) - 3];
} __attribute__((packed, aligned(8)));

#define BKEY_U64s			(sizeof(struct bkey) / sizeof(__u64))
#define KEY_PACKED_BITS_START		24

#define KEY_FORMAT_LOCAL_BTREE		0
#define KEY_FORMAT_CURRENT		1

enum bch_bkey_fields {
	BKEY_FIELD_INODE,
	BKEY_FIELD_OFFSET,
	BKEY_FIELD_SNAPSHOT,
	BKEY_FIELD_SIZE,
	BKEY_FIELD_VERSION_HI,
	BKEY_FIELD_VERSION_LO,
	BKEY_NR_FIELDS,
};

#define bkey_format_field(name, field)					\
	[BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)

#define BKEY_FORMAT_CURRENT						\
((struct bkey_format) {							\
	.key_u64s	= BKEY_U64s,					\
	.nr_fields	= BKEY_NR_FIELDS,				\
	.bits_per_field = {						\
		bkey_format_field(INODE,	p.inode),		\
		bkey_format_field(OFFSET,	p.offset),		\
		bkey_format_field(SNAPSHOT,	p.snapshot),		\
		bkey_format_field(SIZE,		size),			\
		bkey_format_field(VERSION_HI,	version.hi),		\
		bkey_format_field(VERSION_LO,	version.lo),		\
	},								\
})

/* bkey with inline value */
struct bkey_i {
	__u64			_data[0];

	union {
	struct {
		/* Size of combined key and value, in u64s */
		__u8		u64s;
	};
	struct {
		struct bkey	k;
		struct bch_val	v;
	};
	};
};

#define KEY(_inode, _offset, _size)					\
((struct bkey) {							\
	.u64s		= BKEY_U64s,					\
	.format		= KEY_FORMAT_CURRENT,				\
	.p		= POS(_inode, _offset),				\
	.size		= _size,					\
})

static inline void bkey_init(struct bkey *k)
{
	*k = KEY(0, 0, 0);
}

#define bkey_bytes(_k)		((_k)->u64s * sizeof(__u64))

#define __BKEY_PADDED(key, pad)					\
	struct { struct bkey_i key; __u64 key ## _pad[pad]; }

#define BKEY_VAL_TYPE(name, nr)						\
struct bkey_i_##name {							\
	union {								\
		struct bkey		k;				\
		struct bkey_i		k_i;				\
	};								\
	struct bch_##name		v;				\
}

/*
 * - DELETED keys are used internally to mark keys that should be ignored but
 *   override keys in composition order.  Their version number is ignored.
 *
 * - DISCARDED keys indicate that the data is all 0s because it has been
 *   discarded. DISCARDs may have a version; if the version is nonzero the key
 *   will be persistent, otherwise the key will be dropped whenever the btree
 *   node is rewritten (like DELETED keys).
 *
 * - ERROR: any read of the data returns a read error, as the data was lost due
 *   to a failing device. Like DISCARDED keys, they can be removed (overridden)
 *   by new writes or cluster-wide GC. Node repair can also overwrite them with
 *   the same or a more recent version number, but not with an older version
 *   number.
*/
#define KEY_TYPE_DELETED		0
#define KEY_TYPE_DISCARD		1
#define KEY_TYPE_ERROR			2
#define KEY_TYPE_COOKIE			3
#define KEY_TYPE_PERSISTENT_DISCARD	4
#define KEY_TYPE_GENERIC_NR		128

struct bch_cookie {
	struct bch_val		v;
	__le64			cookie;
};
BKEY_VAL_TYPE(cookie,		KEY_TYPE_COOKIE);

/* Extents */

/*
 * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
 * preceded by checksum/compression information (bch_extent_crc32 or
 * bch_extent_crc64).
 *
 * One major determining factor in the format of extents is how we handle and
 * represent extents that have been partially overwritten and thus trimmed:
 *
 * If an extent is not checksummed or compressed, when the extent is trimmed we
 * don't have to remember the extent we originally allocated and wrote: we can
 * merely adjust ptr->offset to point to the start of the data that is currently
 * live. The size field in struct bkey records the current (live) size of the
 * extent, and is also used to mean "size of region on disk that we point to" in
 * this case.
 *
 * Thus an extent that is not checksummed or compressed will consist only of a
 * list of bch_extent_ptrs, with none of the fields in
 * bch_extent_crc32/bch_extent_crc64.
 *
 * When an extent is checksummed or compressed, it's not possible to read only
 * the data that is currently live: we have to read the entire extent that was
 * originally written, and then return only the part of the extent that is
 * currently live.
 *
 * Thus, in addition to the current size of the extent in struct bkey, we need
 * to store the size of the originally allocated space - this is the
 * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
 * when the extent is trimmed, instead of modifying the offset field of the
 * pointer, we keep a second smaller offset field - "offset into the original
 * extent of the currently live region".
 *
 * The other major determining factor is replication and data migration:
 *
 * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
 * write, we will initially write all the replicas in the same format, with the
 * same checksum type and compression format - however, when copygc runs later (or
 * tiering/cache promotion, anything that moves data), it is not in general
 * going to rewrite all the pointers at once - one of the replicas may be in a
 * bucket on one device that has very little fragmentation while another lives
 * in a bucket that has become heavily fragmented, and thus is being rewritten
 * sooner than the rest.
 *
 * Thus it will only move a subset of the pointers (or in the case of
 * tiering/cache promotion perhaps add a single pointer without dropping any
 * current pointers), and if the extent has been partially overwritten it must
 * write only the currently live portion (or copygc would not be able to reduce
 * fragmentation!) - which necessitates a different bch_extent_crc format for
 * the new pointer.
 *
 * But in the interests of space efficiency, we don't want to store one
 * bch_extent_crc for each pointer if we don't have to.
 *
 * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
 * bch_extent_ptrs appended arbitrarily one after the other. We determine the
 * type of a given entry with a scheme similar to utf8 (except we're encoding a
 * type, not a size), encoding the type in the position of the first set bit:
 *
 * bch_extent_crc32	- 0b1
 * bch_extent_ptr	- 0b10
 * bch_extent_crc64	- 0b100
 *
 * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
 * bch_extent_crc64 is the least constrained).
 *
 * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
 * until the next bch_extent_crc32/64.
 *
 * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
 * is neither checksummed nor compressed.
 */

/* 128 bits, sufficient for cryptographic MACs: */
struct bch_csum {
	__le64			lo;
	__le64			hi;
} __attribute__((packed, aligned(8)));

enum bch_csum_type {
	BCH_CSUM_NONE			= 0,
	BCH_CSUM_CRC32C_NONZERO		= 1,
	BCH_CSUM_CRC64_NONZERO		= 2,
	BCH_CSUM_CHACHA20_POLY1305_80	= 3,
	BCH_CSUM_CHACHA20_POLY1305_128	= 4,
	BCH_CSUM_CRC32C			= 5,
	BCH_CSUM_CRC64			= 6,
	BCH_CSUM_NR			= 7,
};

static const unsigned bch_crc_bytes[] = {
	[BCH_CSUM_NONE]				= 0,
	[BCH_CSUM_CRC32C_NONZERO]		= 4,
	[BCH_CSUM_CRC32C]			= 4,
	[BCH_CSUM_CRC64_NONZERO]		= 8,
	[BCH_CSUM_CRC64]			= 8,
	[BCH_CSUM_CHACHA20_POLY1305_80]		= 10,
	[BCH_CSUM_CHACHA20_POLY1305_128]	= 16,
};

static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
{
	switch (type) {
	case BCH_CSUM_CHACHA20_POLY1305_80:
	case BCH_CSUM_CHACHA20_POLY1305_128:
		return true;
	default:
		return false;
	}
}

enum bch_compression_type {
	BCH_COMPRESSION_NONE		= 0,
	BCH_COMPRESSION_LZ4_OLD		= 1,
	BCH_COMPRESSION_GZIP		= 2,
	BCH_COMPRESSION_LZ4		= 3,
	BCH_COMPRESSION_ZSTD		= 4,
	BCH_COMPRESSION_NR		= 5,
};

#define BCH_EXTENT_ENTRY_TYPES()		\
	x(ptr,			0)		\
	x(crc32,		1)		\
	x(crc64,		2)		\
	x(crc128,		3)
#define BCH_EXTENT_ENTRY_MAX	4

enum bch_extent_entry_type {
#define x(f, n) BCH_EXTENT_ENTRY_##f = n,
	BCH_EXTENT_ENTRY_TYPES()
#undef x
};

/* Compressed/uncompressed size are stored biased by 1: */
struct bch_extent_crc32 {
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u32			type:2,
				_compressed_size:7,
				_uncompressed_size:7,
				offset:7,
				_unused:1,
				csum_type:4,
				compression_type:4;
	__u32			csum;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u32			csum;
	__u32			compression_type:4,
				csum_type:4,
				_unused:1,
				offset:7,
				_uncompressed_size:7,
				_compressed_size:7,
				type:2;
#endif
} __attribute__((packed, aligned(8)));

#define CRC32_SIZE_MAX		(1U << 7)
#define CRC32_NONCE_MAX		0

struct bch_extent_crc64 {
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u64			type:3,
				_compressed_size:9,
				_uncompressed_size:9,
				offset:9,
				nonce:10,
				csum_type:4,
				compression_type:4,
				csum_hi:16;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u64			csum_hi:16,
				compression_type:4,
				csum_type:4,
				nonce:10,
				offset:9,
				_uncompressed_size:9,
				_compressed_size:9,
				type:3;
#endif
	__u64			csum_lo;
} __attribute__((packed, aligned(8)));

#define CRC64_SIZE_MAX		(1U << 9)
#define CRC64_NONCE_MAX		((1U << 10) - 1)

struct bch_extent_crc128 {
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u64			type:4,
				_compressed_size:13,
				_uncompressed_size:13,
				offset:13,
				nonce:13,
				csum_type:4,
				compression_type:4;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u64			compression_type:4,
				csum_type:4,
				nonce:13,
				offset:13,
				_uncompressed_size:13,
				_compressed_size:13,
				type:4;
#endif
	struct bch_csum		csum;
} __attribute__((packed, aligned(8)));

#define CRC128_SIZE_MAX		(1U << 13)
#define CRC128_NONCE_MAX	((1U << 13) - 1)

/*
 * @reservation - pointer hasn't been written to, just reserved
 */
struct bch_extent_ptr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u64			type:1,
				cached:1,
				erasure_coded:1,
				reservation:1,
				offset:44, /* 8 petabytes */
				dev:8,
				gen:8;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u64			gen:8,
				dev:8,
				offset:44,
				reservation:1,
				erasure_coded:1,
				cached:1,
				type:1;
#endif
} __attribute__((packed, aligned(8)));

struct bch_extent_reservation {
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u64			type:5,
				unused:23,
				replicas:4,
				generation:32;
#elif defined (__BIG_ENDIAN_BITFIELD)
	__u64			generation:32,
				replicas:4,
				unused:23,
				type:5;
#endif
};

union bch_extent_entry {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ||  __BITS_PER_LONG == 64
	unsigned long			type;
#elif __BITS_PER_LONG == 32
	struct {
		unsigned long		pad;
		unsigned long		type;
	};
#else
#error edit for your odd byteorder.
#endif

#define x(f, n) struct bch_extent_##f	f;
	BCH_EXTENT_ENTRY_TYPES()
#undef x
};

enum {
	BCH_EXTENT		= 128,

	/*
	 * This is kind of a hack, we're overloading the type for a boolean that
	 * really should be part of the value - BCH_EXTENT and BCH_EXTENT_CACHED
	 * have the same value type:
	 */
	BCH_EXTENT_CACHED	= 129,

	/*
	 * Persistent reservation:
	 */
	BCH_RESERVATION		= 130,
};

struct bch_extent {
	struct bch_val		v;

	__u64			_data[0];
	union bch_extent_entry	start[];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(extent,		BCH_EXTENT);

struct bch_reservation {
	struct bch_val		v;

	__le32			generation;
	__u8			nr_replicas;
	__u8			pad[3];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(reservation,	BCH_RESERVATION);

/* Maximum size (in u64s) a single pointer could be: */
#define BKEY_EXTENT_PTR_U64s_MAX\
	((sizeof(struct bch_extent_crc128) +			\
	  sizeof(struct bch_extent_ptr)) / sizeof(u64))

/* Maximum possible size of an entire extent value: */
#define BKEY_EXTENT_VAL_U64s_MAX				\
	(BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))

#define BKEY_PADDED(key)	__BKEY_PADDED(key, BKEY_EXTENT_VAL_U64s_MAX)

/* * Maximum possible size of an entire extent, key + value: */
#define BKEY_EXTENT_U64s_MAX		(BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)

/* Btree pointers don't carry around checksums: */
#define BKEY_BTREE_PTR_VAL_U64s_MAX				\
	((sizeof(struct bch_extent_ptr)) / sizeof(u64) * BCH_REPLICAS_MAX)
#define BKEY_BTREE_PTR_U64s_MAX					\
	(BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)

/* Inodes */

#define BLOCKDEV_INODE_MAX	4096

#define BCACHEFS_ROOT_INO	4096

enum bch_inode_types {
	BCH_INODE_FS		= 128,
	BCH_INODE_BLOCKDEV	= 129,
	BCH_INODE_GENERATION	= 130,
};

struct bch_inode {
	struct bch_val		v;

	__le64			bi_hash_seed;
	__le32			bi_flags;
	__le16			bi_mode;
	__u8			fields[0];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(inode,		BCH_INODE_FS);

struct bch_inode_generation {
	struct bch_val		v;

	__le32			bi_generation;
	__le32			pad;
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(inode_generation,	BCH_INODE_GENERATION);

#define BCH_INODE_FIELDS()					\
	BCH_INODE_FIELD(bi_atime,			64)	\
	BCH_INODE_FIELD(bi_ctime,			64)	\
	BCH_INODE_FIELD(bi_mtime,			64)	\
	BCH_INODE_FIELD(bi_otime,			64)	\
	BCH_INODE_FIELD(bi_size,			64)	\
	BCH_INODE_FIELD(bi_sectors,			64)	\
	BCH_INODE_FIELD(bi_uid,				32)	\
	BCH_INODE_FIELD(bi_gid,				32)	\
	BCH_INODE_FIELD(bi_nlink,			32)	\
	BCH_INODE_FIELD(bi_generation,			32)	\
	BCH_INODE_FIELD(bi_dev,				32)	\
	BCH_INODE_FIELD(bi_data_checksum,		8)	\
	BCH_INODE_FIELD(bi_compression,			8)	\
	BCH_INODE_FIELD(bi_project,			32)	\
	BCH_INODE_FIELD(bi_background_compression,	8)	\
	BCH_INODE_FIELD(bi_data_replicas,		8)	\
	BCH_INODE_FIELD(bi_promote_target,		16)	\
	BCH_INODE_FIELD(bi_foreground_target,		16)	\
	BCH_INODE_FIELD(bi_background_target,		16)

#define BCH_INODE_FIELDS_INHERIT()				\
	BCH_INODE_FIELD(bi_data_checksum)			\
	BCH_INODE_FIELD(bi_compression)				\
	BCH_INODE_FIELD(bi_project)				\
	BCH_INODE_FIELD(bi_background_compression)		\
	BCH_INODE_FIELD(bi_data_replicas)			\
	BCH_INODE_FIELD(bi_promote_target)			\
	BCH_INODE_FIELD(bi_foreground_target)			\
	BCH_INODE_FIELD(bi_background_target)

enum {
	/*
	 * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
	 * flags)
	 */
	__BCH_INODE_SYNC	= 0,
	__BCH_INODE_IMMUTABLE	= 1,
	__BCH_INODE_APPEND	= 2,
	__BCH_INODE_NODUMP	= 3,
	__BCH_INODE_NOATIME	= 4,

	__BCH_INODE_I_SIZE_DIRTY= 5,
	__BCH_INODE_I_SECTORS_DIRTY= 6,
	__BCH_INODE_UNLINKED	= 7,

	/* bits 20+ reserved for packed fields below: */
};

#define BCH_INODE_SYNC		(1 << __BCH_INODE_SYNC)
#define BCH_INODE_IMMUTABLE	(1 << __BCH_INODE_IMMUTABLE)
#define BCH_INODE_APPEND	(1 << __BCH_INODE_APPEND)
#define BCH_INODE_NODUMP	(1 << __BCH_INODE_NODUMP)
#define BCH_INODE_NOATIME	(1 << __BCH_INODE_NOATIME)
#define BCH_INODE_I_SIZE_DIRTY	(1 << __BCH_INODE_I_SIZE_DIRTY)
#define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
#define BCH_INODE_UNLINKED	(1 << __BCH_INODE_UNLINKED)

LE32_BITMASK(INODE_STR_HASH,	struct bch_inode, bi_flags, 20, 24);
LE32_BITMASK(INODE_NR_FIELDS,	struct bch_inode, bi_flags, 24, 32);

struct bch_inode_blockdev {
	struct bch_val		v;

	__le64			i_size;
	__le64			i_flags;

	/* Seconds: */
	__le64			i_ctime;
	__le64			i_mtime;

	__uuid_t		i_uuid;
	__u8			i_label[32];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(inode_blockdev,	BCH_INODE_BLOCKDEV);

/* Thin provisioned volume, or cache for another block device? */
LE64_BITMASK(CACHED_DEV,	struct bch_inode_blockdev, i_flags, 0,  1)

/* Dirents */

/*
 * Dirents (and xattrs) have to implement string lookups; since our b-tree
 * doesn't support arbitrary length strings for the key, we instead index by a
 * 64 bit hash (currently truncated sha1) of the string, stored in the offset
 * field of the key - using linear probing to resolve hash collisions. This also
 * provides us with the readdir cookie posix requires.
 *
 * Linear probing requires us to use whiteouts for deletions, in the event of a
 * collision:
 */

enum {
	BCH_DIRENT		= 128,
	BCH_DIRENT_WHITEOUT	= 129,
};

struct bch_dirent {
	struct bch_val		v;

	/* Target inode number: */
	__le64			d_inum;

	/*
	 * Copy of mode bits 12-15 from the target inode - so userspace can get
	 * the filetype without having to do a stat()
	 */
	__u8			d_type;

	__u8			d_name[];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(dirent,		BCH_DIRENT);

#define BCH_NAME_MAX	(U8_MAX * sizeof(u64) -				\
			 sizeof(struct bkey) -				\
			 offsetof(struct bch_dirent, d_name))


/* Xattrs */

enum {
	BCH_XATTR		= 128,
	BCH_XATTR_WHITEOUT	= 129,
};

#define BCH_XATTR_INDEX_USER			0
#define BCH_XATTR_INDEX_POSIX_ACL_ACCESS	1
#define BCH_XATTR_INDEX_POSIX_ACL_DEFAULT	2
#define BCH_XATTR_INDEX_TRUSTED			3
#define BCH_XATTR_INDEX_SECURITY	        4

struct bch_xattr {
	struct bch_val		v;
	__u8			x_type;
	__u8			x_name_len;
	__le16			x_val_len;
	__u8			x_name[];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(xattr,		BCH_XATTR);

/* Bucket/allocation information: */

enum {
	BCH_ALLOC		= 128,
};

enum {
	BCH_ALLOC_FIELD_READ_TIME	= 0,
	BCH_ALLOC_FIELD_WRITE_TIME	= 1,
};

struct bch_alloc {
	struct bch_val		v;
	__u8			fields;
	__u8			gen;
	__u8			data[];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(alloc,	BCH_ALLOC);

/* Quotas: */

enum {
	BCH_QUOTA		= 128,
};

enum quota_types {
	QTYP_USR		= 0,
	QTYP_GRP		= 1,
	QTYP_PRJ		= 2,
	QTYP_NR			= 3,
};

enum quota_counters {
	Q_SPC			= 0,
	Q_INO			= 1,
	Q_COUNTERS		= 2,
};

struct bch_quota_counter {
	__le64			hardlimit;
	__le64			softlimit;
};

struct bch_quota {
	struct bch_val		v;
	struct bch_quota_counter c[Q_COUNTERS];
} __attribute__((packed, aligned(8)));
BKEY_VAL_TYPE(quota,	BCH_QUOTA);

/* Optional/variable size superblock sections: */

struct bch_sb_field {
	__u64			_data[0];
	__le32			u64s;
	__le32			type;
};

#define BCH_SB_FIELDS()		\
	x(journal,	0)	\
	x(members,	1)	\
	x(crypt,	2)	\
	x(replicas,	3)	\
	x(quota,	4)	\
	x(disk_groups,	5)	\
	x(clean,	6)

enum bch_sb_field_type {
#define x(f, nr)	BCH_SB_FIELD_##f = nr,
	BCH_SB_FIELDS()
#undef x
	BCH_SB_FIELD_NR
};

/* BCH_SB_FIELD_journal: */

struct bch_sb_field_journal {
	struct bch_sb_field	field;
	__le64			buckets[0];
};

/* BCH_SB_FIELD_members: */

#define BCH_MIN_NR_NBUCKETS	(1 << 6)

struct bch_member {
	__uuid_t		uuid;
	__le64			nbuckets;	/* device size */
	__le16			first_bucket;   /* index of first bucket used */
	__le16			bucket_size;	/* sectors */
	__le32			pad;
	__le64			last_mount;	/* time_t */

	__le64			flags[2];
};

LE64_BITMASK(BCH_MEMBER_STATE,		struct bch_member, flags[0],  0,  4)
/* 4-10 unused, was TIER, HAS_(META)DATA */
LE64_BITMASK(BCH_MEMBER_REPLACEMENT,	struct bch_member, flags[0], 10, 14)
LE64_BITMASK(BCH_MEMBER_DISCARD,	struct bch_member, flags[0], 14, 15)
LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED,	struct bch_member, flags[0], 15, 20)
LE64_BITMASK(BCH_MEMBER_GROUP,		struct bch_member, flags[0], 20, 28)
LE64_BITMASK(BCH_MEMBER_DURABILITY,	struct bch_member, flags[0], 28, 30)

#define BCH_TIER_MAX			4U

#if 0
LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS,	struct bch_member, flags[1], 0,  20);
LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
#endif

enum bch_member_state {
	BCH_MEMBER_STATE_RW		= 0,
	BCH_MEMBER_STATE_RO		= 1,
	BCH_MEMBER_STATE_FAILED		= 2,
	BCH_MEMBER_STATE_SPARE		= 3,
	BCH_MEMBER_STATE_NR		= 4,
};

enum cache_replacement {
	CACHE_REPLACEMENT_LRU		= 0,
	CACHE_REPLACEMENT_FIFO		= 1,
	CACHE_REPLACEMENT_RANDOM	= 2,
	CACHE_REPLACEMENT_NR		= 3,
};

struct bch_sb_field_members {
	struct bch_sb_field	field;
	struct bch_member	members[0];
};

/* BCH_SB_FIELD_crypt: */

struct nonce {
	__le32			d[4];
};

struct bch_key {
	__le64			key[4];
};

#define BCH_KEY_MAGIC					\
	(((u64) 'b' <<  0)|((u64) 'c' <<  8)|		\
	 ((u64) 'h' << 16)|((u64) '*' << 24)|		\
	 ((u64) '*' << 32)|((u64) 'k' << 40)|		\
	 ((u64) 'e' << 48)|((u64) 'y' << 56))

struct bch_encrypted_key {
	__le64			magic;
	struct bch_key		key;
};

/*
 * If this field is present in the superblock, it stores an encryption key which
 * is used encrypt all other data/metadata. The key will normally be encrypted
 * with the key userspace provides, but if encryption has been turned off we'll
 * just store the master key unencrypted in the superblock so we can access the
 * previously encrypted data.
 */
struct bch_sb_field_crypt {
	struct bch_sb_field	field;

	__le64			flags;
	__le64			kdf_flags;
	struct bch_encrypted_key key;
};

LE64_BITMASK(BCH_CRYPT_KDF_TYPE,	struct bch_sb_field_crypt, flags, 0, 4);

enum bch_kdf_types {
	BCH_KDF_SCRYPT		= 0,
	BCH_KDF_NR		= 1,
};

/* stored as base 2 log of scrypt params: */
LE64_BITMASK(BCH_KDF_SCRYPT_N,	struct bch_sb_field_crypt, kdf_flags,  0, 16);
LE64_BITMASK(BCH_KDF_SCRYPT_R,	struct bch_sb_field_crypt, kdf_flags, 16, 32);
LE64_BITMASK(BCH_KDF_SCRYPT_P,	struct bch_sb_field_crypt, kdf_flags, 32, 48);

/* BCH_SB_FIELD_replicas: */

enum bch_data_type {
	BCH_DATA_NONE		= 0,
	BCH_DATA_SB		= 1,
	BCH_DATA_JOURNAL	= 2,
	BCH_DATA_BTREE		= 3,
	BCH_DATA_USER		= 4,
	BCH_DATA_CACHED		= 5,
	BCH_DATA_NR		= 6,
};

struct bch_replicas_entry {
	__u8			data_type;
	__u8			nr_devs;
	__u8			devs[];
};

struct bch_sb_field_replicas {
	struct bch_sb_field	field;
	struct bch_replicas_entry entries[];
};

/* BCH_SB_FIELD_quota: */

struct bch_sb_quota_counter {
	__le32				timelimit;
	__le32				warnlimit;
};

struct bch_sb_quota_type {
	__le64				flags;
	struct bch_sb_quota_counter	c[Q_COUNTERS];
};

struct bch_sb_field_quota {
	struct bch_sb_field		field;
	struct bch_sb_quota_type	q[QTYP_NR];
} __attribute__((packed, aligned(8)));

/* BCH_SB_FIELD_disk_groups: */

#define BCH_SB_LABEL_SIZE		32

struct bch_disk_group {
	__u8			label[BCH_SB_LABEL_SIZE];
	__le64			flags[2];
};

LE64_BITMASK(BCH_GROUP_DELETED,		struct bch_disk_group, flags[0], 0,  1)
LE64_BITMASK(BCH_GROUP_DATA_ALLOWED,	struct bch_disk_group, flags[0], 1,  6)
LE64_BITMASK(BCH_GROUP_PARENT,		struct bch_disk_group, flags[0], 6, 24)

struct bch_sb_field_disk_groups {
	struct bch_sb_field	field;
	struct bch_disk_group	entries[0];
};

/*
 * On clean shutdown, store btree roots and current journal sequence number in
 * the superblock:
 */
struct jset_entry {
	__le16			u64s;
	__u8			btree_id;
	__u8			level;
	__u8			type; /* designates what this jset holds */
	__u8			pad[3];

	union {
		struct bkey_i	start[0];
		__u64		_data[0];
	};
};

struct bch_sb_field_clean {
	struct bch_sb_field	field;

	__le32			flags;
	__le16			read_clock;
	__le16			write_clock;
	__le64			journal_seq;

	union {
		struct jset_entry start[0];
		__u64		_data[0];
	};
};

/* Superblock: */

/*
 * Version 8:	BCH_SB_ENCODED_EXTENT_MAX_BITS
 *		BCH_MEMBER_DATA_ALLOWED
 * Version 9:	incompatible extent nonce change
 */

#define BCH_SB_VERSION_MIN		7
#define BCH_SB_VERSION_EXTENT_MAX	8
#define BCH_SB_VERSION_EXTENT_NONCE_V1	9
#define BCH_SB_VERSION_MAX		9

#define BCH_SB_SECTOR			8
#define BCH_SB_MEMBERS_MAX		64 /* XXX kill */

struct bch_sb_layout {
	__uuid_t		magic;	/* bcachefs superblock UUID */
	__u8			layout_type;
	__u8			sb_max_size_bits; /* base 2 of 512 byte sectors */
	__u8			nr_superblocks;
	__u8			pad[5];
	__le64			sb_offset[61];
} __attribute__((packed, aligned(8)));

#define BCH_SB_LAYOUT_SECTOR	7

/*
 * @offset	- sector where this sb was written
 * @version	- on disk format version
 * @magic	- identifies as a bcachefs superblock (BCACHE_MAGIC)
 * @seq		- incremented each time superblock is written
 * @uuid	- used for generating various magic numbers and identifying
 *                member devices, never changes
 * @user_uuid	- user visible UUID, may be changed
 * @label	- filesystem label
 * @seq		- identifies most recent superblock, incremented each time
 *		  superblock is written
 * @features	- enabled incompatible features
 */
struct bch_sb {
	struct bch_csum		csum;
	__le16			version;
	__le16			version_min;
	__le16			pad[2];
	__uuid_t		magic;
	__uuid_t		uuid;
	__uuid_t		user_uuid;
	__u8			label[BCH_SB_LABEL_SIZE];
	__le64			offset;
	__le64			seq;

	__le16			block_size;
	__u8			dev_idx;
	__u8			nr_devices;
	__le32			u64s;

	__le64			time_base_lo;
	__le32			time_base_hi;
	__le32			time_precision;

	__le64			flags[8];
	__le64			features[2];
	__le64			compat[2];

	struct bch_sb_layout	layout;

	union {
		struct bch_sb_field start[0];
		__le64		_data[0];
	};
} __attribute__((packed, aligned(8)));

/*
 * Flags:
 * BCH_SB_INITALIZED	- set on first mount
 * BCH_SB_CLEAN		- did we shut down cleanly? Just a hint, doesn't affect
 *			  behaviour of mount/recovery path:
 * BCH_SB_INODE_32BIT	- limit inode numbers to 32 bits
 * BCH_SB_128_BIT_MACS	- 128 bit macs instead of 80
 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
 *			   DATA/META_CSUM_TYPE. Also indicates encryption
 *			   algorithm in use, if/when we get more than one
 */

LE16_BITMASK(BCH_SB_BLOCK_SIZE,		struct bch_sb, block_size, 0, 16);

LE64_BITMASK(BCH_SB_INITIALIZED,	struct bch_sb, flags[0],  0,  1);
LE64_BITMASK(BCH_SB_CLEAN,		struct bch_sb, flags[0],  1,  2);
LE64_BITMASK(BCH_SB_CSUM_TYPE,		struct bch_sb, flags[0],  2,  8);
LE64_BITMASK(BCH_SB_ERROR_ACTION,	struct bch_sb, flags[0],  8, 12);

LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE,	struct bch_sb, flags[0], 12, 28);

LE64_BITMASK(BCH_SB_GC_RESERVE,		struct bch_sb, flags[0], 28, 33);
LE64_BITMASK(BCH_SB_ROOT_RESERVE,	struct bch_sb, flags[0], 33, 40);

LE64_BITMASK(BCH_SB_META_CSUM_TYPE,	struct bch_sb, flags[0], 40, 44);
LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE,	struct bch_sb, flags[0], 44, 48);

LE64_BITMASK(BCH_SB_META_REPLICAS_WANT,	struct bch_sb, flags[0], 48, 52);
LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT,	struct bch_sb, flags[0], 52, 56);

LE64_BITMASK(BCH_SB_POSIX_ACL,		struct bch_sb, flags[0], 56, 57);
LE64_BITMASK(BCH_SB_USRQUOTA,		struct bch_sb, flags[0], 57, 58);
LE64_BITMASK(BCH_SB_GRPQUOTA,		struct bch_sb, flags[0], 58, 59);
LE64_BITMASK(BCH_SB_PRJQUOTA,		struct bch_sb, flags[0], 59, 60);

/* 60-64 unused */

LE64_BITMASK(BCH_SB_STR_HASH_TYPE,	struct bch_sb, flags[1],  0,  4);
LE64_BITMASK(BCH_SB_COMPRESSION_TYPE,	struct bch_sb, flags[1],  4,  8);
LE64_BITMASK(BCH_SB_INODE_32BIT,	struct bch_sb, flags[1],  8,  9);

LE64_BITMASK(BCH_SB_128_BIT_MACS,	struct bch_sb, flags[1],  9, 10);
LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE,	struct bch_sb, flags[1], 10, 14);

/*
 * Max size of an extent that may require bouncing to read or write
 * (checksummed, compressed): 64k
 */
LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
					struct bch_sb, flags[1], 14, 20);

LE64_BITMASK(BCH_SB_META_REPLICAS_REQ,	struct bch_sb, flags[1], 20, 24);
LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ,	struct bch_sb, flags[1], 24, 28);

LE64_BITMASK(BCH_SB_PROMOTE_TARGET,	struct bch_sb, flags[1], 28, 40);
LE64_BITMASK(BCH_SB_FOREGROUND_TARGET,	struct bch_sb, flags[1], 40, 52);
LE64_BITMASK(BCH_SB_BACKGROUND_TARGET,	struct bch_sb, flags[1], 52, 64);

LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE,
					struct bch_sb, flags[2],  0,  4);
LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES,	struct bch_sb, flags[2],  4, 64);

/* Features: */
enum bch_sb_features {
	BCH_FEATURE_LZ4			= 0,
	BCH_FEATURE_GZIP		= 1,
	BCH_FEATURE_ZSTD		= 2,
	BCH_FEATURE_ATOMIC_NLINK	= 3,
};

/* options: */

#define BCH_REPLICAS_MAX		4U

enum bch_error_actions {
	BCH_ON_ERROR_CONTINUE		= 0,
	BCH_ON_ERROR_RO			= 1,
	BCH_ON_ERROR_PANIC		= 2,
	BCH_NR_ERROR_ACTIONS		= 3,
};

enum bch_csum_opts {
	BCH_CSUM_OPT_NONE		= 0,
	BCH_CSUM_OPT_CRC32C		= 1,
	BCH_CSUM_OPT_CRC64		= 2,
	BCH_CSUM_OPT_NR			= 3,
};

enum bch_str_hash_opts {
	BCH_STR_HASH_CRC32C		= 0,
	BCH_STR_HASH_CRC64		= 1,
	BCH_STR_HASH_SIPHASH		= 2,
	BCH_STR_HASH_NR			= 3,
};

#define BCH_COMPRESSION_TYPES()		\
	x(NONE)				\
	x(LZ4)				\
	x(GZIP)				\
	x(ZSTD)

enum bch_compression_opts {
#define x(t) BCH_COMPRESSION_OPT_##t,
	BCH_COMPRESSION_TYPES()
#undef x
	BCH_COMPRESSION_OPT_NR
};

/*
 * Magic numbers
 *
 * The various other data structures have their own magic numbers, which are
 * xored with the first part of the cache set's UUID
 */

#define BCACHE_MAGIC							\
	UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca,				\
		  0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
#define BCHFS_MAGIC							\
	UUID_INIT(0xc68573f6, 0x66ce, 0x90a9,				\
		  0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)

#define BCACHEFS_STATFS_MAGIC		0xca451a4e

#define JSET_MAGIC		__cpu_to_le64(0x245235c1a3625032ULL)
#define BSET_MAGIC		__cpu_to_le64(0x90135c78b99e07f5ULL)

static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
{
	__le64 ret;
	memcpy(&ret, &sb->uuid, sizeof(ret));
	return ret;
}

static inline __u64 __jset_magic(struct bch_sb *sb)
{
	return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
}

static inline __u64 __bset_magic(struct bch_sb *sb)
{
	return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
}

/* Journal */

#define BCACHE_JSET_VERSION_UUIDv1	1
#define BCACHE_JSET_VERSION_UUID	1	/* Always latest UUID format */
#define BCACHE_JSET_VERSION_JKEYS	2
#define BCACHE_JSET_VERSION		2

#define JSET_KEYS_U64s	(sizeof(struct jset_entry) / sizeof(__u64))

#define BCH_JSET_ENTRY_TYPES()			\
	x(btree_keys,		0)		\
	x(btree_root,		1)		\
	x(prio_ptrs,		2)		\
	x(blacklist,		3)		\
	x(blacklist_v2,		4)

enum {
#define x(f, nr)	BCH_JSET_ENTRY_##f	= nr,
	BCH_JSET_ENTRY_TYPES()
#undef x
	BCH_JSET_ENTRY_NR
};

/*
 * Journal sequence numbers can be blacklisted: bsets record the max sequence
 * number of all the journal entries they contain updates for, so that on
 * recovery we can ignore those bsets that contain index updates newer that what
 * made it into the journal.
 *
 * This means that we can't reuse that journal_seq - we have to skip it, and
 * then record that we skipped it so that the next time we crash and recover we
 * don't think there was a missing journal entry.
 */
struct jset_entry_blacklist {
	struct jset_entry	entry;
	__le64			seq;
};

struct jset_entry_blacklist_v2 {
	struct jset_entry	entry;
	__le64			start;
	__le64			end;
};

/*
 * On disk format for a journal entry:
 * seq is monotonically increasing; every journal entry has its own unique
 * sequence number.
 *
 * last_seq is the oldest journal entry that still has keys the btree hasn't
 * flushed to disk yet.
 *
 * version is for on disk format changes.
 */
struct jset {
	struct bch_csum		csum;

	__le64			magic;
	__le64			seq;
	__le32			version;
	__le32			flags;

	__le32			u64s; /* size of d[] in u64s */

	__u8			encrypted_start[0];

	__le16			read_clock;
	__le16			write_clock;

	/* Sequence number of oldest dirty journal entry */
	__le64			last_seq;


	union {
		struct jset_entry start[0];
		__u64		_data[0];
	};
} __attribute__((packed, aligned(8)));

LE32_BITMASK(JSET_CSUM_TYPE,	struct jset, flags, 0, 4);
LE32_BITMASK(JSET_BIG_ENDIAN,	struct jset, flags, 4, 5);

#define BCH_JOURNAL_BUCKETS_MIN		8

/* Btree: */

#define DEFINE_BCH_BTREE_IDS()					\
	DEF_BTREE_ID(EXTENTS,	0, "extents")			\
	DEF_BTREE_ID(INODES,	1, "inodes")			\
	DEF_BTREE_ID(DIRENTS,	2, "dirents")			\
	DEF_BTREE_ID(XATTRS,	3, "xattrs")			\
	DEF_BTREE_ID(ALLOC,	4, "alloc")			\
	DEF_BTREE_ID(QUOTAS,	5, "quotas")

#define DEF_BTREE_ID(kwd, val, name) BTREE_ID_##kwd = val,

enum btree_id {
	DEFINE_BCH_BTREE_IDS()
	BTREE_ID_NR
};

#undef DEF_BTREE_ID

#define BTREE_MAX_DEPTH		4U

/* Btree nodes */

/* Version 1: Seed pointer into btree node checksum
 */
#define BCACHE_BSET_CSUM		1
#define BCACHE_BSET_KEY_v1		2
#define BCACHE_BSET_JOURNAL_SEQ		3
#define BCACHE_BSET_VERSION		3

/*
 * Btree nodes
 *
 * On disk a btree node is a list/log of these; within each set the keys are
 * sorted
 */
struct bset {
	__le64			seq;

	/*
	 * Highest journal entry this bset contains keys for.
	 * If on recovery we don't see that journal entry, this bset is ignored:
	 * this allows us to preserve the order of all index updates after a
	 * crash, since the journal records a total order of all index updates
	 * and anything that didn't make it to the journal doesn't get used.
	 */
	__le64			journal_seq;

	__le32			flags;
	__le16			version;
	__le16			u64s; /* count of d[] in u64s */

	union {
		struct bkey_packed start[0];
		__u64		_data[0];
	};
} __attribute__((packed, aligned(8)));

LE32_BITMASK(BSET_CSUM_TYPE,	struct bset, flags, 0, 4);

LE32_BITMASK(BSET_BIG_ENDIAN,	struct bset, flags, 4, 5);
LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
				struct bset, flags, 5, 6);

struct btree_node {
	struct bch_csum		csum;
	__le64			magic;

	/* this flags field is encrypted, unlike bset->flags: */
	__le64			flags;

	/* Closed interval: */
	struct bpos		min_key;
	struct bpos		max_key;
	struct bch_extent_ptr	ptr;
	struct bkey_format	format;

	union {
	struct bset		keys;
	struct {
		__u8		pad[22];
		__le16		u64s;
		__u64		_data[0];

	};
	};
} __attribute__((packed, aligned(8)));

LE64_BITMASK(BTREE_NODE_ID,	struct btree_node, flags,  0,  4);
LE64_BITMASK(BTREE_NODE_LEVEL,	struct btree_node, flags,  4,  8);
/* 8-32 unused */
LE64_BITMASK(BTREE_NODE_SEQ,	struct btree_node, flags, 32, 64);

struct btree_node_entry {
	struct bch_csum		csum;

	union {
	struct bset		keys;
	struct {
		__u8		pad[22];
		__le16		u64s;
		__u64		_data[0];

	};
	};
} __attribute__((packed, aligned(8)));

#endif /* _BCACHEFS_FORMAT_H */