/*
* hdmi.c
*
* HDMI interface DSS driver setting for TI's OMAP4 family of processor.
* Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com/
* Authors: Yong Zhi
* Mythri pk <mythripk@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "HDMI"
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <video/omapdss.h>
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include "ti_hdmi_4xxx_ip.h"
#endif
#include "ti_hdmi.h"
#include "dss.h"
#include "dss_features.h"
#define HDMI_WP 0x0
#define HDMI_CORE_SYS 0x400
#define HDMI_CORE_AV 0x900
#define HDMI_PLLCTRL 0x200
#define HDMI_PHY 0x300
/* HDMI EDID Length move this */
#define HDMI_EDID_MAX_LENGTH 256
#define EDID_TIMING_DESCRIPTOR_SIZE 0x12
#define EDID_DESCRIPTOR_BLOCK0_ADDRESS 0x36
#define EDID_DESCRIPTOR_BLOCK1_ADDRESS 0x80
#define EDID_SIZE_BLOCK0_TIMING_DESCRIPTOR 4
#define EDID_SIZE_BLOCK1_TIMING_DESCRIPTOR 4
#define OMAP_HDMI_TIMINGS_NB 34
#define HDMI_DEFAULT_REGN 16
#define HDMI_DEFAULT_REGM2 1
static struct {
struct mutex lock;
struct omap_display_platform_data *pdata;
struct platform_device *pdev;
struct hdmi_ip_data ip_data;
int code;
int mode;
struct clk *sys_clk;
} hdmi;
/*
* Logic for the below structure :
* user enters the CEA or VESA timings by specifying the HDMI/DVI code.
* There is a correspondence between CEA/VESA timing and code, please
* refer to section 6.3 in HDMI 1.3 specification for timing code.
*
* In the below structure, cea_vesa_timings corresponds to all OMAP4
* supported CEA and VESA timing values.code_cea corresponds to the CEA
* code, It is used to get the timing from cea_vesa_timing array.Similarly
* with code_vesa. Code_index is used for back mapping, that is once EDID
* is read from the TV, EDID is parsed to find the timing values and then
* map it to corresponding CEA or VESA index.
*/
static const struct hdmi_config cea_vesa_timings[OMAP_HDMI_TIMINGS_NB] = {
{ {640, 480, 25200, 96, 16, 48, 2, 10, 33, 0, 0, 0}, {1, HDMI_HDMI} },
{ {720, 480, 27027, 62, 16, 60, 6, 9, 30, 0, 0, 0}, {2, HDMI_HDMI} },
{ {1280, 720, 74250, 40, 110, 220, 5, 5, 20, 1, 1, 0}, {4, HDMI_HDMI} },
{ {1920, 540, 74250, 44, 88, 148, 5, 2, 15, 1, 1, 1}, {5, HDMI_HDMI} },
{ {1440, 240, 27027, 124, 38, 114, 3, 4, 15, 0, 0, 1}, {6, HDMI_HDMI} },
{ {1920, 1080, 148500, 44, 88, 148, 5, 4, 36, 1, 1, 0}, {16, HDMI_HDMI} },
{ {720, 576, 27000, 64, 12, 68, 5, 5, 39, 0, 0, 0}, {17, HDMI_HDMI} },
{ {1280, 720, 74250, 40, 440, 220, 5, 5, 20, 1, 1, 0}, {19, HDMI_HDMI} },
{ {1920, 540, 74250, 44, 528, 148, 5, 2, 15, 1, 1, 1}, {20, HDMI_HDMI} },
{ {1440, 288, 27000, 126, 24, 138, 3, 2, 19, 0, 0, 1}, {21, HDMI_HDMI} },
{ {1440, 576, 54000, 128, 24, 136, 5, 5, 39, 0, 0, 0}, {29, HDMI_HDMI} },
{ {1920, 1080, 148500, 44, 528, 148, 5, 4, 36, 1, 1, 0}, {31, HDMI_HDMI} },
{ {1920, 1080, 74250, 44, 638, 148, 5, 4, 36, 1, 1, 0}, {32, HDMI_HDMI} },
{ {2880, 480, 108108, 248, 64, 240, 6, 9, 30, 0, 0, 0}, {35, HDMI_HDMI} },
{ {2880, 576, 108000, 256, 48, 272, 5, 5, 39, 0, 0, 0}, {37, HDMI_HDMI} },
/* VESA From Here */
{ {640, 480, 25175, 96, 16, 48, 2 , 11, 31, 0, 0, 0}, {4, HDMI_DVI} },
{ {800, 600, 40000, 128, 40, 88, 4 , 1, 23, 1, 1, 0}, {9, HDMI_DVI} },
{ {848, 480, 33750, 112, 16, 112, 8 , 6, 23, 1, 1, 0}, {0xE, HDMI_DVI} },
{ {1280, 768, 79500, 128, 64, 192, 7 , 3, 20, 1, 0, 0}, {0x17, HDMI_DVI} },
{ {1280, 800, 83500, 128, 72, 200, 6 , 3, 22, 1, 0, 0}, {0x1C, HDMI_DVI} },
{ {1360, 768, 85500, 112, 64, 256, 6 , 3, 18, 1, 1, 0}, {0x27, HDMI_DVI} },
{ {1280, 960, 108000, 112, 96, 312, 3 , 1, 36, 1, 1, 0}, {0x20, HDMI_DVI} },
{ {1280, 1024, 108000, 112, 48, 248, 3 , 1, 38, 1, 1, 0}, {0x23, HDMI_DVI} },
{ {1024, 768, 65000, 136, 24, 160, 6, 3, 29, 0, 0, 0}, {0x10, HDMI_DVI} },
{ {1400, 1050, 121750, 144, 88, 232, 4, 3, 32, 1, 0, 0}, {0x2A, HDMI_DVI} },
{ {1440, 900, 106500, 152, 80, 232, 6, 3, 25, 1, 0, 0}, {0x2F, HDMI_DVI} },
{ {1680, 1050, 146250, 176 , 104, 280, 6, 3, 30, 1, 0, 0}, {0x3A, HDMI_DVI} },
{ {1366, 768, 85500, 143, 70, 213, 3, 3, 24, 1, 1, 0}, {0x51, HDMI_DVI} },
{ {1920, 1080, 148500, 44, 148, 80, 5, 4, 36, 1, 1, 0}, {0x52, HDMI_DVI} },
{ {1280, 768, 68250, 32, 48, 80, 7, 3, 12, 0, 1, 0}, {0x16, HDMI_DVI} },
{ {1400, 1050, 101000, 32, 48, 80, 4, 3, 23, 0, 1, 0}, {0x29, HDMI_DVI} },
{ {1680, 1050, 119000, 32, 48, 80, 6, 3, 21, 0, 1, 0}, {0x39, HDMI_DVI} },
{ {1280, 800, 79500, 32, 48, 80, 6, 3, 14, 0, 1, 0}, {0x1B, HDMI_DVI} },
{ {1280, 720, 74250, 40, 110, 220, 5, 5, 20, 1, 1, 0}, {0x55, HDMI_DVI} }
};
/*
* This is a static mapping array which maps the timing values
* with corresponding CEA / VESA code
*/
static const int code_index[OMAP_HDMI_TIMINGS_NB] = {
1, 19, 4, 2, 37, 6, 21, 20, 5, 16, 17, 29, 31, 35, 32,
/* <--15 CEA 17--> vesa*/
4, 9, 0xE, 0x17, 0x1C, 0x27, 0x20, 0x23, 0x10, 0x2A,
0X2F, 0x3A, 0X51, 0X52, 0x16, 0x29, 0x39, 0x1B
};
/*
* This is reverse static mapping which maps the CEA / VESA code
* to the corresponding timing values
*/
static const int code_cea[39] = {
-1, 0, 3, 3, 2, 8, 5, 5, -1, -1,
-1, -1, -1, -1, -1, -1, 9, 10, 10, 1,
7, 6, 6, -1, -1, -1, -1, -1, -1, 11,
11, 12, 14, -1, -1, 13, 13, 4, 4
};
static const int code_vesa[85] = {
-1, -1, -1, -1, 15, -1, -1, -1, -1, 16,
-1, -1, -1, -1, 17, -1, 23, -1, -1, -1,
-1, -1, 29, 18, -1, -1, -1, 32, 19, -1,
-1, -1, 21, -1, -1, 22, -1, -1, -1, 20,
-1, 30, 24, -1, -1, -1, -1, 25, -1, -1,
-1, -1, -1, -1, -1, -1, -1, 31, 26, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 27, 28, -1, 33};
static int hdmi_runtime_get(void)
{
int r;
DSSDBG("hdmi_runtime_get\n");
r = pm_runtime_get_sync(&hdmi.pdev->dev);
WARN_ON(r < 0);
return r < 0 ? r : 0;
}
static void hdmi_runtime_put(void)
{
int r;
DSSDBG("hdmi_runtime_put\n");
r = pm_runtime_put(&hdmi.pdev->dev);
WARN_ON(r < 0);
}
int hdmi_init_display(struct omap_dss_device *dssdev)
{
DSSDBG("init_display\n");
dss_init_hdmi_ip_ops(&hdmi.ip_data);
return 0;
}
static int get_timings_index(void)
{
int code;
if (hdmi.mode == 0)
code = code_vesa[hdmi.code];
else
code = code_cea[hdmi.code];
if (code == -1) {
/* HDMI code 4 corresponds to 640 * 480 VGA */
hdmi.code = 4;
/* DVI mode 1 corresponds to HDMI 0 to DVI */
hdmi.mode = HDMI_DVI;
code = code_vesa[hdmi.code];
}
return code;
}
static struct hdmi_cm hdmi_get_code(struct omap_video_timings *timing)
{
int i = 0, code = -1, temp_vsync = 0, temp_hsync = 0;
int timing_vsync = 0, timing_hsync = 0;
struct hdmi_video_timings temp;
struct hdmi_cm cm = {-1};
DSSDBG("hdmi_get_code\n");
for (i = 0; i < OMAP_HDMI_TIMINGS_NB; i++) {
temp = cea_vesa_timings[i].timings;
if ((temp.pixel_clock == timing->pixel_clock) &&
(temp.x_res == timing->x_res) &&
(temp.y_res == timing->y_res)) {
temp_hsync = temp.hfp + temp.hsw + temp.hbp;
timing_hsync = timing->hfp + timing->hsw + timing->hbp;
temp_vsync = temp.vfp + temp.vsw + temp.vbp;
timing_vsync = timing->vfp + timing->vsw + timing->vbp;
DSSDBG("temp_hsync = %d , temp_vsync = %d"
"timing_hsync = %d, timing_vsync = %d\n",
temp_hsync, temp_hsync,
timing_hsync, timing_vsync);
if ((temp_hsync == timing_hsync) &&
(temp_vsync == timing_vsync)) {
code = i;
cm.code = code_index[i];
if (code < 14)
cm.mode = HDMI_HDMI;
else
cm.mode = HDMI_DVI;
DSSDBG("Hdmi_code = %d mode = %d\n",
cm.code, cm.mode);
break;
}
}
}
return cm;
}
static void update_hdmi_timings(struct hdmi_config *cfg,
struct omap_video_timings *timings, int code)
{
cfg->timings.x_res = timings->x_res;
cfg->timings.y_res = timings->y_res;
cfg->timings.hbp = timings->hbp;
cfg->timings.hfp = timings->hfp;
cfg->timings.hsw = timings->hsw;
cfg->timings.vbp = timings->vbp;
cfg->timings.vfp = timings->vfp;
cfg->timings.vsw = timings->vsw;
cfg->timings.pixel_clock = timings->pixel_clock;
cfg->timings.vsync_pol = cea_vesa_timings[code].timings.vsync_pol;
cfg->timings.hsync_pol = cea_vesa_timings[code].timings.hsync_pol;
}
unsigned long hdmi_get_pixel_clock(void)
{
/* HDMI Pixel Clock in Mhz */
return hdmi.ip_data.cfg.timings.pixel_clock * 1000;
}
static void hdmi_compute_pll(struct omap_dss_device *dssdev, int phy,
struct hdmi_pll_info *pi)
{
unsigned long clkin, refclk;
u32 mf;
clkin = clk_get_rate(hdmi.sys_clk) / 10000;
/*
* Input clock is predivided by N + 1
* out put of which is reference clk
*/
if (dssdev->clocks.hdmi.regn == 0)
pi->regn = HDMI_DEFAULT_REGN;
else
pi->regn = dssdev->clocks.hdmi.regn;
refclk = clkin / pi->regn;
/*
* multiplier is pixel_clk/ref_clk
* Multiplying by 100 to avoid fractional part removal
*/
pi->regm = (phy * 100 / (refclk)) / 100;
if (dssdev->clocks.hdmi.regm2 == 0)
pi->regm2 = HDMI_DEFAULT_REGM2;
else
pi->regm2 = dssdev->clocks.hdmi.regm2;
/*
* fractional multiplier is remainder of the difference between
* multiplier and actual phy(required pixel clock thus should be
* multiplied by 2^18(262144) divided by the reference clock
*/
mf = (phy - pi->regm * refclk) * 262144;
pi->regmf = mf / (refclk);
/*
* Dcofreq should be set to 1 if required pixel clock
* is greater than 1000MHz
*/
pi->dcofreq = phy > 1000 * 100;
pi->regsd = ((pi->regm * clkin / 10) / (pi->regn * 250) + 5) / 10;
/* Set the reference clock to sysclk reference */
pi->refsel = HDMI_REFSEL_SYSCLK;
DSSDBG("M = %d Mf = %d\n", pi->regm, pi->regmf);
DSSDBG("range = %d sd = %d\n", pi->dcofreq, pi->regsd);
}
static int hdmi_power_on(struct omap_dss_device *dssdev)
{
int r, code = 0;
struct omap_video_timings *p;
unsigned long phy;
r = hdmi_runtime_get();
if (r)
return r;
dss_mgr_disable(dssdev->manager);
p = &dssdev->panel.timings;
DSSDBG("hdmi_power_on x_res= %d y_res = %d\n",
dssdev->panel.timings.x_res,
dssdev->panel.timings.y_res);
code = get_timings_index();
update_hdmi_timings(&hdmi.ip_data.cfg, p, code);
phy = p->pixel_clock;
hdmi_compute_pll(dssdev, phy, &hdmi.ip_data.pll_data);
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 0);
/* config the PLL and PHY hdmi_set_pll_pwrfirst */
r = hdmi.ip_data.ops->pll_enable(&hdmi.ip_data);
if (r) {
DSSDBG("Failed to lock PLL\n");
goto err;
}
r = hdmi.ip_data.ops->phy_enable(&hdmi.ip_data);
if (r) {
DSSDBG("Failed to start PHY\n");
goto err;
}
hdmi.ip_data.cfg.cm.mode = hdmi.mode;
hdmi.ip_data.cfg.cm.code = hdmi.code;
hdmi.ip_data.ops->video_configure(&hdmi.ip_data);
/* Make selection of HDMI in DSS */
dss_select_hdmi_venc_clk_source(DSS_HDMI_M_PCLK);
/* Select the dispc clock source as PRCM clock, to ensure that it is not
* DSI PLL source as the clock selected by DSI PLL might not be
* sufficient for the resolution selected / that can be changed
* dynamically by user. This can be moved to single location , say
* Boardfile.
*/
dss_select_dispc_clk_source(dssdev->clocks.dispc.dispc_fclk_src);
/* bypass TV gamma table */
dispc_enable_gamma_table(0);
/* tv size */
dispc_set_digit_size(dssdev->panel.timings.x_res,
dssdev->panel.timings.y_res);
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 1);
r = dss_mgr_enable(dssdev->manager);
if (r)
goto err_mgr_enable;
return 0;
err_mgr_enable:
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 0);
hdmi.ip_data.ops->phy_disable(&hdmi.ip_data);
hdmi.ip_data.ops->pll_disable(&hdmi.ip_data);
err:
hdmi_runtime_put();
return -EIO;
}
static void hdmi_power_off(struct omap_dss_device *dssdev)
{
dss_mgr_disable(dssdev->manager);
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 0);
hdmi.ip_data.ops->phy_disable(&hdmi.ip_data);
hdmi.ip_data.ops->pll_disable(&hdmi.ip_data);
hdmi_runtime_put();
}
int omapdss_hdmi_display_check_timing(struct omap_dss_device *dssdev,
struct omap_video_timings *timings)
{
struct hdmi_cm cm;
cm = hdmi_get_code(timings);
if (cm.code == -1) {
return -EINVAL;
}
return 0;
}
void omapdss_hdmi_display_set_timing(struct omap_dss_device *dssdev)
{
struct hdmi_cm cm;
cm = hdmi_get_code(&dssdev->panel.timings);
hdmi.code = cm.code;
hdmi.mode = cm.mode;
if (dssdev->state == OMAP_DSS_DISPLAY_ACTIVE) {
int r;
hdmi_power_off(dssdev);
r = hdmi_power_on(dssdev);
if (r)
DSSERR("failed to power on device\n");
}
}
void hdmi_dump_regs(struct seq_file *s)
{
mutex_lock(&hdmi.lock);
if (hdmi_runtime_get())
return;
hdmi.ip_data.ops->dump_wrapper(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_pll(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_phy(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_core(&hdmi.ip_data, s);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
}
int omapdss_hdmi_read_edid(u8 *buf, int len)
{
int r;
mutex_lock(&hdmi.lock);
r = hdmi_runtime_get();
BUG_ON(r);
r = hdmi.ip_data.ops->read_edid(&hdmi.ip_data, buf, len);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
return r;
}
bool omapdss_hdmi_detect(void)
{
int r;
mutex_lock(&hdmi.lock);
r = hdmi_runtime_get();
BUG_ON(r);
r = hdmi.ip_data.ops->detect(&hdmi.ip_data);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
return r == 1;
}
int omapdss_hdmi_display_enable(struct omap_dss_device *dssdev)
{
int r = 0;
DSSDBG("ENTER hdmi_display_enable\n");
mutex_lock(&hdmi.lock);
if (dssdev->manager == NULL) {
DSSERR("failed to enable display: no manager\n");
r = -ENODEV;
goto err0;
}
r = omap_dss_start_device(dssdev);
if (r) {
DSSERR("failed to start device\n");
goto err0;
}
if (dssdev->platform_enable) {
r = dssdev->platform_enable(dssdev);
if (r) {
DSSERR("failed to enable GPIO's\n");
goto err1;
}
}
r = hdmi_power_on(dssdev);
if (r) {
DSSERR("failed to power on device\n");
goto err2;
}
mutex_unlock(&hdmi.lock);
return 0;
err2:
if (dssdev->platform_disable)
dssdev->platform_disable(dssdev);
err1:
omap_dss_stop_device(dssdev);
err0:
mutex_unlock(&hdmi.lock);
return r;
}
void omapdss_hdmi_display_disable(struct omap_dss_device *dssdev)
{
DSSDBG("Enter hdmi_display_disable\n");
mutex_lock(&hdmi.lock);
hdmi_power_off(dssdev);
if (dssdev->platform_disable)
dssdev->platform_disable(dssdev);
omap_dss_stop_device(dssdev);
mutex_unlock(&hdmi.lock);
}
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
static int hdmi_audio_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
struct platform_device *pdev = to_platform_device(codec->dev);
struct hdmi_ip_data *ip_data = snd_soc_codec_get_drvdata(codec);
int err = 0;
if (!(ip_data->ops) && !(ip_data->ops->audio_enable)) {
dev_err(&pdev->dev, "Cannot enable/disable audio\n");
return -ENODEV;
}
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ip_data->ops->audio_enable(ip_data, true);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
ip_data->ops->audio_enable(ip_data, false);
break;
default:
err = -EINVAL;
}
return err;
}
static int hdmi_audio_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
struct hdmi_ip_data *ip_data = snd_soc_codec_get_drvdata(codec);
struct hdmi_audio_format audio_format;
struct hdmi_audio_dma audio_dma;
struct hdmi_core_audio_config core_cfg;
struct hdmi_core_infoframe_audio aud_if_cfg;
int err, n, cts;
enum hdmi_core_audio_sample_freq sample_freq;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
core_cfg.i2s_cfg.word_max_length =
HDMI_AUDIO_I2S_MAX_WORD_20BITS;
core_cfg.i2s_cfg.word_length = HDMI_AUDIO_I2S_CHST_WORD_16_BITS;
core_cfg.i2s_cfg.in_length_bits =
HDMI_AUDIO_I2S_INPUT_LENGTH_16;
core_cfg.i2s_cfg.justification = HDMI_AUDIO_JUSTIFY_LEFT;
audio_format.samples_per_word = HDMI_AUDIO_ONEWORD_TWOSAMPLES;
audio_format.sample_size = HDMI_AUDIO_SAMPLE_16BITS;
audio_format.justification = HDMI_AUDIO_JUSTIFY_LEFT;
audio_dma.transfer_size = 0x10;
break;
case SNDRV_PCM_FORMAT_S24_LE:
core_cfg.i2s_cfg.word_max_length =
HDMI_AUDIO_I2S_MAX_WORD_24BITS;
core_cfg.i2s_cfg.word_length = HDMI_AUDIO_I2S_CHST_WORD_24_BITS;
core_cfg.i2s_cfg.in_length_bits =
HDMI_AUDIO_I2S_INPUT_LENGTH_24;
audio_format.samples_per_word = HDMI_AUDIO_ONEWORD_ONESAMPLE;
audio_format.sample_size = HDMI_AUDIO_SAMPLE_24BITS;
audio_format.justification = HDMI_AUDIO_JUSTIFY_RIGHT;
core_cfg.i2s_cfg.justification = HDMI_AUDIO_JUSTIFY_RIGHT;
audio_dma.transfer_size = 0x20;
break;
default:
return -EINVAL;
}
switch (params_rate(params)) {
case 32000:
sample_freq = HDMI_AUDIO_FS_32000;
break;
case 44100:
sample_freq = HDMI_AUDIO_FS_44100;
break;
case 48000:
sample_freq = HDMI_AUDIO_FS_48000;
break;
default:
return -EINVAL;
}
err = hdmi_config_audio_acr(ip_data, params_rate(params), &n, &cts);
if (err < 0)
return err;
/* Audio wrapper config */
audio_format.stereo_channels = HDMI_AUDIO_STEREO_ONECHANNEL;
audio_format.active_chnnls_msk = 0x03;
audio_format.type = HDMI_AUDIO_TYPE_LPCM;
audio_format.sample_order = HDMI_AUDIO_SAMPLE_LEFT_FIRST;
/* Disable start/stop signals of IEC 60958 blocks */
audio_format.en_sig_blk_strt_end = HDMI_AUDIO_BLOCK_SIG_STARTEND_OFF;
audio_dma.block_size = 0xC0;
audio_dma.mode = HDMI_AUDIO_TRANSF_DMA;
audio_dma.fifo_threshold = 0x20; /* in number of samples */
hdmi_wp_audio_config_dma(ip_data, &audio_dma);
hdmi_wp_audio_config_format(ip_data, &audio_format);
/*
* I2S config
*/
core_cfg.i2s_cfg.en_high_bitrate_aud = false;
/* Only used with high bitrate audio */
core_cfg.i2s_cfg.cbit_order = false;
/* Serial data and word select should change on sck rising edge */
core_cfg.i2s_cfg.sck_edge_mode = HDMI_AUDIO_I2S_SCK_EDGE_RISING;
core_cfg.i2s_cfg.vbit = HDMI_AUDIO_I2S_VBIT_FOR_PCM;
/* Set I2S word select polarity */
core_cfg.i2s_cfg.ws_polarity = HDMI_AUDIO_I2S_WS_POLARITY_LOW_IS_LEFT;
core_cfg.i2s_cfg.direction = HDMI_AUDIO_I2S_MSB_SHIFTED_FIRST;
/* Set serial data to word select shift. See Phillips spec. */
core_cfg.i2s_cfg.shift = HDMI_AUDIO_I2S_FIRST_BIT_SHIFT;
/* Enable one of the four available serial data channels */
core_cfg.i2s_cfg.active_sds = HDMI_AUDIO_I2S_SD0_EN;
/* Core audio config */
core_cfg.freq_sample = sample_freq;
core_cfg.n = n;
core_cfg.cts = cts;
if (dss_has_feature(FEAT_HDMI_CTS_SWMODE)) {
core_cfg.aud_par_busclk = 0;
core_cfg.cts_mode = HDMI_AUDIO_CTS_MODE_SW;
core_cfg.use_mclk = false;
} else {
core_cfg.aud_par_busclk = (((128 * 31) - 1) << 8);
core_cfg.cts_mode = HDMI_AUDIO_CTS_MODE_HW;
core_cfg.use_mclk = true;
core_cfg.mclk_mode = HDMI_AUDIO_MCLK_128FS;
}
core_cfg.layout = HDMI_AUDIO_LAYOUT_2CH;
core_cfg.en_spdif = false;
/* Use sample frequency from channel status word */
core_cfg.fs_override = true;
/* Enable ACR packets */
core_cfg.en_acr_pkt = true;
/* Disable direct streaming digital audio */
core_cfg.en_dsd_audio = false;
/* Use parallel audio interface */
core_cfg.en_parallel_aud_input = true;
hdmi_core_audio_config(ip_data, &core_cfg);
/*
* Configure packet
* info frame audio see doc CEA861-D page 74
*/
aud_if_cfg.db1_coding_type = HDMI_INFOFRAME_AUDIO_DB1CT_FROM_STREAM;
aud_if_cfg.db1_channel_count = 2;
aud_if_cfg.db2_sample_freq = HDMI_INFOFRAME_AUDIO_DB2SF_FROM_STREAM;
aud_if_cfg.db2_sample_size = HDMI_INFOFRAME_AUDIO_DB2SS_FROM_STREAM;
aud_if_cfg.db4_channel_alloc = 0x00;
aud_if_cfg.db5_downmix_inh = false;
aud_if_cfg.db5_lsv = 0;
hdmi_core_audio_infoframe_config(ip_data, &aud_if_cfg);
return 0;
}
static int hdmi_audio_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
if (!hdmi.mode) {
pr_err("Current video settings do not support audio.\n");
return -EIO;
}
return 0;
}
static int hdmi_audio_codec_probe(struct snd_soc_codec *codec)
{
struct hdmi_ip_data *priv = &hdmi.ip_data;
snd_soc_codec_set_drvdata(codec, priv);
return 0;
}
static struct snd_soc_codec_driver hdmi_audio_codec_drv = {
.probe = hdmi_audio_codec_probe,
};
static struct snd_soc_dai_ops hdmi_audio_codec_ops = {
.hw_params = hdmi_audio_hw_params,
.trigger = hdmi_audio_trigger,
.startup = hdmi_audio_startup,
};
static struct snd_soc_dai_driver hdmi_codec_dai_drv = {
.name = "hdmi-audio-codec",
.playback = {
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE,
},
.ops = &hdmi_audio_codec_ops,
};
#endif
static int hdmi_get_clocks(struct platform_device *pdev)
{
struct clk *clk;
clk = clk_get(&pdev->dev, "sys_clk");
if (IS_ERR(clk)) {
DSSERR("can't get sys_clk\n");
return PTR_ERR(clk);
}
hdmi.sys_clk = clk;
return 0;
}
static void hdmi_put_clocks(void)
{
if (hdmi.sys_clk)
clk_put(hdmi.sys_clk);
}
/* HDMI HW IP initialisation */
static int omapdss_hdmihw_probe(struct platform_device *pdev)
{
struct resource *hdmi_mem;
int r;
hdmi.pdata = pdev->dev.platform_data;
hdmi.pdev = pdev;
mutex_init(&hdmi.lock);
hdmi_mem = platform_get_resource(hdmi.pdev, IORESOURCE_MEM, 0);
if (!hdmi_mem) {
DSSERR("can't get IORESOURCE_MEM HDMI\n");
return -EINVAL;
}
/* Base address taken from platform */
hdmi.ip_data.base_wp = ioremap(hdmi_mem->start,
resource_size(hdmi_mem));
if (!hdmi.ip_data.base_wp) {
DSSERR("can't ioremap WP\n");
return -ENOMEM;
}
r = hdmi_get_clocks(pdev);
if (r) {
iounmap(hdmi.ip_data.base_wp);
return r;
}
pm_runtime_enable(&pdev->dev);
hdmi.ip_data.core_sys_offset = HDMI_CORE_SYS;
hdmi.ip_data.core_av_offset = HDMI_CORE_AV;
hdmi.ip_data.pll_offset = HDMI_PLLCTRL;
hdmi.ip_data.phy_offset = HDMI_PHY;
hdmi_panel_init();
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
/* Register ASoC codec DAI */
r = snd_soc_register_codec(&pdev->dev, &hdmi_audio_codec_drv,
&hdmi_codec_dai_drv, 1);
if (r) {
DSSERR("can't register ASoC HDMI audio codec\n");
return r;
}
#endif
return 0;
}
static int omapdss_hdmihw_remove(struct platform_device *pdev)
{
hdmi_panel_exit();
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
snd_soc_unregister_codec(&pdev->dev);
#endif
pm_runtime_disable(&pdev->dev);
hdmi_put_clocks();
iounmap(hdmi.ip_data.base_wp);
return 0;
}
static int hdmi_runtime_suspend(struct device *dev)
{
clk_disable(hdmi.sys_clk);
dispc_runtime_put();
dss_runtime_put();
return 0;
}
static int hdmi_runtime_resume(struct device *dev)
{
int r;
r = dss_runtime_get();
if (r < 0)
goto err_get_dss;
r = dispc_runtime_get();
if (r < 0)
goto err_get_dispc;
clk_enable(hdmi.sys_clk);
return 0;
err_get_dispc:
dss_runtime_put();
err_get_dss:
return r;
}
static const struct dev_pm_ops hdmi_pm_ops = {
.runtime_suspend = hdmi_runtime_suspend,
.runtime_resume = hdmi_runtime_resume,
};
static struct platform_driver omapdss_hdmihw_driver = {
.probe = omapdss_hdmihw_probe,
.remove = omapdss_hdmihw_remove,
.driver = {
.name = "omapdss_hdmi",
.owner = THIS_MODULE,
.pm = &hdmi_pm_ops,
},
};
int hdmi_init_platform_driver(void)
{
return platform_driver_register(&omapdss_hdmihw_driver);
}
void hdmi_uninit_platform_driver(void)
{
return platform_driver_unregister(&omapdss_hdmihw_driver);
}