/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include "xhci.h"
#define DRIVER_AUTHOR "Sarah Sharp"
#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
static int link_quirk;
module_param(link_quirk, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
/* TODO: copied from ehci-hcd.c - can this be refactored? */
/*
* handshake - spin reading hc until handshake completes or fails
* @ptr: address of hc register to be read
* @mask: bits to look at in result of read
* @done: value of those bits when handshake succeeds
* @usec: timeout in microseconds
*
* Returns negative errno, or zero on success
*
* Success happens when the "mask" bits have the specified value (hardware
* handshake done). There are two failure modes: "usec" have passed (major
* hardware flakeout), or the register reads as all-ones (hardware removed).
*/
static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
u32 mask, u32 done, int usec)
{
u32 result;
do {
result = xhci_readl(xhci, ptr);
if (result == ~(u32)0) /* card removed */
return -ENODEV;
result &= mask;
if (result == done)
return 0;
udelay(1);
usec--;
} while (usec > 0);
return -ETIMEDOUT;
}
/*
* Force HC into halt state.
*
* Disable any IRQs and clear the run/stop bit.
* HC will complete any current and actively pipelined transactions, and
* should halt within 16 microframes of the run/stop bit being cleared.
* Read HC Halted bit in the status register to see when the HC is finished.
* XXX: shouldn't we set HC_STATE_HALT here somewhere?
*/
int xhci_halt(struct xhci_hcd *xhci)
{
u32 halted;
u32 cmd;
u32 mask;
xhci_dbg(xhci, "// Halt the HC\n");
/* Disable all interrupts from the host controller */
mask = ~(XHCI_IRQS);
halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
if (!halted)
mask &= ~CMD_RUN;
cmd = xhci_readl(xhci, &xhci->op_regs->command);
cmd &= mask;
xhci_writel(xhci, cmd, &xhci->op_regs->command);
return handshake(xhci, &xhci->op_regs->status,
STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
}
/*
* Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
*
* This resets pipelines, timers, counters, state machines, etc.
* Transactions will be terminated immediately, and operational registers
* will be set to their defaults.
*/
int xhci_reset(struct xhci_hcd *xhci)
{
u32 command;
u32 state;
state = xhci_readl(xhci, &xhci->op_regs->status);
if ((state & STS_HALT) == 0) {
xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
return 0;
}
xhci_dbg(xhci, "// Reset the HC\n");
command = xhci_readl(xhci, &xhci->op_regs->command);
command |= CMD_RESET;
xhci_writel(xhci, command, &xhci->op_regs->command);
/* XXX: Why does EHCI set this here? Shouldn't other code do this? */
xhci_to_hcd(xhci)->state = HC_STATE_HALT;
return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
}
/*
* Stop the HC from processing the endpoint queues.
*/
static void xhci_quiesce(struct xhci_hcd *xhci)
{
/*
* Queues are per endpoint, so we need to disable an endpoint or slot.
*
* To disable a slot, we need to insert a disable slot command on the
* command ring and ring the doorbell. This will also free any internal
* resources associated with the slot (which might not be what we want).
*
* A Release Endpoint command sounds better - doesn't free internal HC
* memory, but removes the endpoints from the schedule and releases the
* bandwidth, disables the doorbells, and clears the endpoint enable
* flag. Usually used prior to a set interface command.
*
* TODO: Implement after command ring code is done.
*/
BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
}
#if 0
/* Set up MSI-X table for entry 0 (may claim other entries later) */
static int xhci_setup_msix(struct xhci_hcd *xhci)
{
int ret;
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
xhci->msix_count = 0;
/* XXX: did I do this right? ixgbe does kcalloc for more than one */
xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
if (!xhci->msix_entries) {
xhci_err(xhci, "Failed to allocate MSI-X entries\n");
return -ENOMEM;
}
xhci->msix_entries[0].entry = 0;
ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
if (ret) {
xhci_err(xhci, "Failed to enable MSI-X\n");
goto free_entries;
}
/*
* Pass the xhci pointer value as the request_irq "cookie".
* If more irqs are added, this will need to be unique for each one.
*/
ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
"xHCI", xhci_to_hcd(xhci));
if (ret) {
xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
goto disable_msix;
}
xhci_dbg(xhci, "Finished setting up MSI-X\n");
return 0;
disable_msix:
pci_disable_msix(pdev);
free_entries:
kfree(xhci->msix_entries);
xhci->msix_entries = NULL;
return ret;
}
/* XXX: code duplication; can xhci_setup_msix call this? */
/* Free any IRQs and disable MSI-X */
static void xhci_cleanup_msix(struct xhci_hcd *xhci)
{
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
if (!xhci->msix_entries)
return;
free_irq(xhci->msix_entries[0].vector, xhci);
pci_disable_msix(pdev);
kfree(xhci->msix_entries);
xhci->msix_entries = NULL;
xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
}
#endif
/*
* Initialize memory for HCD and xHC (one-time init).
*
* Program the PAGESIZE register, initialize the device context array, create
* device contexts (?), set up a command ring segment (or two?), create event
* ring (one for now).
*/
int xhci_init(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int retval = 0;
xhci_dbg(xhci, "xhci_init\n");
spin_lock_init(&xhci->lock);
if (link_quirk) {
xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
xhci->quirks |= XHCI_LINK_TRB_QUIRK;
} else {
xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
}
retval = xhci_mem_init(xhci, GFP_KERNEL);
xhci_dbg(xhci, "Finished xhci_init\n");
return retval;
}
/*
* Called in interrupt context when there might be work
* queued on the event ring
*
* xhci->lock must be held by caller.
*/
static void xhci_work(struct xhci_hcd *xhci)
{
u32 temp;
u64 temp_64;
/*
* Clear the op reg interrupt status first,
* so we can receive interrupts from other MSI-X interrupters.
* Write 1 to clear the interrupt status.
*/
temp = xhci_readl(xhci, &xhci->op_regs->status);
temp |= STS_EINT;
xhci_writel(xhci, temp, &xhci->op_regs->status);
/* FIXME when MSI-X is supported and there are multiple vectors */
/* Clear the MSI-X event interrupt status */
/* Acknowledge the interrupt */
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
temp |= 0x3;
xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
/* Flush posted writes */
xhci_readl(xhci, &xhci->ir_set->irq_pending);
/* FIXME this should be a delayed service routine that clears the EHB */
xhci_handle_event(xhci);
/* Clear the event handler busy flag (RW1C); the event ring should be empty. */
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
/* Flush posted writes -- FIXME is this necessary? */
xhci_readl(xhci, &xhci->ir_set->irq_pending);
}
/*-------------------------------------------------------------------------*/
/*
* xHCI spec says we can get an interrupt, and if the HC has an error condition,
* we might get bad data out of the event ring. Section 4.10.2.7 has a list of
* indicators of an event TRB error, but we check the status *first* to be safe.
*/
irqreturn_t xhci_irq(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
u32 temp, temp2;
union xhci_trb *trb;
spin_lock(&xhci->lock);
trb = xhci->event_ring->dequeue;
/* Check if the xHC generated the interrupt, or the irq is shared */
temp = xhci_readl(xhci, &xhci->op_regs->status);
temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
if (temp == 0xffffffff && temp2 == 0xffffffff)
goto hw_died;
if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
spin_unlock(&xhci->lock);
return IRQ_NONE;
}
xhci_dbg(xhci, "op reg status = %08x\n", temp);
xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
xhci_dbg(xhci, "Event ring dequeue ptr:\n");
xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
(unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
lower_32_bits(trb->link.segment_ptr),
upper_32_bits(trb->link.segment_ptr),
(unsigned int) trb->link.intr_target,
(unsigned int) trb->link.control);
if (temp & STS_FATAL) {
xhci_warn(xhci, "WARNING: Host System Error\n");
xhci_halt(xhci);
hw_died:
xhci_to_hcd(xhci)->state = HC_STATE_HALT;
spin_unlock(&xhci->lock);
return -ESHUTDOWN;
}
xhci_work(xhci);
spin_unlock(&xhci->lock);
return IRQ_HANDLED;
}
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
void xhci_event_ring_work(unsigned long arg)
{
unsigned long flags;
int temp;
u64 temp_64;
struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
int i, j;
xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
spin_lock_irqsave(&xhci->lock, flags);
temp = xhci_readl(xhci, &xhci->op_regs->status);
xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
xhci->error_bitmask = 0;
xhci_dbg(xhci, "Event ring:\n");
xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
temp_64 &= ~ERST_PTR_MASK;
xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
xhci_dbg(xhci, "Command ring:\n");
xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
xhci_dbg_cmd_ptrs(xhci);
for (i = 0; i < MAX_HC_SLOTS; ++i) {
if (!xhci->devs[i])
continue;
for (j = 0; j < 31; ++j) {
struct xhci_ring *ring = xhci->devs[i]->eps[j].ring;
if (!ring)
continue;
xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
xhci_debug_segment(xhci, ring->deq_seg);
}
}
if (xhci->noops_submitted != NUM_TEST_NOOPS)
if (xhci_setup_one_noop(xhci))
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
if (!xhci->zombie)
mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
else
xhci_dbg(xhci, "Quit polling the event ring.\n");
}
#endif
/*
* Start the HC after it was halted.
*
* This function is called by the USB core when the HC driver is added.
* Its opposite is xhci_stop().
*
* xhci_init() must be called once before this function can be called.
* Reset the HC, enable device slot contexts, program DCBAAP, and
* set command ring pointer and event ring pointer.
*
* Setup MSI-X vectors and enable interrupts.
*/
int xhci_run(struct usb_hcd *hcd)
{
u32 temp;
u64 temp_64;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
void (*doorbell)(struct xhci_hcd *) = NULL;
hcd->uses_new_polling = 1;
hcd->poll_rh = 0;
xhci_dbg(xhci, "xhci_run\n");
#if 0 /* FIXME: MSI not setup yet */
/* Do this at the very last minute */
ret = xhci_setup_msix(xhci);
if (!ret)
return ret;
return -ENOSYS;
#endif
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
init_timer(&xhci->event_ring_timer);
xhci->event_ring_timer.data = (unsigned long) xhci;
xhci->event_ring_timer.function = xhci_event_ring_work;
/* Poll the event ring */
xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
xhci->zombie = 0;
xhci_dbg(xhci, "Setting event ring polling timer\n");
add_timer(&xhci->event_ring_timer);
#endif
xhci_dbg(xhci, "Command ring memory map follows:\n");
xhci_debug_ring(xhci, xhci->cmd_ring);
xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
xhci_dbg_cmd_ptrs(xhci);
xhci_dbg(xhci, "ERST memory map follows:\n");
xhci_dbg_erst(xhci, &xhci->erst);
xhci_dbg(xhci, "Event ring:\n");
xhci_debug_ring(xhci, xhci->event_ring);
xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
temp_64 &= ~ERST_PTR_MASK;
xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
xhci_dbg(xhci, "// Set the interrupt modulation register\n");
temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
temp &= ~ER_IRQ_INTERVAL_MASK;
temp |= (u32) 160;
xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
/* Set the HCD state before we enable the irqs */
hcd->state = HC_STATE_RUNNING;
temp = xhci_readl(xhci, &xhci->op_regs->command);
temp |= (CMD_EIE);
xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
temp);
xhci_writel(xhci, temp, &xhci->op_regs->command);
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
xhci_writel(xhci, ER_IRQ_ENABLE(temp),
&xhci->ir_set->irq_pending);
xhci_print_ir_set(xhci, xhci->ir_set, 0);
if (NUM_TEST_NOOPS > 0)
doorbell = xhci_setup_one_noop(xhci);
temp = xhci_readl(xhci, &xhci->op_regs->command);
temp |= (CMD_RUN);
xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
temp);
xhci_writel(xhci, temp, &xhci->op_regs->command);
/* Flush PCI posted writes */
temp = xhci_readl(xhci, &xhci->op_regs->command);
xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
if (doorbell)
(*doorbell)(xhci);
xhci_dbg(xhci, "Finished xhci_run\n");
return 0;
}
/*
* Stop xHCI driver.
*
* This function is called by the USB core when the HC driver is removed.
* Its opposite is xhci_run().
*
* Disable device contexts, disable IRQs, and quiesce the HC.
* Reset the HC, finish any completed transactions, and cleanup memory.
*/
void xhci_stop(struct usb_hcd *hcd)
{
u32 temp;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
spin_lock_irq(&xhci->lock);
if (HC_IS_RUNNING(hcd->state))
xhci_quiesce(xhci);
xhci_halt(xhci);
xhci_reset(xhci);
spin_unlock_irq(&xhci->lock);
#if 0 /* No MSI yet */
xhci_cleanup_msix(xhci);
#endif
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
/* Tell the event ring poll function not to reschedule */
xhci->zombie = 1;
del_timer_sync(&xhci->event_ring_timer);
#endif
xhci_dbg(xhci, "// Disabling event ring interrupts\n");
temp = xhci_readl(xhci, &xhci->op_regs->status);
xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
xhci_writel(xhci, ER_IRQ_DISABLE(temp),
&xhci->ir_set->irq_pending);
xhci_print_ir_set(xhci, xhci->ir_set, 0);
xhci_dbg(xhci, "cleaning up memory\n");
xhci_mem_cleanup(xhci);
xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
xhci_readl(xhci, &xhci->op_regs->status));
}
/*
* Shutdown HC (not bus-specific)
*
* This is called when the machine is rebooting or halting. We assume that the
* machine will be powered off, and the HC's internal state will be reset.
* Don't bother to free memory.
*/
void xhci_shutdown(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
spin_lock_irq(&xhci->lock);
xhci_halt(xhci);
spin_unlock_irq(&xhci->lock);
#if 0
xhci_cleanup_msix(xhci);
#endif
xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
xhci_readl(xhci, &xhci->op_regs->status));
}
/*-------------------------------------------------------------------------*/
/**
* xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
* HCDs. Find the index for an endpoint given its descriptor. Use the return
* value to right shift 1 for the bitmask.
*
* Index = (epnum * 2) + direction - 1,
* where direction = 0 for OUT, 1 for IN.
* For control endpoints, the IN index is used (OUT index is unused), so
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
*/
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
{
unsigned int index;
if (usb_endpoint_xfer_control(desc))
index = (unsigned int) (usb_endpoint_num(desc)*2);
else
index = (unsigned int) (usb_endpoint_num(desc)*2) +
(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
return index;
}
/* Find the flag for this endpoint (for use in the control context). Use the
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
* bit 1, etc.
*/
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
{
return 1 << (xhci_get_endpoint_index(desc) + 1);
}
/* Find the flag for this endpoint (for use in the control context). Use the
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
* bit 1, etc.
*/
unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
{
return 1 << (ep_index + 1);
}
/* Compute the last valid endpoint context index. Basically, this is the
* endpoint index plus one. For slot contexts with more than valid endpoint,
* we find the most significant bit set in the added contexts flags.
* e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
* fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
*/
unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
{
return fls(added_ctxs) - 1;
}
/* Returns 1 if the arguments are OK;
* returns 0 this is a root hub; returns -EINVAL for NULL pointers.
*/
int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep, int check_ep, const char *func) {
if (!hcd || (check_ep && !ep) || !udev) {
printk(KERN_DEBUG "xHCI %s called with invalid args\n",
func);
return -EINVAL;
}
if (!udev->parent) {
printk(KERN_DEBUG "xHCI %s called for root hub\n",
func);
return 0;
}
if (!udev->slot_id) {
printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
func);
return -EINVAL;
}
return 1;
}
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev, struct xhci_command *command,
bool ctx_change, bool must_succeed);
/*
* Full speed devices may have a max packet size greater than 8 bytes, but the
* USB core doesn't know that until it reads the first 8 bytes of the
* descriptor. If the usb_device's max packet size changes after that point,
* we need to issue an evaluate context command and wait on it.
*/
static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
unsigned int ep_index, struct urb *urb)
{
struct xhci_container_ctx *in_ctx;
struct xhci_container_ctx *out_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_ep_ctx *ep_ctx;
int max_packet_size;
int hw_max_packet_size;
int ret = 0;
out_ctx = xhci->devs[slot_id]->out_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
if (hw_max_packet_size != max_packet_size) {
xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
max_packet_size);
xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
hw_max_packet_size);
xhci_dbg(xhci, "Issuing evaluate context command.\n");
/* Set up the modified control endpoint 0 */
xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
xhci->devs[slot_id]->out_ctx, ep_index);
in_ctx = xhci->devs[slot_id]->in_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
/* Set up the input context flags for the command */
/* FIXME: This won't work if a non-default control endpoint
* changes max packet sizes.
*/
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
ctrl_ctx->add_flags = EP0_FLAG;
ctrl_ctx->drop_flags = 0;
xhci_dbg(xhci, "Slot %d input context\n", slot_id);
xhci_dbg_ctx(xhci, in_ctx, ep_index);
xhci_dbg(xhci, "Slot %d output context\n", slot_id);
xhci_dbg_ctx(xhci, out_ctx, ep_index);
ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
true, false);
/* Clean up the input context for later use by bandwidth
* functions.
*/
ctrl_ctx->add_flags = SLOT_FLAG;
}
return ret;
}
/*
* non-error returns are a promise to giveback() the urb later
* we drop ownership so next owner (or urb unlink) can get it
*/
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
unsigned long flags;
int ret = 0;
unsigned int slot_id, ep_index;
if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
return -EINVAL;
slot_id = urb->dev->slot_id;
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
if (!xhci->devs || !xhci->devs[slot_id]) {
if (!in_interrupt())
dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
ret = -EINVAL;
goto exit;
}
if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
if (!in_interrupt())
xhci_dbg(xhci, "urb submitted during PCI suspend\n");
ret = -ESHUTDOWN;
goto exit;
}
if (usb_endpoint_xfer_control(&urb->ep->desc)) {
/* Check to see if the max packet size for the default control
* endpoint changed during FS device enumeration
*/
if (urb->dev->speed == USB_SPEED_FULL) {
ret = xhci_check_maxpacket(xhci, slot_id,
ep_index, urb);
if (ret < 0)
return ret;
}
/* We have a spinlock and interrupts disabled, so we must pass
* atomic context to this function, which may allocate memory.
*/
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
spin_unlock_irqrestore(&xhci->lock, flags);
} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
spin_unlock_irqrestore(&xhci->lock, flags);
} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
slot_id, ep_index);
spin_unlock_irqrestore(&xhci->lock, flags);
} else {
ret = -EINVAL;
}
exit:
return ret;
}
/*
* Remove the URB's TD from the endpoint ring. This may cause the HC to stop
* USB transfers, potentially stopping in the middle of a TRB buffer. The HC
* should pick up where it left off in the TD, unless a Set Transfer Ring
* Dequeue Pointer is issued.
*
* The TRBs that make up the buffers for the canceled URB will be "removed" from
* the ring. Since the ring is a contiguous structure, they can't be physically
* removed. Instead, there are two options:
*
* 1) If the HC is in the middle of processing the URB to be canceled, we
* simply move the ring's dequeue pointer past those TRBs using the Set
* Transfer Ring Dequeue Pointer command. This will be the common case,
* when drivers timeout on the last submitted URB and attempt to cancel.
*
* 2) If the HC is in the middle of a different TD, we turn the TRBs into a
* series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
* HC will need to invalidate the any TRBs it has cached after the stop
* endpoint command, as noted in the xHCI 0.95 errata.
*
* 3) The TD may have completed by the time the Stop Endpoint Command
* completes, so software needs to handle that case too.
*
* This function should protect against the TD enqueueing code ringing the
* doorbell while this code is waiting for a Stop Endpoint command to complete.
* It also needs to account for multiple cancellations on happening at the same
* time for the same endpoint.
*
* Note that this function can be called in any context, or so says
* usb_hcd_unlink_urb()
*/
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
unsigned long flags;
int ret;
struct xhci_hcd *xhci;
struct xhci_td *td;
unsigned int ep_index;
struct xhci_ring *ep_ring;
struct xhci_virt_ep *ep;
xhci = hcd_to_xhci(hcd);
spin_lock_irqsave(&xhci->lock, flags);
/* Make sure the URB hasn't completed or been unlinked already */
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
if (ret || !urb->hcpriv)
goto done;
xhci_dbg(xhci, "Cancel URB %p\n", urb);
xhci_dbg(xhci, "Event ring:\n");
xhci_debug_ring(xhci, xhci->event_ring);
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
ep_ring = ep->ring;
xhci_dbg(xhci, "Endpoint ring:\n");
xhci_debug_ring(xhci, ep_ring);
td = (struct xhci_td *) urb->hcpriv;
ep->cancels_pending++;
list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
/* Queue a stop endpoint command, but only if this is
* the first cancellation to be handled.
*/
if (ep->cancels_pending == 1) {
xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
xhci_ring_cmd_db(xhci);
}
done:
spin_unlock_irqrestore(&xhci->lock, flags);
return ret;
}
/* Drop an endpoint from a new bandwidth configuration for this device.
* Only one call to this function is allowed per endpoint before
* check_bandwidth() or reset_bandwidth() must be called.
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
* add the endpoint to the schedule with possibly new parameters denoted by a
* different endpoint descriptor in usb_host_endpoint.
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
* not allowed.
*
* The USB core will not allow URBs to be queued to an endpoint that is being
* disabled, so there's no need for mutual exclusion to protect
* the xhci->devs[slot_id] structure.
*/
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci;
struct xhci_container_ctx *in_ctx, *out_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_slot_ctx *slot_ctx;
unsigned int last_ctx;
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
u32 drop_flag;
u32 new_add_flags, new_drop_flags, new_slot_info;
int ret;
ret = xhci_check_args(hcd, udev, ep, 1, __func__);
if (ret <= 0)
return ret;
xhci = hcd_to_xhci(hcd);
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
drop_flag = xhci_get_endpoint_flag(&ep->desc);
if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
__func__, drop_flag);
return 0;
}
if (!xhci->devs || !xhci->devs[udev->slot_id]) {
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
__func__);
return -EINVAL;
}
in_ctx = xhci->devs[udev->slot_id]->in_ctx;
out_ctx = xhci->devs[udev->slot_id]->out_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
/* If the HC already knows the endpoint is disabled,
* or the HCD has noted it is disabled, ignore this request
*/
if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
__func__, ep);
return 0;
}
ctrl_ctx->drop_flags |= drop_flag;
new_drop_flags = ctrl_ctx->drop_flags;
ctrl_ctx->add_flags = ~drop_flag;
new_add_flags = ctrl_ctx->add_flags;
last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
/* Update the last valid endpoint context, if we deleted the last one */
if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
slot_ctx->dev_info &= ~LAST_CTX_MASK;
slot_ctx->dev_info |= LAST_CTX(last_ctx);
}
new_slot_info = slot_ctx->dev_info;
xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
(unsigned int) ep->desc.bEndpointAddress,
udev->slot_id,
(unsigned int) new_drop_flags,
(unsigned int) new_add_flags,
(unsigned int) new_slot_info);
return 0;
}
/* Add an endpoint to a new possible bandwidth configuration for this device.
* Only one call to this function is allowed per endpoint before
* check_bandwidth() or reset_bandwidth() must be called.
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
* add the endpoint to the schedule with possibly new parameters denoted by a
* different endpoint descriptor in usb_host_endpoint.
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
* not allowed.
*
* The USB core will not allow URBs to be queued to an endpoint until the
* configuration or alt setting is installed in the device, so there's no need
* for mutual exclusion to protect the xhci->devs[slot_id] structure.
*/
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci;
struct xhci_container_ctx *in_ctx, *out_ctx;
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
struct xhci_slot_ctx *slot_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
u32 added_ctxs;
unsigned int last_ctx;
u32 new_add_flags, new_drop_flags, new_slot_info;
int ret = 0;
ret = xhci_check_args(hcd, udev, ep, 1, __func__);
if (ret <= 0) {
/* So we won't queue a reset ep command for a root hub */
ep->hcpriv = NULL;
return ret;
}
xhci = hcd_to_xhci(hcd);
added_ctxs = xhci_get_endpoint_flag(&ep->desc);
last_ctx = xhci_last_valid_endpoint(added_ctxs);
if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
/* FIXME when we have to issue an evaluate endpoint command to
* deal with ep0 max packet size changing once we get the
* descriptors
*/
xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
__func__, added_ctxs);
return 0;
}
if (!xhci->devs || !xhci->devs[udev->slot_id]) {
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
__func__);
return -EINVAL;
}
in_ctx = xhci->devs[udev->slot_id]->in_ctx;
out_ctx = xhci->devs[udev->slot_id]->out_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
/* If the HCD has already noted the endpoint is enabled,
* ignore this request.
*/
if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
__func__, ep);
return 0;
}
/*
* Configuration and alternate setting changes must be done in
* process context, not interrupt context (or so documenation
* for usb_set_interface() and usb_set_configuration() claim).
*/
if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
udev, ep, GFP_KERNEL) < 0) {
dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
__func__, ep->desc.bEndpointAddress);
return -ENOMEM;
}
ctrl_ctx->add_flags |= added_ctxs;
new_add_flags = ctrl_ctx->add_flags;
/* If xhci_endpoint_disable() was called for this endpoint, but the
* xHC hasn't been notified yet through the check_bandwidth() call,
* this re-adds a new state for the endpoint from the new endpoint
* descriptors. We must drop and re-add this endpoint, so we leave the
* drop flags alone.
*/
new_drop_flags = ctrl_ctx->drop_flags;
slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
/* Update the last valid endpoint context, if we just added one past */
if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
slot_ctx->dev_info &= ~LAST_CTX_MASK;
slot_ctx->dev_info |= LAST_CTX(last_ctx);
}
new_slot_info = slot_ctx->dev_info;
/* Store the usb_device pointer for later use */
ep->hcpriv = udev;
xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
(unsigned int) ep->desc.bEndpointAddress,
udev->slot_id,
(unsigned int) new_drop_flags,
(unsigned int) new_add_flags,
(unsigned int) new_slot_info);
return 0;
}
static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
{
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_ep_ctx *ep_ctx;
struct xhci_slot_ctx *slot_ctx;
int i;
/* When a device's add flag and drop flag are zero, any subsequent
* configure endpoint command will leave that endpoint's state
* untouched. Make sure we don't leave any old state in the input
* endpoint contexts.
*/
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
ctrl_ctx->drop_flags = 0;
ctrl_ctx->add_flags = 0;
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
slot_ctx->dev_info &= ~LAST_CTX_MASK;
/* Endpoint 0 is always valid */
slot_ctx->dev_info |= LAST_CTX(1);
for (i = 1; i < 31; ++i) {
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = 0;
ep_ctx->deq = 0;
ep_ctx->tx_info = 0;
}
}
static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
struct usb_device *udev, int *cmd_status)
{
int ret;
switch (*cmd_status) {
case COMP_ENOMEM:
dev_warn(&udev->dev, "Not enough host controller resources "
"for new device state.\n");
ret = -ENOMEM;
/* FIXME: can we allocate more resources for the HC? */
break;
case COMP_BW_ERR:
dev_warn(&udev->dev, "Not enough bandwidth "
"for new device state.\n");
ret = -ENOSPC;
/* FIXME: can we go back to the old state? */
break;
case COMP_TRB_ERR:
/* the HCD set up something wrong */
dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
"add flag = 1, "
"and endpoint is not disabled.\n");
ret = -EINVAL;
break;
case COMP_SUCCESS:
dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
ret = 0;
break;
default:
xhci_err(xhci, "ERROR: unexpected command completion "
"code 0x%x.\n", *cmd_status);
ret = -EINVAL;
break;
}
return ret;
}
static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
struct usb_device *udev, int *cmd_status)
{
int ret;
struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
switch (*cmd_status) {
case COMP_EINVAL:
dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
"context command.\n");
ret = -EINVAL;
break;
case COMP_EBADSLT:
dev_warn(&udev->dev, "WARN: slot not enabled for"
"evaluate context command.\n");
case COMP_CTX_STATE:
dev_warn(&udev->dev, "WARN: invalid context state for "
"evaluate context command.\n");
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
ret = -EINVAL;
break;
case COMP_SUCCESS:
dev_dbg(&udev->dev, "Successful evaluate context command\n");
ret = 0;
break;
default:
xhci_err(xhci, "ERROR: unexpected command completion "
"code 0x%x.\n", *cmd_status);
ret = -EINVAL;
break;
}
return ret;
}
/* Issue a configure endpoint command or evaluate context command
* and wait for it to finish.
*/
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
struct usb_device *udev,
struct xhci_command *command,
bool ctx_change, bool must_succeed)
{
int ret;
int timeleft;
unsigned long flags;
struct xhci_container_ctx *in_ctx;
struct completion *cmd_completion;
int *cmd_status;
struct xhci_virt_device *virt_dev;
spin_lock_irqsave(&xhci->lock, flags);
virt_dev = xhci->devs[udev->slot_id];
if (command) {
in_ctx = command->in_ctx;
cmd_completion = command->completion;
cmd_status = &command->status;
command->command_trb = xhci->cmd_ring->enqueue;
list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
} else {
in_ctx = virt_dev->in_ctx;
cmd_completion = &virt_dev->cmd_completion;
cmd_status = &virt_dev->cmd_status;
}
if (!ctx_change)
ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
udev->slot_id, must_succeed);
else
ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
udev->slot_id);
if (ret < 0) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
return -ENOMEM;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/* Wait for the configure endpoint command to complete */
timeleft = wait_for_completion_interruptible_timeout(
cmd_completion,
USB_CTRL_SET_TIMEOUT);
if (timeleft <= 0) {
xhci_warn(xhci, "%s while waiting for %s command\n",
timeleft == 0 ? "Timeout" : "Signal",
ctx_change == 0 ?
"configure endpoint" :
"evaluate context");
/* FIXME cancel the configure endpoint command */
return -ETIME;
}
if (!ctx_change)
return xhci_configure_endpoint_result(xhci, udev, cmd_status);
return xhci_evaluate_context_result(xhci, udev, cmd_status);
}
/* Called after one or more calls to xhci_add_endpoint() or
* xhci_drop_endpoint(). If this call fails, the USB core is expected
* to call xhci_reset_bandwidth().
*
* Since we are in the middle of changing either configuration or
* installing a new alt setting, the USB core won't allow URBs to be
* enqueued for any endpoint on the old config or interface. Nothing
* else should be touching the xhci->devs[slot_id] structure, so we
* don't need to take the xhci->lock for manipulating that.
*/
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
int i;
int ret = 0;
struct xhci_hcd *xhci;
struct xhci_virt_device *virt_dev;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_slot_ctx *slot_ctx;
ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
if (ret <= 0)
return ret;
xhci = hcd_to_xhci(hcd);
if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
__func__);
return -EINVAL;
}
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
virt_dev = xhci->devs[udev->slot_id];
/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
ctrl_ctx->add_flags |= SLOT_FLAG;
ctrl_ctx->add_flags &= ~EP0_FLAG;
ctrl_ctx->drop_flags &= ~SLOT_FLAG;
ctrl_ctx->drop_flags &= ~EP0_FLAG;
xhci_dbg(xhci, "New Input Control Context:\n");
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
xhci_dbg_ctx(xhci, virt_dev->in_ctx,
LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
ret = xhci_configure_endpoint(xhci, udev, NULL,
false, false);
if (ret) {
/* Callee should call reset_bandwidth() */
return ret;
}
xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
xhci_dbg_ctx(xhci, virt_dev->out_ctx,
LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
xhci_zero_in_ctx(xhci, virt_dev);
/* Free any old rings */
for (i = 1; i < 31; ++i) {
if (virt_dev->eps[i].new_ring) {
xhci_ring_free(xhci, virt_dev->eps[i].ring);
virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
virt_dev->eps[i].new_ring = NULL;
}
}
return ret;
}
void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci;
struct xhci_virt_device *virt_dev;
int i, ret;
ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
if (ret <= 0)
return;
xhci = hcd_to_xhci(hcd);
if (!xhci->devs || !xhci->devs[udev->slot_id]) {
xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
__func__);
return;
}
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
virt_dev = xhci->devs[udev->slot_id];
/* Free any rings allocated for added endpoints */
for (i = 0; i < 31; ++i) {
if (virt_dev->eps[i].new_ring) {
xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
virt_dev->eps[i].new_ring = NULL;
}
}
xhci_zero_in_ctx(xhci, virt_dev);
}
static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx,
u32 add_flags, u32 drop_flags)
{
struct xhci_input_control_ctx *ctrl_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
ctrl_ctx->add_flags = add_flags;
ctrl_ctx->drop_flags = drop_flags;
xhci_slot_copy(xhci, in_ctx, out_ctx);
ctrl_ctx->add_flags |= SLOT_FLAG;
xhci_dbg(xhci, "Input Context:\n");
xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
}
void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
struct xhci_dequeue_state *deq_state)
{
struct xhci_container_ctx *in_ctx;
struct xhci_ep_ctx *ep_ctx;
u32 added_ctxs;
dma_addr_t addr;
xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
xhci->devs[slot_id]->out_ctx, ep_index);
in_ctx = xhci->devs[slot_id]->in_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
deq_state->new_deq_ptr);
if (addr == 0) {
xhci_warn(xhci, "WARN Cannot submit config ep after "
"reset ep command\n");
xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
deq_state->new_deq_seg,
deq_state->new_deq_ptr);
return;
}
ep_ctx->deq = addr | deq_state->new_cycle_state;
added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
}
void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
struct usb_device *udev, unsigned int ep_index)
{
struct xhci_dequeue_state deq_state;
struct xhci_virt_ep *ep;
xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
ep = &xhci->devs[udev->slot_id]->eps[ep_index];
/* We need to move the HW's dequeue pointer past this TD,
* or it will attempt to resend it on the next doorbell ring.
*/
xhci_find_new_dequeue_state(xhci, udev->slot_id,
ep_index, ep->stopped_td,
&deq_state);
/* HW with the reset endpoint quirk will use the saved dequeue state to
* issue a configure endpoint command later.
*/
if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
xhci_dbg(xhci, "Queueing new dequeue state\n");
xhci_queue_new_dequeue_state(xhci, udev->slot_id,
ep_index, &deq_state);
} else {
/* Better hope no one uses the input context between now and the
* reset endpoint completion!
*/
xhci_dbg(xhci, "Setting up input context for "
"configure endpoint command\n");
xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
ep_index, &deq_state);
}
}
/* Deal with stalled endpoints. The core should have sent the control message
* to clear the halt condition. However, we need to make the xHCI hardware
* reset its sequence number, since a device will expect a sequence number of
* zero after the halt condition is cleared.
* Context: in_interrupt
*/
void xhci_endpoint_reset(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci;
struct usb_device *udev;
unsigned int ep_index;
unsigned long flags;
int ret;
struct xhci_virt_ep *virt_ep;
xhci = hcd_to_xhci(hcd);
udev = (struct usb_device *) ep->hcpriv;
/* Called with a root hub endpoint (or an endpoint that wasn't added
* with xhci_add_endpoint()
*/
if (!ep->hcpriv)
return;
ep_index = xhci_get_endpoint_index(&ep->desc);
virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
if (!virt_ep->stopped_td) {
xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
ep->desc.bEndpointAddress);
return;
}
if (usb_endpoint_xfer_control(&ep->desc)) {
xhci_dbg(xhci, "Control endpoint stall already handled.\n");
return;
}
xhci_dbg(xhci, "Queueing reset endpoint command\n");
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
/*
* Can't change the ring dequeue pointer until it's transitioned to the
* stopped state, which is only upon a successful reset endpoint
* command. Better hope that last command worked!
*/
if (!ret) {
xhci_cleanup_stalled_ring(xhci, udev, ep_index);
kfree(virt_ep->stopped_td);
xhci_ring_cmd_db(xhci);
}
spin_unlock_irqrestore(&xhci->lock, flags);
if (ret)
xhci_warn(xhci, "FIXME allocate a new ring segment\n");
}
/*
* At this point, the struct usb_device is about to go away, the device has
* disconnected, and all traffic has been stopped and the endpoints have been
* disabled. Free any HC data structures associated with that device.
*/
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
unsigned long flags;
if (udev->slot_id == 0)
return;
spin_lock_irqsave(&xhci->lock, flags);
if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
return;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/*
* Event command completion handler will free any data structures
* associated with the slot. XXX Can free sleep?
*/
}
/*
* Returns 0 if the xHC ran out of device slots, the Enable Slot command
* timed out, or allocating memory failed. Returns 1 on success.
*/
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
unsigned long flags;
int timeleft;
int ret;
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
if (ret) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
return 0;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/* XXX: how much time for xHC slot assignment? */
timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
USB_CTRL_SET_TIMEOUT);
if (timeleft <= 0) {
xhci_warn(xhci, "%s while waiting for a slot\n",
timeleft == 0 ? "Timeout" : "Signal");
/* FIXME cancel the enable slot request */
return 0;
}
if (!xhci->slot_id) {
xhci_err(xhci, "Error while assigning device slot ID\n");
return 0;
}
/* xhci_alloc_virt_device() does not touch rings; no need to lock */
if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
/* Disable slot, if we can do it without mem alloc */
xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
spin_lock_irqsave(&xhci->lock, flags);
if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
return 0;
}
udev->slot_id = xhci->slot_id;
/* Is this a LS or FS device under a HS hub? */
/* Hub or peripherial? */
return 1;
}
/*
* Issue an Address Device command (which will issue a SetAddress request to
* the device).
* We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
* we should only issue and wait on one address command at the same time.
*
* We add one to the device address issued by the hardware because the USB core
* uses address 1 for the root hubs (even though they're not really devices).
*/
int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
{
unsigned long flags;
int timeleft;
struct xhci_virt_device *virt_dev;
int ret = 0;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_slot_ctx *slot_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
u64 temp_64;
if (!udev->slot_id) {
xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
return -EINVAL;
}
virt_dev = xhci->devs[udev->slot_id];
/* If this is a Set Address to an unconfigured device, setup ep 0 */
if (!udev->config)
xhci_setup_addressable_virt_dev(xhci, udev);
/* Otherwise, assume the core has the device configured how it wants */
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
spin_lock_irqsave(&xhci->lock, flags);
ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
udev->slot_id);
if (ret) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
return ret;
}
xhci_ring_cmd_db(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
USB_CTRL_SET_TIMEOUT);
/* FIXME: From section 4.3.4: "Software shall be responsible for timing
* the SetAddress() "recovery interval" required by USB and aborting the
* command on a timeout.
*/
if (timeleft <= 0) {
xhci_warn(xhci, "%s while waiting for a slot\n",
timeleft == 0 ? "Timeout" : "Signal");
/* FIXME cancel the address device command */
return -ETIME;
}
switch (virt_dev->cmd_status) {
case COMP_CTX_STATE:
case COMP_EBADSLT:
xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
udev->slot_id);
ret = -EINVAL;
break;
case COMP_TX_ERR:
dev_warn(&udev->dev, "Device not responding to set address.\n");
ret = -EPROTO;
break;
case COMP_SUCCESS:
xhci_dbg(xhci, "Successful Address Device command\n");
break;
default:
xhci_err(xhci, "ERROR: unexpected command completion "
"code 0x%x.\n", virt_dev->cmd_status);
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
ret = -EINVAL;
break;
}
if (ret) {
return ret;
}
temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
udev->slot_id,
&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
(unsigned long long)
xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
(unsigned long long)virt_dev->out_ctx->dma);
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
/*
* USB core uses address 1 for the roothubs, so we add one to the
* address given back to us by the HC.
*/
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
/* Zero the input context control for later use */
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
ctrl_ctx->add_flags = 0;
ctrl_ctx->drop_flags = 0;
xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
/* XXX Meh, not sure if anyone else but choose_address uses this. */
set_bit(udev->devnum, udev->bus->devmap.devicemap);
return 0;
}
int xhci_get_frame(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
/* EHCI mods by the periodic size. Why? */
return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
}
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
static int __init xhci_hcd_init(void)
{
#ifdef CONFIG_PCI
int retval = 0;
retval = xhci_register_pci();
if (retval < 0) {
printk(KERN_DEBUG "Problem registering PCI driver.");
return retval;
}
#endif
/*
* Check the compiler generated sizes of structures that must be laid
* out in specific ways for hardware access.
*/
BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
/* xhci_device_control has eight fields, and also
* embeds one xhci_slot_ctx and 31 xhci_ep_ctx
*/
BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
return 0;
}
module_init(xhci_hcd_init);
static void __exit xhci_hcd_cleanup(void)
{
#ifdef CONFIG_PCI
xhci_unregister_pci();
#endif
}
module_exit(xhci_hcd_cleanup);