/*
* Faraday FOTG210 EHCI-like driver
*
* Copyright (c) 2013 Faraday Technology Corporation
*
* Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
* Feng-Hsin Chiang <john453@faraday-tech.com>
* Po-Yu Chuang <ratbert.chuang@gmail.com>
*
* Most of code borrowed from the Linux-3.7 EHCI driver
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/hrtimer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/moduleparam.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <asm/unaligned.h>
/*-------------------------------------------------------------------------*/
#define DRIVER_AUTHOR "Yuan-Hsin Chen"
#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
static const char hcd_name[] = "fotg210_hcd";
#undef FOTG210_URB_TRACE
#define FOTG210_STATS
/* magic numbers that can affect system performance */
#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
#define FOTG210_TUNE_RL_TT 0
#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
#define FOTG210_TUNE_MULT_TT 1
/*
* Some drivers think it's safe to schedule isochronous transfers more than
* 256 ms into the future (partly as a result of an old bug in the scheduling
* code). In an attempt to avoid trouble, we will use a minimum scheduling
* length of 512 frames instead of 256.
*/
#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
/* Initial IRQ latency: faster than hw default */
static int log2_irq_thresh; /* 0 to 6 */
module_param(log2_irq_thresh, int, S_IRUGO);
MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
/* initial park setting: slower than hw default */
static unsigned park;
module_param(park, uint, S_IRUGO);
MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
/* for link power management(LPM) feature */
static unsigned int hird;
module_param(hird, int, S_IRUGO);
MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
#include "fotg210.h"
/*-------------------------------------------------------------------------*/
#define fotg210_dbg(fotg210, fmt, args...) \
dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
#define fotg210_err(fotg210, fmt, args...) \
dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
#define fotg210_info(fotg210, fmt, args...) \
dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
#define fotg210_warn(fotg210, fmt, args...) \
dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
/* check the values in the HCSPARAMS register
* (host controller _Structural_ parameters)
* see EHCI spec, Table 2-4 for each value
*/
static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
{
u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
fotg210_dbg(fotg210,
"%s hcs_params 0x%x ports=%d\n",
label, params,
HCS_N_PORTS(params)
);
}
/* check the values in the HCCPARAMS register
* (host controller _Capability_ parameters)
* see EHCI Spec, Table 2-5 for each value
* */
static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
{
u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
fotg210_dbg(fotg210,
"%s hcc_params %04x uframes %s%s\n",
label,
params,
HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
HCC_CANPARK(params) ? " park" : "");
}
static void __maybe_unused
dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
{
fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
hc32_to_cpup(fotg210, &qtd->hw_next),
hc32_to_cpup(fotg210, &qtd->hw_alt_next),
hc32_to_cpup(fotg210, &qtd->hw_token),
hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
if (qtd->hw_buf[1])
fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
}
static void __maybe_unused
dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
struct fotg210_qh_hw *hw = qh->hw;
fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
}
static void __maybe_unused
dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
{
fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
itd->urb);
fotg210_dbg(fotg210,
" trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
hc32_to_cpu(fotg210, itd->hw_transaction[0]),
hc32_to_cpu(fotg210, itd->hw_transaction[1]),
hc32_to_cpu(fotg210, itd->hw_transaction[2]),
hc32_to_cpu(fotg210, itd->hw_transaction[3]),
hc32_to_cpu(fotg210, itd->hw_transaction[4]),
hc32_to_cpu(fotg210, itd->hw_transaction[5]),
hc32_to_cpu(fotg210, itd->hw_transaction[6]),
hc32_to_cpu(fotg210, itd->hw_transaction[7]));
fotg210_dbg(fotg210,
" buf: %08x %08x %08x %08x %08x %08x %08x\n",
hc32_to_cpu(fotg210, itd->hw_bufp[0]),
hc32_to_cpu(fotg210, itd->hw_bufp[1]),
hc32_to_cpu(fotg210, itd->hw_bufp[2]),
hc32_to_cpu(fotg210, itd->hw_bufp[3]),
hc32_to_cpu(fotg210, itd->hw_bufp[4]),
hc32_to_cpu(fotg210, itd->hw_bufp[5]),
hc32_to_cpu(fotg210, itd->hw_bufp[6]));
fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
itd->index[0], itd->index[1], itd->index[2],
itd->index[3], itd->index[4], itd->index[5],
itd->index[6], itd->index[7]);
}
static int __maybe_unused
dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
{
return scnprintf(buf, len,
"%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
label, label[0] ? " " : "", status,
(status & STS_ASS) ? " Async" : "",
(status & STS_PSS) ? " Periodic" : "",
(status & STS_RECL) ? " Recl" : "",
(status & STS_HALT) ? " Halt" : "",
(status & STS_IAA) ? " IAA" : "",
(status & STS_FATAL) ? " FATAL" : "",
(status & STS_FLR) ? " FLR" : "",
(status & STS_PCD) ? " PCD" : "",
(status & STS_ERR) ? " ERR" : "",
(status & STS_INT) ? " INT" : ""
);
}
static int __maybe_unused
dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
{
return scnprintf(buf, len,
"%s%sintrenable %02x%s%s%s%s%s%s",
label, label[0] ? " " : "", enable,
(enable & STS_IAA) ? " IAA" : "",
(enable & STS_FATAL) ? " FATAL" : "",
(enable & STS_FLR) ? " FLR" : "",
(enable & STS_PCD) ? " PCD" : "",
(enable & STS_ERR) ? " ERR" : "",
(enable & STS_INT) ? " INT" : ""
);
}
static const char *const fls_strings[] = { "1024", "512", "256", "??" };
static int
dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
{
return scnprintf(buf, len,
"%s%scommand %07x %s=%d ithresh=%d%s%s%s "
"period=%s%s %s",
label, label[0] ? " " : "", command,
(command & CMD_PARK) ? " park" : "(park)",
CMD_PARK_CNT(command),
(command >> 16) & 0x3f,
(command & CMD_IAAD) ? " IAAD" : "",
(command & CMD_ASE) ? " Async" : "",
(command & CMD_PSE) ? " Periodic" : "",
fls_strings[(command >> 2) & 0x3],
(command & CMD_RESET) ? " Reset" : "",
(command & CMD_RUN) ? "RUN" : "HALT"
);
}
static char
*dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
{
char *sig;
/* signaling state */
switch (status & (3 << 10)) {
case 0 << 10:
sig = "se0";
break;
case 1 << 10:
sig = "k";
break; /* low speed */
case 2 << 10:
sig = "j";
break;
default:
sig = "?";
break;
}
scnprintf(buf, len,
"%s%sport:%d status %06x %d "
"sig=%s%s%s%s%s%s%s%s",
label, label[0] ? " " : "", port, status,
status>>25,/*device address */
sig,
(status & PORT_RESET) ? " RESET" : "",
(status & PORT_SUSPEND) ? " SUSPEND" : "",
(status & PORT_RESUME) ? " RESUME" : "",
(status & PORT_PEC) ? " PEC" : "",
(status & PORT_PE) ? " PE" : "",
(status & PORT_CSC) ? " CSC" : "",
(status & PORT_CONNECT) ? " CONNECT" : "");
return buf;
}
/* functions have the "wrong" filename when they're output... */
#define dbg_status(fotg210, label, status) { \
char _buf[80]; \
dbg_status_buf(_buf, sizeof(_buf), label, status); \
fotg210_dbg(fotg210, "%s\n", _buf); \
}
#define dbg_cmd(fotg210, label, command) { \
char _buf[80]; \
dbg_command_buf(_buf, sizeof(_buf), label, command); \
fotg210_dbg(fotg210, "%s\n", _buf); \
}
#define dbg_port(fotg210, label, port, status) { \
char _buf[80]; \
fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \
}
/*-------------------------------------------------------------------------*/
/* troubleshooting help: expose state in debugfs */
static int debug_async_open(struct inode *, struct file *);
static int debug_periodic_open(struct inode *, struct file *);
static int debug_registers_open(struct inode *, struct file *);
static int debug_async_open(struct inode *, struct file *);
static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
static int debug_close(struct inode *, struct file *);
static const struct file_operations debug_async_fops = {
.owner = THIS_MODULE,
.open = debug_async_open,
.read = debug_output,
.release = debug_close,
.llseek = default_llseek,
};
static const struct file_operations debug_periodic_fops = {
.owner = THIS_MODULE,
.open = debug_periodic_open,
.read = debug_output,
.release = debug_close,
.llseek = default_llseek,
};
static const struct file_operations debug_registers_fops = {
.owner = THIS_MODULE,
.open = debug_registers_open,
.read = debug_output,
.release = debug_close,
.llseek = default_llseek,
};
static struct dentry *fotg210_debug_root;
struct debug_buffer {
ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
struct usb_bus *bus;
struct mutex mutex; /* protect filling of buffer */
size_t count; /* number of characters filled into buffer */
char *output_buf;
size_t alloc_size;
};
#define speed_char(info1)({ char tmp; \
switch (info1 & (3 << 12)) { \
case QH_FULL_SPEED: \
tmp = 'f'; break; \
case QH_LOW_SPEED: \
tmp = 'l'; break; \
case QH_HIGH_SPEED: \
tmp = 'h'; break; \
default: \
tmp = '?'; break; \
} tmp; })
static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
{
__u32 v = hc32_to_cpu(fotg210, token);
if (v & QTD_STS_ACTIVE)
return '*';
if (v & QTD_STS_HALT)
return '-';
if (!IS_SHORT_READ(v))
return ' ';
/* tries to advance through hw_alt_next */
return '/';
}
static void qh_lines(
struct fotg210_hcd *fotg210,
struct fotg210_qh *qh,
char **nextp,
unsigned *sizep
)
{
u32 scratch;
u32 hw_curr;
struct fotg210_qtd *td;
unsigned temp;
unsigned size = *sizep;
char *next = *nextp;
char mark;
__le32 list_end = FOTG210_LIST_END(fotg210);
struct fotg210_qh_hw *hw = qh->hw;
if (hw->hw_qtd_next == list_end) /* NEC does this */
mark = '@';
else
mark = token_mark(fotg210, hw->hw_token);
if (mark == '/') { /* qh_alt_next controls qh advance? */
if ((hw->hw_alt_next & QTD_MASK(fotg210))
== fotg210->async->hw->hw_alt_next)
mark = '#'; /* blocked */
else if (hw->hw_alt_next == list_end)
mark = '.'; /* use hw_qtd_next */
/* else alt_next points to some other qtd */
}
scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
temp = scnprintf(next, size,
"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
qh, scratch & 0x007f,
speed_char(scratch),
(scratch >> 8) & 0x000f,
scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
hc32_to_cpup(fotg210, &hw->hw_token), mark,
(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
? "data1" : "data0",
(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
size -= temp;
next += temp;
/* hc may be modifying the list as we read it ... */
list_for_each_entry(td, &qh->qtd_list, qtd_list) {
scratch = hc32_to_cpup(fotg210, &td->hw_token);
mark = ' ';
if (hw_curr == td->qtd_dma)
mark = '*';
else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
mark = '+';
else if (QTD_LENGTH(scratch)) {
if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
mark = '#';
else if (td->hw_alt_next != list_end)
mark = '/';
}
temp = snprintf(next, size,
"\n\t%p%c%s len=%d %08x urb %p",
td, mark, ({ char *tmp;
switch ((scratch>>8)&0x03) {
case 0:
tmp = "out";
break;
case 1:
tmp = "in";
break;
case 2:
tmp = "setup";
break;
default:
tmp = "?";
break;
} tmp; }),
(scratch >> 16) & 0x7fff,
scratch,
td->urb);
if (size < temp)
temp = size;
size -= temp;
next += temp;
if (temp == size)
goto done;
}
temp = snprintf(next, size, "\n");
if (size < temp)
temp = size;
size -= temp;
next += temp;
done:
*sizep = size;
*nextp = next;
}
static ssize_t fill_async_buffer(struct debug_buffer *buf)
{
struct usb_hcd *hcd;
struct fotg210_hcd *fotg210;
unsigned long flags;
unsigned temp, size;
char *next;
struct fotg210_qh *qh;
hcd = bus_to_hcd(buf->bus);
fotg210 = hcd_to_fotg210(hcd);
next = buf->output_buf;
size = buf->alloc_size;
*next = 0;
/* dumps a snapshot of the async schedule.
* usually empty except for long-term bulk reads, or head.
* one QH per line, and TDs we know about
*/
spin_lock_irqsave(&fotg210->lock, flags);
for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
qh = qh->qh_next.qh)
qh_lines(fotg210, qh, &next, &size);
if (fotg210->async_unlink && size > 0) {
temp = scnprintf(next, size, "\nunlink =\n");
size -= temp;
next += temp;
for (qh = fotg210->async_unlink; size > 0 && qh;
qh = qh->unlink_next)
qh_lines(fotg210, qh, &next, &size);
}
spin_unlock_irqrestore(&fotg210->lock, flags);
return strlen(buf->output_buf);
}
#define DBG_SCHED_LIMIT 64
static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
{
struct usb_hcd *hcd;
struct fotg210_hcd *fotg210;
unsigned long flags;
union fotg210_shadow p, *seen;
unsigned temp, size, seen_count;
char *next;
unsigned i;
__hc32 tag;
seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
if (!seen)
return 0;
seen_count = 0;
hcd = bus_to_hcd(buf->bus);
fotg210 = hcd_to_fotg210(hcd);
next = buf->output_buf;
size = buf->alloc_size;
temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
size -= temp;
next += temp;
/* dump a snapshot of the periodic schedule.
* iso changes, interrupt usually doesn't.
*/
spin_lock_irqsave(&fotg210->lock, flags);
for (i = 0; i < fotg210->periodic_size; i++) {
p = fotg210->pshadow[i];
if (likely(!p.ptr))
continue;
tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
temp = scnprintf(next, size, "%4d: ", i);
size -= temp;
next += temp;
do {
struct fotg210_qh_hw *hw;
switch (hc32_to_cpu(fotg210, tag)) {
case Q_TYPE_QH:
hw = p.qh->hw;
temp = scnprintf(next, size, " qh%d-%04x/%p",
p.qh->period,
hc32_to_cpup(fotg210,
&hw->hw_info2)
/* uframe masks */
& (QH_CMASK | QH_SMASK),
p.qh);
size -= temp;
next += temp;
/* don't repeat what follows this qh */
for (temp = 0; temp < seen_count; temp++) {
if (seen[temp].ptr != p.ptr)
continue;
if (p.qh->qh_next.ptr) {
temp = scnprintf(next, size,
" ...");
size -= temp;
next += temp;
}
break;
}
/* show more info the first time around */
if (temp == seen_count) {
u32 scratch = hc32_to_cpup(fotg210,
&hw->hw_info1);
struct fotg210_qtd *qtd;
char *type = "";
/* count tds, get ep direction */
temp = 0;
list_for_each_entry(qtd,
&p.qh->qtd_list,
qtd_list) {
temp++;
switch (0x03 & (hc32_to_cpu(
fotg210,
qtd->hw_token) >> 8)) {
case 0:
type = "out";
continue;
case 1:
type = "in";
continue;
}
}
temp = scnprintf(next, size,
"(%c%d ep%d%s "
"[%d/%d] q%d p%d)",
speed_char(scratch),
scratch & 0x007f,
(scratch >> 8) & 0x000f, type,
p.qh->usecs, p.qh->c_usecs,
temp,
0x7ff & (scratch >> 16));
if (seen_count < DBG_SCHED_LIMIT)
seen[seen_count++].qh = p.qh;
} else
temp = 0;
tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
p = p.qh->qh_next;
break;
case Q_TYPE_FSTN:
temp = scnprintf(next, size,
" fstn-%8x/%p", p.fstn->hw_prev,
p.fstn);
tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
p = p.fstn->fstn_next;
break;
case Q_TYPE_ITD:
temp = scnprintf(next, size,
" itd/%p", p.itd);
tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
p = p.itd->itd_next;
break;
}
size -= temp;
next += temp;
} while (p.ptr);
temp = scnprintf(next, size, "\n");
size -= temp;
next += temp;
}
spin_unlock_irqrestore(&fotg210->lock, flags);
kfree(seen);
return buf->alloc_size - size;
}
#undef DBG_SCHED_LIMIT
static const char *rh_state_string(struct fotg210_hcd *fotg210)
{
switch (fotg210->rh_state) {
case FOTG210_RH_HALTED:
return "halted";
case FOTG210_RH_SUSPENDED:
return "suspended";
case FOTG210_RH_RUNNING:
return "running";
case FOTG210_RH_STOPPING:
return "stopping";
}
return "?";
}
static ssize_t fill_registers_buffer(struct debug_buffer *buf)
{
struct usb_hcd *hcd;
struct fotg210_hcd *fotg210;
unsigned long flags;
unsigned temp, size, i;
char *next, scratch[80];
static const char fmt[] = "%*s\n";
static const char label[] = "";
hcd = bus_to_hcd(buf->bus);
fotg210 = hcd_to_fotg210(hcd);
next = buf->output_buf;
size = buf->alloc_size;
spin_lock_irqsave(&fotg210->lock, flags);
if (!HCD_HW_ACCESSIBLE(hcd)) {
size = scnprintf(next, size,
"bus %s, device %s\n"
"%s\n"
"SUSPENDED(no register access)\n",
hcd->self.controller->bus->name,
dev_name(hcd->self.controller),
hcd->product_desc);
goto done;
}
/* Capability Registers */
i = HC_VERSION(fotg210, fotg210_readl(fotg210,
&fotg210->caps->hc_capbase));
temp = scnprintf(next, size,
"bus %s, device %s\n"
"%s\n"
"EHCI %x.%02x, rh state %s\n",
hcd->self.controller->bus->name,
dev_name(hcd->self.controller),
hcd->product_desc,
i >> 8, i & 0x0ff, rh_state_string(fotg210));
size -= temp;
next += temp;
/* FIXME interpret both types of params */
i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
temp = scnprintf(next, size, "structural params 0x%08x\n", i);
size -= temp;
next += temp;
i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
temp = scnprintf(next, size, "capability params 0x%08x\n", i);
size -= temp;
next += temp;
/* Operational Registers */
temp = dbg_status_buf(scratch, sizeof(scratch), label,
fotg210_readl(fotg210, &fotg210->regs->status));
temp = scnprintf(next, size, fmt, temp, scratch);
size -= temp;
next += temp;
temp = dbg_command_buf(scratch, sizeof(scratch), label,
fotg210_readl(fotg210, &fotg210->regs->command));
temp = scnprintf(next, size, fmt, temp, scratch);
size -= temp;
next += temp;
temp = dbg_intr_buf(scratch, sizeof(scratch), label,
fotg210_readl(fotg210, &fotg210->regs->intr_enable));
temp = scnprintf(next, size, fmt, temp, scratch);
size -= temp;
next += temp;
temp = scnprintf(next, size, "uframe %04x\n",
fotg210_read_frame_index(fotg210));
size -= temp;
next += temp;
if (fotg210->async_unlink) {
temp = scnprintf(next, size, "async unlink qh %p\n",
fotg210->async_unlink);
size -= temp;
next += temp;
}
#ifdef FOTG210_STATS
temp = scnprintf(next, size,
"irq normal %ld err %ld iaa %ld(lost %ld)\n",
fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
fotg210->stats.lost_iaa);
size -= temp;
next += temp;
temp = scnprintf(next, size, "complete %ld unlink %ld\n",
fotg210->stats.complete, fotg210->stats.unlink);
size -= temp;
next += temp;
#endif
done:
spin_unlock_irqrestore(&fotg210->lock, flags);
return buf->alloc_size - size;
}
static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
ssize_t (*fill_func)(struct debug_buffer *))
{
struct debug_buffer *buf;
buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
if (buf) {
buf->bus = bus;
buf->fill_func = fill_func;
mutex_init(&buf->mutex);
buf->alloc_size = PAGE_SIZE;
}
return buf;
}
static int fill_buffer(struct debug_buffer *buf)
{
int ret = 0;
if (!buf->output_buf)
buf->output_buf = vmalloc(buf->alloc_size);
if (!buf->output_buf) {
ret = -ENOMEM;
goto out;
}
ret = buf->fill_func(buf);
if (ret >= 0) {
buf->count = ret;
ret = 0;
}
out:
return ret;
}
static ssize_t debug_output(struct file *file, char __user *user_buf,
size_t len, loff_t *offset)
{
struct debug_buffer *buf = file->private_data;
int ret = 0;
mutex_lock(&buf->mutex);
if (buf->count == 0) {
ret = fill_buffer(buf);
if (ret != 0) {
mutex_unlock(&buf->mutex);
goto out;
}
}
mutex_unlock(&buf->mutex);
ret = simple_read_from_buffer(user_buf, len, offset,
buf->output_buf, buf->count);
out:
return ret;
}
static int debug_close(struct inode *inode, struct file *file)
{
struct debug_buffer *buf = file->private_data;
if (buf) {
vfree(buf->output_buf);
kfree(buf);
}
return 0;
}
static int debug_async_open(struct inode *inode, struct file *file)
{
file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
return file->private_data ? 0 : -ENOMEM;
}
static int debug_periodic_open(struct inode *inode, struct file *file)
{
struct debug_buffer *buf;
buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
if (!buf)
return -ENOMEM;
buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
file->private_data = buf;
return 0;
}
static int debug_registers_open(struct inode *inode, struct file *file)
{
file->private_data = alloc_buffer(inode->i_private,
fill_registers_buffer);
return file->private_data ? 0 : -ENOMEM;
}
static inline void create_debug_files(struct fotg210_hcd *fotg210)
{
struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
fotg210_debug_root);
if (!fotg210->debug_dir)
return;
if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
&debug_async_fops))
goto file_error;
if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
&debug_periodic_fops))
goto file_error;
if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
&debug_registers_fops))
goto file_error;
return;
file_error:
debugfs_remove_recursive(fotg210->debug_dir);
}
static inline void remove_debug_files(struct fotg210_hcd *fotg210)
{
debugfs_remove_recursive(fotg210->debug_dir);
}
/*-------------------------------------------------------------------------*/
/*
* handshake - spin reading hc until handshake completes or fails
* @ptr: address of hc register to be read
* @mask: bits to look at in result of read
* @done: value of those bits when handshake succeeds
* @usec: timeout in microseconds
*
* Returns negative errno, or zero on success
*
* Success happens when the "mask" bits have the specified value (hardware
* handshake done). There are two failure modes: "usec" have passed (major
* hardware flakeout), or the register reads as all-ones (hardware removed).
*
* That last failure should_only happen in cases like physical cardbus eject
* before driver shutdown. But it also seems to be caused by bugs in cardbus
* bridge shutdown: shutting down the bridge before the devices using it.
*/
static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
u32 mask, u32 done, int usec)
{
u32 result;
do {
result = fotg210_readl(fotg210, ptr);
if (result == ~(u32)0) /* card removed */
return -ENODEV;
result &= mask;
if (result == done)
return 0;
udelay(1);
usec--;
} while (usec > 0);
return -ETIMEDOUT;
}
/*
* Force HC to halt state from unknown (EHCI spec section 2.3).
* Must be called with interrupts enabled and the lock not held.
*/
static int fotg210_halt(struct fotg210_hcd *fotg210)
{
u32 temp;
spin_lock_irq(&fotg210->lock);
/* disable any irqs left enabled by previous code */
fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
/*
* This routine gets called during probe before fotg210->command
* has been initialized, so we can't rely on its value.
*/
fotg210->command &= ~CMD_RUN;
temp = fotg210_readl(fotg210, &fotg210->regs->command);
temp &= ~(CMD_RUN | CMD_IAAD);
fotg210_writel(fotg210, temp, &fotg210->regs->command);
spin_unlock_irq(&fotg210->lock);
synchronize_irq(fotg210_to_hcd(fotg210)->irq);
return handshake(fotg210, &fotg210->regs->status,
STS_HALT, STS_HALT, 16 * 125);
}
/*
* Reset a non-running (STS_HALT == 1) controller.
* Must be called with interrupts enabled and the lock not held.
*/
static int fotg210_reset(struct fotg210_hcd *fotg210)
{
int retval;
u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
/* If the EHCI debug controller is active, special care must be
* taken before and after a host controller reset */
if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
fotg210->debug = NULL;
command |= CMD_RESET;
dbg_cmd(fotg210, "reset", command);
fotg210_writel(fotg210, command, &fotg210->regs->command);
fotg210->rh_state = FOTG210_RH_HALTED;
fotg210->next_statechange = jiffies;
retval = handshake(fotg210, &fotg210->regs->command,
CMD_RESET, 0, 250 * 1000);
if (retval)
return retval;
if (fotg210->debug)
dbgp_external_startup(fotg210_to_hcd(fotg210));
fotg210->port_c_suspend = fotg210->suspended_ports =
fotg210->resuming_ports = 0;
return retval;
}
/*
* Idle the controller (turn off the schedules).
* Must be called with interrupts enabled and the lock not held.
*/
static void fotg210_quiesce(struct fotg210_hcd *fotg210)
{
u32 temp;
if (fotg210->rh_state != FOTG210_RH_RUNNING)
return;
/* wait for any schedule enables/disables to take effect */
temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
16 * 125);
/* then disable anything that's still active */
spin_lock_irq(&fotg210->lock);
fotg210->command &= ~(CMD_ASE | CMD_PSE);
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
spin_unlock_irq(&fotg210->lock);
/* hardware can take 16 microframes to turn off ... */
handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
16 * 125);
}
/*-------------------------------------------------------------------------*/
static void end_unlink_async(struct fotg210_hcd *fotg210);
static void unlink_empty_async(struct fotg210_hcd *fotg210);
static void fotg210_work(struct fotg210_hcd *fotg210);
static void start_unlink_intr(struct fotg210_hcd *fotg210,
struct fotg210_qh *qh);
static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
/*-------------------------------------------------------------------------*/
/* Set a bit in the USBCMD register */
static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
{
fotg210->command |= bit;
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
/* unblock posted write */
fotg210_readl(fotg210, &fotg210->regs->command);
}
/* Clear a bit in the USBCMD register */
static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
{
fotg210->command &= ~bit;
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
/* unblock posted write */
fotg210_readl(fotg210, &fotg210->regs->command);
}
/*-------------------------------------------------------------------------*/
/*
* EHCI timer support... Now using hrtimers.
*
* Lots of different events are triggered from fotg210->hrtimer. Whenever
* the timer routine runs, it checks each possible event; events that are
* currently enabled and whose expiration time has passed get handled.
* The set of enabled events is stored as a collection of bitflags in
* fotg210->enabled_hrtimer_events, and they are numbered in order of
* increasing delay values (ranging between 1 ms and 100 ms).
*
* Rather than implementing a sorted list or tree of all pending events,
* we keep track only of the lowest-numbered pending event, in
* fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
* expiration time is set to the timeout value for this event.
*
* As a result, events might not get handled right away; the actual delay
* could be anywhere up to twice the requested delay. This doesn't
* matter, because none of the events are especially time-critical. The
* ones that matter most all have a delay of 1 ms, so they will be
* handled after 2 ms at most, which is okay. In addition to this, we
* allow for an expiration range of 1 ms.
*/
/*
* Delay lengths for the hrtimer event types.
* Keep this list sorted by delay length, in the same order as
* the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
*/
static unsigned event_delays_ns[] = {
1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
};
/* Enable a pending hrtimer event */
static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
bool resched)
{
ktime_t *timeout = &fotg210->hr_timeouts[event];
if (resched)
*timeout = ktime_add(ktime_get(),
ktime_set(0, event_delays_ns[event]));
fotg210->enabled_hrtimer_events |= (1 << event);
/* Track only the lowest-numbered pending event */
if (event < fotg210->next_hrtimer_event) {
fotg210->next_hrtimer_event = event;
hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
NSEC_PER_MSEC, HRTIMER_MODE_ABS);
}
}
/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
{
unsigned actual, want;
/* Don't enable anything if the controller isn't running (e.g., died) */
if (fotg210->rh_state != FOTG210_RH_RUNNING)
return;
want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
if (want != actual) {
/* Poll again later, but give up after about 20 ms */
if (fotg210->ASS_poll_count++ < 20) {
fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
true);
return;
}
fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
want, actual);
}
fotg210->ASS_poll_count = 0;
/* The status is up-to-date; restart or stop the schedule as needed */
if (want == 0) { /* Stopped */
if (fotg210->async_count > 0)
fotg210_set_command_bit(fotg210, CMD_ASE);
} else { /* Running */
if (fotg210->async_count == 0) {
/* Turn off the schedule after a while */
fotg210_enable_event(fotg210,
FOTG210_HRTIMER_DISABLE_ASYNC,
true);
}
}
}
/* Turn off the async schedule after a brief delay */
static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
{
fotg210_clear_command_bit(fotg210, CMD_ASE);
}
/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
{
unsigned actual, want;
/* Don't do anything if the controller isn't running (e.g., died) */
if (fotg210->rh_state != FOTG210_RH_RUNNING)
return;
want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
if (want != actual) {
/* Poll again later, but give up after about 20 ms */
if (fotg210->PSS_poll_count++ < 20) {
fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
true);
return;
}
fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
want, actual);
}
fotg210->PSS_poll_count = 0;
/* The status is up-to-date; restart or stop the schedule as needed */
if (want == 0) { /* Stopped */
if (fotg210->periodic_count > 0)
fotg210_set_command_bit(fotg210, CMD_PSE);
} else { /* Running */
if (fotg210->periodic_count == 0) {
/* Turn off the schedule after a while */
fotg210_enable_event(fotg210,
FOTG210_HRTIMER_DISABLE_PERIODIC,
true);
}
}
}
/* Turn off the periodic schedule after a brief delay */
static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
{
fotg210_clear_command_bit(fotg210, CMD_PSE);
}
/* Poll the STS_HALT status bit; see when a dead controller stops */
static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
{
if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
/* Give up after a few milliseconds */
if (fotg210->died_poll_count++ < 5) {
/* Try again later */
fotg210_enable_event(fotg210,
FOTG210_HRTIMER_POLL_DEAD, true);
return;
}
fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
}
/* Clean up the mess */
fotg210->rh_state = FOTG210_RH_HALTED;
fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
fotg210_work(fotg210);
end_unlink_async(fotg210);
/* Not in process context, so don't try to reset the controller */
}
/* Handle unlinked interrupt QHs once they are gone from the hardware */
static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
{
bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
/*
* Process all the QHs on the intr_unlink list that were added
* before the current unlink cycle began. The list is in
* temporal order, so stop when we reach the first entry in the
* current cycle. But if the root hub isn't running then
* process all the QHs on the list.
*/
fotg210->intr_unlinking = true;
while (fotg210->intr_unlink) {
struct fotg210_qh *qh = fotg210->intr_unlink;
if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
break;
fotg210->intr_unlink = qh->unlink_next;
qh->unlink_next = NULL;
end_unlink_intr(fotg210, qh);
}
/* Handle remaining entries later */
if (fotg210->intr_unlink) {
fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
true);
++fotg210->intr_unlink_cycle;
}
fotg210->intr_unlinking = false;
}
/* Start another free-iTDs/siTDs cycle */
static void start_free_itds(struct fotg210_hcd *fotg210)
{
if (!(fotg210->enabled_hrtimer_events &
BIT(FOTG210_HRTIMER_FREE_ITDS))) {
fotg210->last_itd_to_free = list_entry(
fotg210->cached_itd_list.prev,
struct fotg210_itd, itd_list);
fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
}
}
/* Wait for controller to stop using old iTDs and siTDs */
static void end_free_itds(struct fotg210_hcd *fotg210)
{
struct fotg210_itd *itd, *n;
if (fotg210->rh_state < FOTG210_RH_RUNNING)
fotg210->last_itd_to_free = NULL;
list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
list_del(&itd->itd_list);
dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
if (itd == fotg210->last_itd_to_free)
break;
}
if (!list_empty(&fotg210->cached_itd_list))
start_free_itds(fotg210);
}
/* Handle lost (or very late) IAA interrupts */
static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
{
if (fotg210->rh_state != FOTG210_RH_RUNNING)
return;
/*
* Lost IAA irqs wedge things badly; seen first with a vt8235.
* So we need this watchdog, but must protect it against both
* (a) SMP races against real IAA firing and retriggering, and
* (b) clean HC shutdown, when IAA watchdog was pending.
*/
if (fotg210->async_iaa) {
u32 cmd, status;
/* If we get here, IAA is *REALLY* late. It's barely
* conceivable that the system is so busy that CMD_IAAD
* is still legitimately set, so let's be sure it's
* clear before we read STS_IAA. (The HC should clear
* CMD_IAAD when it sets STS_IAA.)
*/
cmd = fotg210_readl(fotg210, &fotg210->regs->command);
/*
* If IAA is set here it either legitimately triggered
* after the watchdog timer expired (_way_ late, so we'll
* still count it as lost) ... or a silicon erratum:
* - VIA seems to set IAA without triggering the IRQ;
* - IAAD potentially cleared without setting IAA.
*/
status = fotg210_readl(fotg210, &fotg210->regs->status);
if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
COUNT(fotg210->stats.lost_iaa);
fotg210_writel(fotg210, STS_IAA,
&fotg210->regs->status);
}
fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
status, cmd);
end_unlink_async(fotg210);
}
}
/* Enable the I/O watchdog, if appropriate */
static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
{
/* Not needed if the controller isn't running or it's already enabled */
if (fotg210->rh_state != FOTG210_RH_RUNNING ||
(fotg210->enabled_hrtimer_events &
BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
return;
/*
* Isochronous transfers always need the watchdog.
* For other sorts we use it only if the flag is set.
*/
if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
fotg210->async_count + fotg210->intr_count > 0))
fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
true);
}
/*
* Handler functions for the hrtimer event types.
* Keep this array in the same order as the event types indexed by
* enum fotg210_hrtimer_event in fotg210.h.
*/
static void (*event_handlers[])(struct fotg210_hcd *) = {
fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
};
static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
{
struct fotg210_hcd *fotg210 =
container_of(t, struct fotg210_hcd, hrtimer);
ktime_t now;
unsigned long events;
unsigned long flags;
unsigned e;
spin_lock_irqsave(&fotg210->lock, flags);
events = fotg210->enabled_hrtimer_events;
fotg210->enabled_hrtimer_events = 0;
fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
/*
* Check each pending event. If its time has expired, handle
* the event; otherwise re-enable it.
*/
now = ktime_get();
for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
event_handlers[e](fotg210);
else
fotg210_enable_event(fotg210, e, false);
}
spin_unlock_irqrestore(&fotg210->lock, flags);
return HRTIMER_NORESTART;
}
/*-------------------------------------------------------------------------*/
#define fotg210_bus_suspend NULL
#define fotg210_bus_resume NULL
/*-------------------------------------------------------------------------*/
static int check_reset_complete(
struct fotg210_hcd *fotg210,
int index,
u32 __iomem *status_reg,
int port_status
) {
if (!(port_status & PORT_CONNECT))
return port_status;
/* if reset finished and it's still not enabled -- handoff */
if (!(port_status & PORT_PE)) {
/* with integrated TT, there's nobody to hand it to! */
fotg210_dbg(fotg210,
"Failed to enable port %d on root hub TT\n",
index+1);
return port_status;
} else {
fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
index + 1);
}
return port_status;
}
/*-------------------------------------------------------------------------*/
/* build "status change" packet (one or two bytes) from HC registers */
static int
fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
u32 temp, status;
u32 mask;
int retval = 1;
unsigned long flags;
/* init status to no-changes */
buf[0] = 0;
/* Inform the core about resumes-in-progress by returning
* a non-zero value even if there are no status changes.
*/
status = fotg210->resuming_ports;
mask = PORT_CSC | PORT_PEC;
/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
/* no hub change reports (bit 0) for now (power, ...) */
/* port N changes (bit N)? */
spin_lock_irqsave(&fotg210->lock, flags);
temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
/*
* Return status information even for ports with OWNER set.
* Otherwise hub_wq wouldn't see the disconnect event when a
* high-speed device is switched over to the companion
* controller by the user.
*/
if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
|| (fotg210->reset_done[0] && time_after_eq(
jiffies, fotg210->reset_done[0]))) {
buf[0] |= 1 << 1;
status = STS_PCD;
}
/* FIXME autosuspend idle root hubs */
spin_unlock_irqrestore(&fotg210->lock, flags);
return status ? retval : 0;
}
/*-------------------------------------------------------------------------*/
static void
fotg210_hub_descriptor(
struct fotg210_hcd *fotg210,
struct usb_hub_descriptor *desc
) {
int ports = HCS_N_PORTS(fotg210->hcs_params);
u16 temp;
desc->bDescriptorType = 0x29;
desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
desc->bHubContrCurrent = 0;
desc->bNbrPorts = ports;
temp = 1 + (ports / 8);
desc->bDescLength = 7 + 2 * temp;
/* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
temp = 0x0008; /* per-port overcurrent reporting */
temp |= 0x0002; /* no power switching */
desc->wHubCharacteristics = cpu_to_le16(temp);
}
/*-------------------------------------------------------------------------*/
static int fotg210_hub_control(
struct usb_hcd *hcd,
u16 typeReq,
u16 wValue,
u16 wIndex,
char *buf,
u16 wLength
) {
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
int ports = HCS_N_PORTS(fotg210->hcs_params);
u32 __iomem *status_reg = &fotg210->regs->port_status;
u32 temp, temp1, status;
unsigned long flags;
int retval = 0;
unsigned selector;
/*
* FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
* HCS_INDICATOR may say we can change LEDs to off/amber/green.
* (track current state ourselves) ... blink for diagnostics,
* power, "this is the one", etc. EHCI spec supports this.
*/
spin_lock_irqsave(&fotg210->lock, flags);
switch (typeReq) {
case ClearHubFeature:
switch (wValue) {
case C_HUB_LOCAL_POWER:
case C_HUB_OVER_CURRENT:
/* no hub-wide feature/status flags */
break;
default:
goto error;
}
break;
case ClearPortFeature:
if (!wIndex || wIndex > ports)
goto error;
wIndex--;
temp = fotg210_readl(fotg210, status_reg);
temp &= ~PORT_RWC_BITS;
/*
* Even if OWNER is set, so the port is owned by the
* companion controller, hub_wq needs to be able to clear
* the port-change status bits (especially
* USB_PORT_STAT_C_CONNECTION).
*/
switch (wValue) {
case USB_PORT_FEAT_ENABLE:
fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
break;
case USB_PORT_FEAT_C_ENABLE:
fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
break;
case USB_PORT_FEAT_SUSPEND:
if (temp & PORT_RESET)
goto error;
if (!(temp & PORT_SUSPEND))
break;
if ((temp & PORT_PE) == 0)
goto error;
/* resume signaling for 20 msec */
fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
fotg210->reset_done[wIndex] = jiffies
+ msecs_to_jiffies(20);
break;
case USB_PORT_FEAT_C_SUSPEND:
clear_bit(wIndex, &fotg210->port_c_suspend);
break;
case USB_PORT_FEAT_C_CONNECTION:
fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
fotg210_writel(fotg210, temp | OTGISR_OVC,
&fotg210->regs->otgisr);
break;
case USB_PORT_FEAT_C_RESET:
/* GetPortStatus clears reset */
break;
default:
goto error;
}
fotg210_readl(fotg210, &fotg210->regs->command);
break;
case GetHubDescriptor:
fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
buf);
break;
case GetHubStatus:
/* no hub-wide feature/status flags */
memset(buf, 0, 4);
/*cpu_to_le32s ((u32 *) buf); */
break;
case GetPortStatus:
if (!wIndex || wIndex > ports)
goto error;
wIndex--;
status = 0;
temp = fotg210_readl(fotg210, status_reg);
/* wPortChange bits */
if (temp & PORT_CSC)
status |= USB_PORT_STAT_C_CONNECTION << 16;
if (temp & PORT_PEC)
status |= USB_PORT_STAT_C_ENABLE << 16;
temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
if (temp1 & OTGISR_OVC)
status |= USB_PORT_STAT_C_OVERCURRENT << 16;
/* whoever resumes must GetPortStatus to complete it!! */
if (temp & PORT_RESUME) {
/* Remote Wakeup received? */
if (!fotg210->reset_done[wIndex]) {
/* resume signaling for 20 msec */
fotg210->reset_done[wIndex] = jiffies
+ msecs_to_jiffies(20);
/* check the port again */
mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
fotg210->reset_done[wIndex]);
}
/* resume completed? */
else if (time_after_eq(jiffies,
fotg210->reset_done[wIndex])) {
clear_bit(wIndex, &fotg210->suspended_ports);
set_bit(wIndex, &fotg210->port_c_suspend);
fotg210->reset_done[wIndex] = 0;
/* stop resume signaling */
temp = fotg210_readl(fotg210, status_reg);
fotg210_writel(fotg210,
temp & ~(PORT_RWC_BITS | PORT_RESUME),
status_reg);
clear_bit(wIndex, &fotg210->resuming_ports);
retval = handshake(fotg210, status_reg,
PORT_RESUME, 0, 2000 /* 2msec */);
if (retval != 0) {
fotg210_err(fotg210,
"port %d resume error %d\n",
wIndex + 1, retval);
goto error;
}
temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
}
}
/* whoever resets must GetPortStatus to complete it!! */
if ((temp & PORT_RESET)
&& time_after_eq(jiffies,
fotg210->reset_done[wIndex])) {
status |= USB_PORT_STAT_C_RESET << 16;
fotg210->reset_done[wIndex] = 0;
clear_bit(wIndex, &fotg210->resuming_ports);
/* force reset to complete */
fotg210_writel(fotg210,
temp & ~(PORT_RWC_BITS | PORT_RESET),
status_reg);
/* REVISIT: some hardware needs 550+ usec to clear
* this bit; seems too long to spin routinely...
*/
retval = handshake(fotg210, status_reg,
PORT_RESET, 0, 1000);
if (retval != 0) {
fotg210_err(fotg210, "port %d reset error %d\n",
wIndex + 1, retval);
goto error;
}
/* see what we found out */
temp = check_reset_complete(fotg210, wIndex, status_reg,
fotg210_readl(fotg210, status_reg));
}
if (!(temp & (PORT_RESUME|PORT_RESET))) {
fotg210->reset_done[wIndex] = 0;
clear_bit(wIndex, &fotg210->resuming_ports);
}
/* transfer dedicated ports to the companion hc */
if ((temp & PORT_CONNECT) &&
test_bit(wIndex, &fotg210->companion_ports)) {
temp &= ~PORT_RWC_BITS;
fotg210_writel(fotg210, temp, status_reg);
fotg210_dbg(fotg210, "port %d --> companion\n",
wIndex + 1);
temp = fotg210_readl(fotg210, status_reg);
}
/*
* Even if OWNER is set, there's no harm letting hub_wq
* see the wPortStatus values (they should all be 0 except
* for PORT_POWER anyway).
*/
if (temp & PORT_CONNECT) {
status |= USB_PORT_STAT_CONNECTION;
status |= fotg210_port_speed(fotg210, temp);
}
if (temp & PORT_PE)
status |= USB_PORT_STAT_ENABLE;
/* maybe the port was unsuspended without our knowledge */
if (temp & (PORT_SUSPEND|PORT_RESUME)) {
status |= USB_PORT_STAT_SUSPEND;
} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
clear_bit(wIndex, &fotg210->suspended_ports);
clear_bit(wIndex, &fotg210->resuming_ports);
fotg210->reset_done[wIndex] = 0;
if (temp & PORT_PE)
set_bit(wIndex, &fotg210->port_c_suspend);
}
temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
if (temp1 & OTGISR_OVC)
status |= USB_PORT_STAT_OVERCURRENT;
if (temp & PORT_RESET)
status |= USB_PORT_STAT_RESET;
if (test_bit(wIndex, &fotg210->port_c_suspend))
status |= USB_PORT_STAT_C_SUSPEND << 16;
if (status & ~0xffff) /* only if wPortChange is interesting */
dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
put_unaligned_le32(status, buf);
break;
case SetHubFeature:
switch (wValue) {
case C_HUB_LOCAL_POWER:
case C_HUB_OVER_CURRENT:
/* no hub-wide feature/status flags */
break;
default:
goto error;
}
break;
case SetPortFeature:
selector = wIndex >> 8;
wIndex &= 0xff;
if (!wIndex || wIndex > ports)
goto error;
wIndex--;
temp = fotg210_readl(fotg210, status_reg);
temp &= ~PORT_RWC_BITS;
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
if ((temp & PORT_PE) == 0
|| (temp & PORT_RESET) != 0)
goto error;
/* After above check the port must be connected.
* Set appropriate bit thus could put phy into low power
* mode if we have hostpc feature
*/
fotg210_writel(fotg210, temp | PORT_SUSPEND,
status_reg);
set_bit(wIndex, &fotg210->suspended_ports);
break;
case USB_PORT_FEAT_RESET:
if (temp & PORT_RESUME)
goto error;
/* line status bits may report this as low speed,
* which can be fine if this root hub has a
* transaction translator built in.
*/
fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
temp |= PORT_RESET;
temp &= ~PORT_PE;
/*
* caller must wait, then call GetPortStatus
* usb 2.0 spec says 50 ms resets on root
*/
fotg210->reset_done[wIndex] = jiffies
+ msecs_to_jiffies(50);
fotg210_writel(fotg210, temp, status_reg);
break;
/* For downstream facing ports (these): one hub port is put
* into test mode according to USB2 11.24.2.13, then the hub
* must be reset (which for root hub now means rmmod+modprobe,
* or else system reboot). See EHCI 2.3.9 and 4.14 for info
* about the EHCI-specific stuff.
*/
case USB_PORT_FEAT_TEST:
if (!selector || selector > 5)
goto error;
spin_unlock_irqrestore(&fotg210->lock, flags);
fotg210_quiesce(fotg210);
spin_lock_irqsave(&fotg210->lock, flags);
/* Put all enabled ports into suspend */
temp = fotg210_readl(fotg210, status_reg) &
~PORT_RWC_BITS;
if (temp & PORT_PE)
fotg210_writel(fotg210, temp | PORT_SUSPEND,
status_reg);
spin_unlock_irqrestore(&fotg210->lock, flags);
fotg210_halt(fotg210);
spin_lock_irqsave(&fotg210->lock, flags);
temp = fotg210_readl(fotg210, status_reg);
temp |= selector << 16;
fotg210_writel(fotg210, temp, status_reg);
break;
default:
goto error;
}
fotg210_readl(fotg210, &fotg210->regs->command);
break;
default:
error:
/* "stall" on error */
retval = -EPIPE;
}
spin_unlock_irqrestore(&fotg210->lock, flags);
return retval;
}
static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
int portnum)
{
return;
}
static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
int portnum)
{
return 0;
}
/*-------------------------------------------------------------------------*/
/*
* There's basically three types of memory:
* - data used only by the HCD ... kmalloc is fine
* - async and periodic schedules, shared by HC and HCD ... these
* need to use dma_pool or dma_alloc_coherent
* - driver buffers, read/written by HC ... single shot DMA mapped
*
* There's also "register" data (e.g. PCI or SOC), which is memory mapped.
* No memory seen by this driver is pageable.
*/
/*-------------------------------------------------------------------------*/
/* Allocate the key transfer structures from the previously allocated pool */
static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
struct fotg210_qtd *qtd, dma_addr_t dma)
{
memset(qtd, 0, sizeof(*qtd));
qtd->qtd_dma = dma;
qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
qtd->hw_next = FOTG210_LIST_END(fotg210);
qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
INIT_LIST_HEAD(&qtd->qtd_list);
}
static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
gfp_t flags)
{
struct fotg210_qtd *qtd;
dma_addr_t dma;
qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
if (qtd != NULL)
fotg210_qtd_init(fotg210, qtd, dma);
return qtd;
}
static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
struct fotg210_qtd *qtd)
{
dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
}
static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
/* clean qtds first, and know this is not linked */
if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
fotg210_dbg(fotg210, "unused qh not empty!\n");
BUG();
}
if (qh->dummy)
fotg210_qtd_free(fotg210, qh->dummy);
dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
kfree(qh);
}
static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
gfp_t flags)
{
struct fotg210_qh *qh;
dma_addr_t dma;
qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
if (!qh)
goto done;
qh->hw = (struct fotg210_qh_hw *)
dma_pool_alloc(fotg210->qh_pool, flags, &dma);
if (!qh->hw)
goto fail;
memset(qh->hw, 0, sizeof(*qh->hw));
qh->qh_dma = dma;
INIT_LIST_HEAD(&qh->qtd_list);
/* dummy td enables safe urb queuing */
qh->dummy = fotg210_qtd_alloc(fotg210, flags);
if (qh->dummy == NULL) {
fotg210_dbg(fotg210, "no dummy td\n");
goto fail1;
}
done:
return qh;
fail1:
dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
fail:
kfree(qh);
return NULL;
}
/*-------------------------------------------------------------------------*/
/* The queue heads and transfer descriptors are managed from pools tied
* to each of the "per device" structures.
* This is the initialisation and cleanup code.
*/
static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
{
if (fotg210->async)
qh_destroy(fotg210, fotg210->async);
fotg210->async = NULL;
if (fotg210->dummy)
qh_destroy(fotg210, fotg210->dummy);
fotg210->dummy = NULL;
/* DMA consistent memory and pools */
if (fotg210->qtd_pool)
dma_pool_destroy(fotg210->qtd_pool);
fotg210->qtd_pool = NULL;
if (fotg210->qh_pool) {
dma_pool_destroy(fotg210->qh_pool);
fotg210->qh_pool = NULL;
}
if (fotg210->itd_pool)
dma_pool_destroy(fotg210->itd_pool);
fotg210->itd_pool = NULL;
if (fotg210->periodic)
dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
fotg210->periodic_size * sizeof(u32),
fotg210->periodic, fotg210->periodic_dma);
fotg210->periodic = NULL;
/* shadow periodic table */
kfree(fotg210->pshadow);
fotg210->pshadow = NULL;
}
/* remember to add cleanup code (above) if you add anything here */
static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
{
int i;
/* QTDs for control/bulk/intr transfers */
fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
fotg210_to_hcd(fotg210)->self.controller,
sizeof(struct fotg210_qtd),
32 /* byte alignment (for hw parts) */,
4096 /* can't cross 4K */);
if (!fotg210->qtd_pool)
goto fail;
/* QHs for control/bulk/intr transfers */
fotg210->qh_pool = dma_pool_create("fotg210_qh",
fotg210_to_hcd(fotg210)->self.controller,
sizeof(struct fotg210_qh_hw),
32 /* byte alignment (for hw parts) */,
4096 /* can't cross 4K */);
if (!fotg210->qh_pool)
goto fail;
fotg210->async = fotg210_qh_alloc(fotg210, flags);
if (!fotg210->async)
goto fail;
/* ITD for high speed ISO transfers */
fotg210->itd_pool = dma_pool_create("fotg210_itd",
fotg210_to_hcd(fotg210)->self.controller,
sizeof(struct fotg210_itd),
64 /* byte alignment (for hw parts) */,
4096 /* can't cross 4K */);
if (!fotg210->itd_pool)
goto fail;
/* Hardware periodic table */
fotg210->periodic = (__le32 *)
dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
fotg210->periodic_size * sizeof(__le32),
&fotg210->periodic_dma, 0);
if (fotg210->periodic == NULL)
goto fail;
for (i = 0; i < fotg210->periodic_size; i++)
fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
/* software shadow of hardware table */
fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
flags);
if (fotg210->pshadow != NULL)
return 0;
fail:
fotg210_dbg(fotg210, "couldn't init memory\n");
fotg210_mem_cleanup(fotg210);
return -ENOMEM;
}
/*-------------------------------------------------------------------------*/
/*
* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
*
* Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
* entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
* buffers needed for the larger number). We use one QH per endpoint, queue
* multiple urbs (all three types) per endpoint. URBs may need several qtds.
*
* ISO traffic uses "ISO TD" (itd) records, and (along with
* interrupts) needs careful scheduling. Performance improvements can be
* an ongoing challenge. That's in "ehci-sched.c".
*
* USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
* or otherwise through transaction translators (TTs) in USB 2.0 hubs using
* (b) special fields in qh entries or (c) split iso entries. TTs will
* buffer low/full speed data so the host collects it at high speed.
*/
/*-------------------------------------------------------------------------*/
/* fill a qtd, returning how much of the buffer we were able to queue up */
static int
qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
size_t len, int token, int maxpacket)
{
int i, count;
u64 addr = buf;
/* one buffer entry per 4K ... first might be short or unaligned */
qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
count = 0x1000 - (buf & 0x0fff); /* rest of that page */
if (likely(len < count)) /* ... iff needed */
count = len;
else {
buf += 0x1000;
buf &= ~0x0fff;
/* per-qtd limit: from 16K to 20K (best alignment) */
for (i = 1; count < len && i < 5; i++) {
addr = buf;
qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
(u32)(addr >> 32));
buf += 0x1000;
if ((count + 0x1000) < len)
count += 0x1000;
else
count = len;
}
/* short packets may only terminate transfers */
if (count != len)
count -= (count % maxpacket);
}
qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
qtd->length = count;
return count;
}
/*-------------------------------------------------------------------------*/
static inline void
qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
struct fotg210_qtd *qtd)
{
struct fotg210_qh_hw *hw = qh->hw;
/* writes to an active overlay are unsafe */
BUG_ON(qh->qh_state != QH_STATE_IDLE);
hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
hw->hw_alt_next = FOTG210_LIST_END(fotg210);
/* Except for control endpoints, we make hardware maintain data
* toggle (like OHCI) ... here (re)initialize the toggle in the QH,
* and set the pseudo-toggle in udev. Only usb_clear_halt() will
* ever clear it.
*/
if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
unsigned is_out, epnum;
is_out = qh->is_out;
epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
usb_settoggle(qh->dev, epnum, is_out, 1);
}
}
hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
}
/* if it weren't for a common silicon quirk (writing the dummy into the qh
* overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
* recovery (including urb dequeue) would need software changes to a QH...
*/
static void
qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
struct fotg210_qtd *qtd;
if (list_empty(&qh->qtd_list))
qtd = qh->dummy;
else {
qtd = list_entry(qh->qtd_list.next,
struct fotg210_qtd, qtd_list);
/*
* first qtd may already be partially processed.
* If we come here during unlink, the QH overlay region
* might have reference to the just unlinked qtd. The
* qtd is updated in qh_completions(). Update the QH
* overlay here.
*/
if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
qh->hw->hw_qtd_next = qtd->hw_next;
qtd = NULL;
}
}
if (qtd)
qh_update(fotg210, qh, qtd);
}
/*-------------------------------------------------------------------------*/
static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
struct fotg210_qh *qh = ep->hcpriv;
unsigned long flags;
spin_lock_irqsave(&fotg210->lock, flags);
qh->clearing_tt = 0;
if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
&& fotg210->rh_state == FOTG210_RH_RUNNING)
qh_link_async(fotg210, qh);
spin_unlock_irqrestore(&fotg210->lock, flags);
}
static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
struct fotg210_qh *qh,
struct urb *urb, u32 token)
{
/* If an async split transaction gets an error or is unlinked,
* the TT buffer may be left in an indeterminate state. We
* have to clear the TT buffer.
*
* Note: this routine is never called for Isochronous transfers.
*/
if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
struct usb_device *tt = urb->dev->tt->hub;
dev_dbg(&tt->dev,
"clear tt buffer port %d, a%d ep%d t%08x\n",
urb->dev->ttport, urb->dev->devnum,
usb_pipeendpoint(urb->pipe), token);
if (urb->dev->tt->hub !=
fotg210_to_hcd(fotg210)->self.root_hub) {
if (usb_hub_clear_tt_buffer(urb) == 0)
qh->clearing_tt = 1;
}
}
}
static int qtd_copy_status(
struct fotg210_hcd *fotg210,
struct urb *urb,
size_t length,
u32 token
)
{
int status = -EINPROGRESS;
/* count IN/OUT bytes, not SETUP (even short packets) */
if (likely(QTD_PID(token) != 2))
urb->actual_length += length - QTD_LENGTH(token);
/* don't modify error codes */
if (unlikely(urb->unlinked))
return status;
/* force cleanup after short read; not always an error */
if (unlikely(IS_SHORT_READ(token)))
status = -EREMOTEIO;
/* serious "can't proceed" faults reported by the hardware */
if (token & QTD_STS_HALT) {
if (token & QTD_STS_BABBLE) {
/* FIXME "must" disable babbling device's port too */
status = -EOVERFLOW;
/* CERR nonzero + halt --> stall */
} else if (QTD_CERR(token)) {
status = -EPIPE;
/* In theory, more than one of the following bits can be set
* since they are sticky and the transaction is retried.
* Which to test first is rather arbitrary.
*/
} else if (token & QTD_STS_MMF) {
/* fs/ls interrupt xfer missed the complete-split */
status = -EPROTO;
} else if (token & QTD_STS_DBE) {
status = (QTD_PID(token) == 1) /* IN ? */
? -ENOSR /* hc couldn't read data */
: -ECOMM; /* hc couldn't write data */
} else if (token & QTD_STS_XACT) {
/* timeout, bad CRC, wrong PID, etc */
fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
urb->dev->devpath,
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "in" : "out");
status = -EPROTO;
} else { /* unknown */
status = -EPROTO;
}
fotg210_dbg(fotg210,
"dev%d ep%d%s qtd token %08x --> status %d\n",
usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "in" : "out",
token, status);
}
return status;
}
static void
fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
__releases(fotg210->lock)
__acquires(fotg210->lock)
{
if (likely(urb->hcpriv != NULL)) {
struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
/* S-mask in a QH means it's an interrupt urb */
if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
/* ... update hc-wide periodic stats (for usbfs) */
fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
}
}
if (unlikely(urb->unlinked)) {
COUNT(fotg210->stats.unlink);
} else {
/* report non-error and short read status as zero */
if (status == -EINPROGRESS || status == -EREMOTEIO)
status = 0;
COUNT(fotg210->stats.complete);
}
#ifdef FOTG210_URB_TRACE
fotg210_dbg(fotg210,
"%s %s urb %p ep%d%s status %d len %d/%d\n",
__func__, urb->dev->devpath, urb,
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "in" : "out",
status,
urb->actual_length, urb->transfer_buffer_length);
#endif
/* complete() can reenter this HCD */
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
spin_unlock(&fotg210->lock);
usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
spin_lock(&fotg210->lock);
}
static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
/*
* Process and free completed qtds for a qh, returning URBs to drivers.
* Chases up to qh->hw_current. Returns number of completions called,
* indicating how much "real" work we did.
*/
static unsigned
qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
struct fotg210_qtd *last, *end = qh->dummy;
struct list_head *entry, *tmp;
int last_status;
int stopped;
unsigned count = 0;
u8 state;
struct fotg210_qh_hw *hw = qh->hw;
if (unlikely(list_empty(&qh->qtd_list)))
return count;
/* completions (or tasks on other cpus) must never clobber HALT
* till we've gone through and cleaned everything up, even when
* they add urbs to this qh's queue or mark them for unlinking.
*
* NOTE: unlinking expects to be done in queue order.
*
* It's a bug for qh->qh_state to be anything other than
* QH_STATE_IDLE, unless our caller is scan_async() or
* scan_intr().
*/
state = qh->qh_state;
qh->qh_state = QH_STATE_COMPLETING;
stopped = (state == QH_STATE_IDLE);
rescan:
last = NULL;
last_status = -EINPROGRESS;
qh->needs_rescan = 0;
/* remove de-activated QTDs from front of queue.
* after faults (including short reads), cleanup this urb
* then let the queue advance.
* if queue is stopped, handles unlinks.
*/
list_for_each_safe(entry, tmp, &qh->qtd_list) {
struct fotg210_qtd *qtd;
struct urb *urb;
u32 token = 0;
qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
urb = qtd->urb;
/* clean up any state from previous QTD ...*/
if (last) {
if (likely(last->urb != urb)) {
fotg210_urb_done(fotg210, last->urb,
last_status);
count++;
last_status = -EINPROGRESS;
}
fotg210_qtd_free(fotg210, last);
last = NULL;
}
/* ignore urbs submitted during completions we reported */
if (qtd == end)
break;
/* hardware copies qtd out of qh overlay */
rmb();
token = hc32_to_cpu(fotg210, qtd->hw_token);
/* always clean up qtds the hc de-activated */
retry_xacterr:
if ((token & QTD_STS_ACTIVE) == 0) {
/* Report Data Buffer Error: non-fatal but useful */
if (token & QTD_STS_DBE)
fotg210_dbg(fotg210,
"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
urb,
usb_endpoint_num(&urb->ep->desc),
usb_endpoint_dir_in(&urb->ep->desc)
? "in" : "out",
urb->transfer_buffer_length,
qtd,
qh);
/* on STALL, error, and short reads this urb must
* complete and all its qtds must be recycled.
*/
if ((token & QTD_STS_HALT) != 0) {
/* retry transaction errors until we
* reach the software xacterr limit
*/
if ((token & QTD_STS_XACT) &&
QTD_CERR(token) == 0 &&
++qh->xacterrs < QH_XACTERR_MAX &&
!urb->unlinked) {
fotg210_dbg(fotg210,
"detected XactErr len %zu/%zu retry %d\n",
qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
/* reset the token in the qtd and the
* qh overlay (which still contains
* the qtd) so that we pick up from
* where we left off
*/
token &= ~QTD_STS_HALT;
token |= QTD_STS_ACTIVE |
(FOTG210_TUNE_CERR << 10);
qtd->hw_token = cpu_to_hc32(fotg210,
token);
wmb();
hw->hw_token = cpu_to_hc32(fotg210,
token);
goto retry_xacterr;
}
stopped = 1;
/* magic dummy for some short reads; qh won't advance.
* that silicon quirk can kick in with this dummy too.
*
* other short reads won't stop the queue, including
* control transfers (status stage handles that) or
* most other single-qtd reads ... the queue stops if
* URB_SHORT_NOT_OK was set so the driver submitting
* the urbs could clean it up.
*/
} else if (IS_SHORT_READ(token)
&& !(qtd->hw_alt_next
& FOTG210_LIST_END(fotg210))) {
stopped = 1;
}
/* stop scanning when we reach qtds the hc is using */
} else if (likely(!stopped
&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
break;
/* scan the whole queue for unlinks whenever it stops */
} else {
stopped = 1;
/* cancel everything if we halt, suspend, etc */
if (fotg210->rh_state < FOTG210_RH_RUNNING)
last_status = -ESHUTDOWN;
/* this qtd is active; skip it unless a previous qtd
* for its urb faulted, or its urb was canceled.
*/
else if (last_status == -EINPROGRESS && !urb->unlinked)
continue;
/* qh unlinked; token in overlay may be most current */
if (state == QH_STATE_IDLE
&& cpu_to_hc32(fotg210, qtd->qtd_dma)
== hw->hw_current) {
token = hc32_to_cpu(fotg210, hw->hw_token);
/* An unlink may leave an incomplete
* async transaction in the TT buffer.
* We have to clear it.
*/
fotg210_clear_tt_buffer(fotg210, qh, urb,
token);
}
}
/* unless we already know the urb's status, collect qtd status
* and update count of bytes transferred. in common short read
* cases with only one data qtd (including control transfers),
* queue processing won't halt. but with two or more qtds (for
* example, with a 32 KB transfer), when the first qtd gets a
* short read the second must be removed by hand.
*/
if (last_status == -EINPROGRESS) {
last_status = qtd_copy_status(fotg210, urb,
qtd->length, token);
if (last_status == -EREMOTEIO
&& (qtd->hw_alt_next
& FOTG210_LIST_END(fotg210)))
last_status = -EINPROGRESS;
/* As part of low/full-speed endpoint-halt processing
* we must clear the TT buffer (11.17.5).
*/
if (unlikely(last_status != -EINPROGRESS &&
last_status != -EREMOTEIO)) {
/* The TT's in some hubs malfunction when they
* receive this request following a STALL (they
* stop sending isochronous packets). Since a
* STALL can't leave the TT buffer in a busy
* state (if you believe Figures 11-48 - 11-51
* in the USB 2.0 spec), we won't clear the TT
* buffer in this case. Strictly speaking this
* is a violation of the spec.
*/
if (last_status != -EPIPE)
fotg210_clear_tt_buffer(fotg210, qh,
urb, token);
}
}
/* if we're removing something not at the queue head,
* patch the hardware queue pointer.
*/
if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
last = list_entry(qtd->qtd_list.prev,
struct fotg210_qtd, qtd_list);
last->hw_next = qtd->hw_next;
}
/* remove qtd; it's recycled after possible urb completion */
list_del(&qtd->qtd_list);
last = qtd;
/* reinit the xacterr counter for the next qtd */
qh->xacterrs = 0;
}
/* last urb's completion might still need calling */
if (likely(last != NULL)) {
fotg210_urb_done(fotg210, last->urb, last_status);
count++;
fotg210_qtd_free(fotg210, last);
}
/* Do we need to rescan for URBs dequeued during a giveback? */
if (unlikely(qh->needs_rescan)) {
/* If the QH is already unlinked, do the rescan now. */
if (state == QH_STATE_IDLE)
goto rescan;
/* Otherwise we have to wait until the QH is fully unlinked.
* Our caller will start an unlink if qh->needs_rescan is
* set. But if an unlink has already started, nothing needs
* to be done.
*/
if (state != QH_STATE_LINKED)
qh->needs_rescan = 0;
}
/* restore original state; caller must unlink or relink */
qh->qh_state = state;
/* be sure the hardware's done with the qh before refreshing
* it after fault cleanup, or recovering from silicon wrongly
* overlaying the dummy qtd (which reduces DMA chatter).
*/
if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
switch (state) {
case QH_STATE_IDLE:
qh_refresh(fotg210, qh);
break;
case QH_STATE_LINKED:
/* We won't refresh a QH that's linked (after the HC
* stopped the queue). That avoids a race:
* - HC reads first part of QH;
* - CPU updates that first part and the token;
* - HC reads rest of that QH, including token
* Result: HC gets an inconsistent image, and then
* DMAs to/from the wrong memory (corrupting it).
*
* That should be rare for interrupt transfers,
* except maybe high bandwidth ...
*/
/* Tell the caller to start an unlink */
qh->needs_rescan = 1;
break;
/* otherwise, unlink already started */
}
}
return count;
}
/*-------------------------------------------------------------------------*/
/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
/* ... and packet size, for any kind of endpoint descriptor */
#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
/*
* reverse of qh_urb_transaction: free a list of TDs.
* used for cleanup after errors, before HC sees an URB's TDs.
*/
static void qtd_list_free(
struct fotg210_hcd *fotg210,
struct urb *urb,
struct list_head *qtd_list
) {
struct list_head *entry, *temp;
list_for_each_safe(entry, temp, qtd_list) {
struct fotg210_qtd *qtd;
qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
list_del(&qtd->qtd_list);
fotg210_qtd_free(fotg210, qtd);
}
}
/*
* create a list of filled qtds for this URB; won't link into qh.
*/
static struct list_head *
qh_urb_transaction(
struct fotg210_hcd *fotg210,
struct urb *urb,
struct list_head *head,
gfp_t flags
) {
struct fotg210_qtd *qtd, *qtd_prev;
dma_addr_t buf;
int len, this_sg_len, maxpacket;
int is_input;
u32 token;
int i;
struct scatterlist *sg;
/*
* URBs map to sequences of QTDs: one logical transaction
*/
qtd = fotg210_qtd_alloc(fotg210, flags);
if (unlikely(!qtd))
return NULL;
list_add_tail(&qtd->qtd_list, head);
qtd->urb = urb;
token = QTD_STS_ACTIVE;
token |= (FOTG210_TUNE_CERR << 10);
/* for split transactions, SplitXState initialized to zero */
len = urb->transfer_buffer_length;
is_input = usb_pipein(urb->pipe);
if (usb_pipecontrol(urb->pipe)) {
/* SETUP pid */
qtd_fill(fotg210, qtd, urb->setup_dma,
sizeof(struct usb_ctrlrequest),
token | (2 /* "setup" */ << 8), 8);
/* ... and always at least one more pid */
token ^= QTD_TOGGLE;
qtd_prev = qtd;
qtd = fotg210_qtd_alloc(fotg210, flags);
if (unlikely(!qtd))
goto cleanup;
qtd->urb = urb;
qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
list_add_tail(&qtd->qtd_list, head);
/* for zero length DATA stages, STATUS is always IN */
if (len == 0)
token |= (1 /* "in" */ << 8);
}
/*
* data transfer stage: buffer setup
*/
i = urb->num_mapped_sgs;
if (len > 0 && i > 0) {
sg = urb->sg;
buf = sg_dma_address(sg);
/* urb->transfer_buffer_length may be smaller than the
* size of the scatterlist (or vice versa)
*/
this_sg_len = min_t(int, sg_dma_len(sg), len);
} else {
sg = NULL;
buf = urb->transfer_dma;
this_sg_len = len;
}
if (is_input)
token |= (1 /* "in" */ << 8);
/* else it's already initted to "out" pid (0 << 8) */
maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
/*
* buffer gets wrapped in one or more qtds;
* last one may be "short" (including zero len)
* and may serve as a control status ack
*/
for (;;) {
int this_qtd_len;
this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
maxpacket);
this_sg_len -= this_qtd_len;
len -= this_qtd_len;
buf += this_qtd_len;
/*
* short reads advance to a "magic" dummy instead of the next
* qtd ... that forces the queue to stop, for manual cleanup.
* (this will usually be overridden later.)
*/
if (is_input)
qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
/* qh makes control packets use qtd toggle; maybe switch it */
if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
token ^= QTD_TOGGLE;
if (likely(this_sg_len <= 0)) {
if (--i <= 0 || len <= 0)
break;
sg = sg_next(sg);
buf = sg_dma_address(sg);
this_sg_len = min_t(int, sg_dma_len(sg), len);
}
qtd_prev = qtd;
qtd = fotg210_qtd_alloc(fotg210, flags);
if (unlikely(!qtd))
goto cleanup;
qtd->urb = urb;
qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
list_add_tail(&qtd->qtd_list, head);
}
/*
* unless the caller requires manual cleanup after short reads,
* have the alt_next mechanism keep the queue running after the
* last data qtd (the only one, for control and most other cases).
*/
if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
|| usb_pipecontrol(urb->pipe)))
qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
/*
* control requests may need a terminating data "status" ack;
* other OUT ones may need a terminating short packet
* (zero length).
*/
if (likely(urb->transfer_buffer_length != 0)) {
int one_more = 0;
if (usb_pipecontrol(urb->pipe)) {
one_more = 1;
token ^= 0x0100; /* "in" <--> "out" */
token |= QTD_TOGGLE; /* force DATA1 */
} else if (usb_pipeout(urb->pipe)
&& (urb->transfer_flags & URB_ZERO_PACKET)
&& !(urb->transfer_buffer_length % maxpacket)) {
one_more = 1;
}
if (one_more) {
qtd_prev = qtd;
qtd = fotg210_qtd_alloc(fotg210, flags);
if (unlikely(!qtd))
goto cleanup;
qtd->urb = urb;
qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
list_add_tail(&qtd->qtd_list, head);
/* never any data in such packets */
qtd_fill(fotg210, qtd, 0, 0, token, 0);
}
}
/* by default, enable interrupt on urb completion */
if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
return head;
cleanup:
qtd_list_free(fotg210, urb, head);
return NULL;
}
/*-------------------------------------------------------------------------*/
/*
* Would be best to create all qh's from config descriptors,
* when each interface/altsetting is established. Unlink
* any previous qh and cancel its urbs first; endpoints are
* implicitly reset then (data toggle too).
* That'd mean updating how usbcore talks to HCDs. (2.7?)
*/
/*
* Each QH holds a qtd list; a QH is used for everything except iso.
*
* For interrupt urbs, the scheduler must set the microframe scheduling
* mask(s) each time the QH gets scheduled. For highspeed, that's
* just one microframe in the s-mask. For split interrupt transactions
* there are additional complications: c-mask, maybe FSTNs.
*/
static struct fotg210_qh *
qh_make(
struct fotg210_hcd *fotg210,
struct urb *urb,
gfp_t flags
) {
struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
u32 info1 = 0, info2 = 0;
int is_input, type;
int maxp = 0;
struct usb_tt *tt = urb->dev->tt;
struct fotg210_qh_hw *hw;
if (!qh)
return qh;
/*
* init endpoint/device data for this QH
*/
info1 |= usb_pipeendpoint(urb->pipe) << 8;
info1 |= usb_pipedevice(urb->pipe) << 0;
is_input = usb_pipein(urb->pipe);
type = usb_pipetype(urb->pipe);
maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
/* 1024 byte maxpacket is a hardware ceiling. High bandwidth
* acts like up to 3KB, but is built from smaller packets.
*/
if (max_packet(maxp) > 1024) {
fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
max_packet(maxp));
goto done;
}
/* Compute interrupt scheduling parameters just once, and save.
* - allowing for high bandwidth, how many nsec/uframe are used?
* - split transactions need a second CSPLIT uframe; same question
* - splits also need a schedule gap (for full/low speed I/O)
* - qh has a polling interval
*
* For control/bulk requests, the HC or TT handles these.
*/
if (type == PIPE_INTERRUPT) {
qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
is_input, 0,
hb_mult(maxp) * max_packet(maxp)));
qh->start = NO_FRAME;
if (urb->dev->speed == USB_SPEED_HIGH) {
qh->c_usecs = 0;
qh->gap_uf = 0;
qh->period = urb->interval >> 3;
if (qh->period == 0 && urb->interval != 1) {
/* NOTE interval 2 or 4 uframes could work.
* But interval 1 scheduling is simpler, and
* includes high bandwidth.
*/
urb->interval = 1;
} else if (qh->period > fotg210->periodic_size) {
qh->period = fotg210->periodic_size;
urb->interval = qh->period << 3;
}
} else {
int think_time;
/* gap is f(FS/LS transfer times) */
qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
is_input, 0, maxp) / (125 * 1000);
/* FIXME this just approximates SPLIT/CSPLIT times */
if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
qh->c_usecs = qh->usecs + HS_USECS(0);
qh->usecs = HS_USECS(1);
} else { /* SPLIT+DATA, gap, CSPLIT */
qh->usecs += HS_USECS(1);
qh->c_usecs = HS_USECS(0);
}
think_time = tt ? tt->think_time : 0;
qh->tt_usecs = NS_TO_US(think_time +
usb_calc_bus_time(urb->dev->speed,
is_input, 0, max_packet(maxp)));
qh->period = urb->interval;
if (qh->period > fotg210->periodic_size) {
qh->period = fotg210->periodic_size;
urb->interval = qh->period;
}
}
}
/* support for tt scheduling, and access to toggles */
qh->dev = urb->dev;
/* using TT? */
switch (urb->dev->speed) {
case USB_SPEED_LOW:
info1 |= QH_LOW_SPEED;
/* FALL THROUGH */
case USB_SPEED_FULL:
/* EPS 0 means "full" */
if (type != PIPE_INTERRUPT)
info1 |= (FOTG210_TUNE_RL_TT << 28);
if (type == PIPE_CONTROL) {
info1 |= QH_CONTROL_EP; /* for TT */
info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
}
info1 |= maxp << 16;
info2 |= (FOTG210_TUNE_MULT_TT << 30);
/* Some Freescale processors have an erratum in which the
* port number in the queue head was 0..N-1 instead of 1..N.
*/
if (fotg210_has_fsl_portno_bug(fotg210))
info2 |= (urb->dev->ttport-1) << 23;
else
info2 |= urb->dev->ttport << 23;
/* set the address of the TT; for TDI's integrated
* root hub tt, leave it zeroed.
*/
if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
info2 |= tt->hub->devnum << 16;
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
break;
case USB_SPEED_HIGH: /* no TT involved */
info1 |= QH_HIGH_SPEED;
if (type == PIPE_CONTROL) {
info1 |= (FOTG210_TUNE_RL_HS << 28);
info1 |= 64 << 16; /* usb2 fixed maxpacket */
info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
info2 |= (FOTG210_TUNE_MULT_HS << 30);
} else if (type == PIPE_BULK) {
info1 |= (FOTG210_TUNE_RL_HS << 28);
/* The USB spec says that high speed bulk endpoints
* always use 512 byte maxpacket. But some device
* vendors decided to ignore that, and MSFT is happy
* to help them do so. So now people expect to use
* such nonconformant devices with Linux too; sigh.
*/
info1 |= max_packet(maxp) << 16;
info2 |= (FOTG210_TUNE_MULT_HS << 30);
} else { /* PIPE_INTERRUPT */
info1 |= max_packet(maxp) << 16;
info2 |= hb_mult(maxp) << 30;
}
break;
default:
fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
urb->dev->speed);
done:
qh_destroy(fotg210, qh);
return NULL;
}
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
/* init as live, toggle clear, advance to dummy */
qh->qh_state = QH_STATE_IDLE;
hw = qh->hw;
hw->hw_info1 = cpu_to_hc32(fotg210, info1);
hw->hw_info2 = cpu_to_hc32(fotg210, info2);
qh->is_out = !is_input;
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
qh_refresh(fotg210, qh);
return qh;
}
/*-------------------------------------------------------------------------*/
static void enable_async(struct fotg210_hcd *fotg210)
{
if (fotg210->async_count++)
return;
/* Stop waiting to turn off the async schedule */
fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
/* Don't start the schedule until ASS is 0 */
fotg210_poll_ASS(fotg210);
turn_on_io_watchdog(fotg210);
}
static void disable_async(struct fotg210_hcd *fotg210)
{
if (--fotg210->async_count)
return;
/* The async schedule and async_unlink list are supposed to be empty */
WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
/* Don't turn off the schedule until ASS is 1 */
fotg210_poll_ASS(fotg210);
}
/* move qh (and its qtds) onto async queue; maybe enable queue. */
static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
struct fotg210_qh *head;
/* Don't link a QH if there's a Clear-TT-Buffer pending */
if (unlikely(qh->clearing_tt))
return;
WARN_ON(qh->qh_state != QH_STATE_IDLE);
/* clear halt and/or toggle; and maybe recover from silicon quirk */
qh_refresh(fotg210, qh);
/* splice right after start */
head = fotg210->async;
qh->qh_next = head->qh_next;
qh->hw->hw_next = head->hw->hw_next;
wmb();
head->qh_next.qh = qh;
head->hw->hw_next = dma;
qh->xacterrs = 0;
qh->qh_state = QH_STATE_LINKED;
/* qtd completions reported later by interrupt */
enable_async(fotg210);
}
/*-------------------------------------------------------------------------*/
/*
* For control/bulk/interrupt, return QH with these TDs appended.
* Allocates and initializes the QH if necessary.
* Returns null if it can't allocate a QH it needs to.
* If the QH has TDs (urbs) already, that's great.
*/
static struct fotg210_qh *qh_append_tds(
struct fotg210_hcd *fotg210,
struct urb *urb,
struct list_head *qtd_list,
int epnum,
void **ptr
)
{
struct fotg210_qh *qh = NULL;
__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
qh = (struct fotg210_qh *) *ptr;
if (unlikely(qh == NULL)) {
/* can't sleep here, we have fotg210->lock... */
qh = qh_make(fotg210, urb, GFP_ATOMIC);
*ptr = qh;
}
if (likely(qh != NULL)) {
struct fotg210_qtd *qtd;
if (unlikely(list_empty(qtd_list)))
qtd = NULL;
else
qtd = list_entry(qtd_list->next, struct fotg210_qtd,
qtd_list);
/* control qh may need patching ... */
if (unlikely(epnum == 0)) {
/* usb_reset_device() briefly reverts to address 0 */
if (usb_pipedevice(urb->pipe) == 0)
qh->hw->hw_info1 &= ~qh_addr_mask;
}
/* just one way to queue requests: swap with the dummy qtd.
* only hc or qh_refresh() ever modify the overlay.
*/
if (likely(qtd != NULL)) {
struct fotg210_qtd *dummy;
dma_addr_t dma;
__hc32 token;
/* to avoid racing the HC, use the dummy td instead of
* the first td of our list (becomes new dummy). both
* tds stay deactivated until we're done, when the
* HC is allowed to fetch the old dummy (4.10.2).
*/
token = qtd->hw_token;
qtd->hw_token = HALT_BIT(fotg210);
dummy = qh->dummy;
dma = dummy->qtd_dma;
*dummy = *qtd;
dummy->qtd_dma = dma;
list_del(&qtd->qtd_list);
list_add(&dummy->qtd_list, qtd_list);
list_splice_tail(qtd_list, &qh->qtd_list);
fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
qh->dummy = qtd;
/* hc must see the new dummy at list end */
dma = qtd->qtd_dma;
qtd = list_entry(qh->qtd_list.prev,
struct fotg210_qtd, qtd_list);
qtd->hw_next = QTD_NEXT(fotg210, dma);
/* let the hc process these next qtds */
wmb();
dummy->hw_token = token;
urb->hcpriv = qh;
}
}
return qh;
}
/*-------------------------------------------------------------------------*/
static int
submit_async(
struct fotg210_hcd *fotg210,
struct urb *urb,
struct list_head *qtd_list,
gfp_t mem_flags
) {
int epnum;
unsigned long flags;
struct fotg210_qh *qh = NULL;
int rc;
epnum = urb->ep->desc.bEndpointAddress;
#ifdef FOTG210_URB_TRACE
{
struct fotg210_qtd *qtd;
qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
fotg210_dbg(fotg210,
"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
__func__, urb->dev->devpath, urb,
epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
urb->transfer_buffer_length,
qtd, urb->ep->hcpriv);
}
#endif
spin_lock_irqsave(&fotg210->lock, flags);
if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
rc = -ESHUTDOWN;
goto done;
}
rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
if (unlikely(rc))
goto done;
qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
if (unlikely(qh == NULL)) {
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
rc = -ENOMEM;
goto done;
}
/* Control/bulk operations through TTs don't need scheduling,
* the HC and TT handle it when the TT has a buffer ready.
*/
if (likely(qh->qh_state == QH_STATE_IDLE))
qh_link_async(fotg210, qh);
done:
spin_unlock_irqrestore(&fotg210->lock, flags);
if (unlikely(qh == NULL))
qtd_list_free(fotg210, urb, qtd_list);
return rc;
}
/*-------------------------------------------------------------------------*/
static void single_unlink_async(struct fotg210_hcd *fotg210,
struct fotg210_qh *qh)
{
struct fotg210_qh *prev;
/* Add to the end of the list of QHs waiting for the next IAAD */
qh->qh_state = QH_STATE_UNLINK;
if (fotg210->async_unlink)
fotg210->async_unlink_last->unlink_next = qh;
else
fotg210->async_unlink = qh;
fotg210->async_unlink_last = qh;
/* Unlink it from the schedule */
prev = fotg210->async;
while (prev->qh_next.qh != qh)
prev = prev->qh_next.qh;
prev->hw->hw_next = qh->hw->hw_next;
prev->qh_next = qh->qh_next;
if (fotg210->qh_scan_next == qh)
fotg210->qh_scan_next = qh->qh_next.qh;
}
static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
{
/*
* Do nothing if an IAA cycle is already running or
* if one will be started shortly.
*/
if (fotg210->async_iaa || fotg210->async_unlinking)
return;
/* Do all the waiting QHs at once */
fotg210->async_iaa = fotg210->async_unlink;
fotg210->async_unlink = NULL;
/* If the controller isn't running, we don't have to wait for it */
if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
if (!nested) /* Avoid recursion */
end_unlink_async(fotg210);
/* Otherwise start a new IAA cycle */
} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
/* Make sure the unlinks are all visible to the hardware */
wmb();
fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
&fotg210->regs->command);
fotg210_readl(fotg210, &fotg210->regs->command);
fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
true);
}
}
/* the async qh for the qtds being unlinked are now gone from the HC */
static void end_unlink_async(struct fotg210_hcd *fotg210)
{
struct fotg210_qh *qh;
/* Process the idle QHs */
restart:
fotg210->async_unlinking = true;
while (fotg210->async_iaa) {
qh = fotg210->async_iaa;
fotg210->async_iaa = qh->unlink_next;
qh->unlink_next = NULL;
qh->qh_state = QH_STATE_IDLE;
qh->qh_next.qh = NULL;
qh_completions(fotg210, qh);
if (!list_empty(&qh->qtd_list) &&
fotg210->rh_state == FOTG210_RH_RUNNING)
qh_link_async(fotg210, qh);
disable_async(fotg210);
}
fotg210->async_unlinking = false;
/* Start a new IAA cycle if any QHs are waiting for it */
if (fotg210->async_unlink) {
start_iaa_cycle(fotg210, true);
if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
goto restart;
}
}
static void unlink_empty_async(struct fotg210_hcd *fotg210)
{
struct fotg210_qh *qh, *next;
bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
bool check_unlinks_later = false;
/* Unlink all the async QHs that have been empty for a timer cycle */
next = fotg210->async->qh_next.qh;
while (next) {
qh = next;
next = qh->qh_next.qh;
if (list_empty(&qh->qtd_list) &&
qh->qh_state == QH_STATE_LINKED) {
if (!stopped && qh->unlink_cycle ==
fotg210->async_unlink_cycle)
check_unlinks_later = true;
else
single_unlink_async(fotg210, qh);
}
}
/* Start a new IAA cycle if any QHs are waiting for it */
if (fotg210->async_unlink)
start_iaa_cycle(fotg210, false);
/* QHs that haven't been empty for long enough will be handled later */
if (check_unlinks_later) {
fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
true);
++fotg210->async_unlink_cycle;
}
}
/* makes sure the async qh will become idle */
/* caller must own fotg210->lock */
static void start_unlink_async(struct fotg210_hcd *fotg210,
struct fotg210_qh *qh)
{
/*
* If the QH isn't linked then there's nothing we can do
* unless we were called during a giveback, in which case
* qh_completions() has to deal with it.
*/
if (qh->qh_state != QH_STATE_LINKED) {
if (qh->qh_state == QH_STATE_COMPLETING)
qh->needs_rescan = 1;
return;
}
single_unlink_async(fotg210, qh);
start_iaa_cycle(fotg210, false);
}
/*-------------------------------------------------------------------------*/
static void scan_async(struct fotg210_hcd *fotg210)
{
struct fotg210_qh *qh;
bool check_unlinks_later = false;
fotg210->qh_scan_next = fotg210->async->qh_next.qh;
while (fotg210->qh_scan_next) {
qh = fotg210->qh_scan_next;
fotg210->qh_scan_next = qh->qh_next.qh;
rescan:
/* clean any finished work for this qh */
if (!list_empty(&qh->qtd_list)) {
int temp;
/*
* Unlinks could happen here; completion reporting
* drops the lock. That's why fotg210->qh_scan_next
* always holds the next qh to scan; if the next qh
* gets unlinked then fotg210->qh_scan_next is adjusted
* in single_unlink_async().
*/
temp = qh_completions(fotg210, qh);
if (qh->needs_rescan) {
start_unlink_async(fotg210, qh);
} else if (list_empty(&qh->qtd_list)
&& qh->qh_state == QH_STATE_LINKED) {
qh->unlink_cycle = fotg210->async_unlink_cycle;
check_unlinks_later = true;
} else if (temp != 0)
goto rescan;
}
}
/*
* Unlink empty entries, reducing DMA usage as well
* as HCD schedule-scanning costs. Delay for any qh
* we just scanned, there's a not-unusual case that it
* doesn't stay idle for long.
*/
if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
!(fotg210->enabled_hrtimer_events &
BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
fotg210_enable_event(fotg210,
FOTG210_HRTIMER_ASYNC_UNLINKS, true);
++fotg210->async_unlink_cycle;
}
}
/*-------------------------------------------------------------------------*/
/*
* EHCI scheduled transaction support: interrupt, iso, split iso
* These are called "periodic" transactions in the EHCI spec.
*
* Note that for interrupt transfers, the QH/QTD manipulation is shared
* with the "asynchronous" transaction support (control/bulk transfers).
* The only real difference is in how interrupt transfers are scheduled.
*
* For ISO, we make an "iso_stream" head to serve the same role as a QH.
* It keeps track of every ITD (or SITD) that's linked, and holds enough
* pre-calculated schedule data to make appending to the queue be quick.
*/
static int fotg210_get_frame(struct usb_hcd *hcd);
/*-------------------------------------------------------------------------*/
/*
* periodic_next_shadow - return "next" pointer on shadow list
* @periodic: host pointer to qh/itd
* @tag: hardware tag for type of this record
*/
static union fotg210_shadow *
periodic_next_shadow(struct fotg210_hcd *fotg210,
union fotg210_shadow *periodic, __hc32 tag)
{
switch (hc32_to_cpu(fotg210, tag)) {
case Q_TYPE_QH:
return &periodic->qh->qh_next;
case Q_TYPE_FSTN:
return &periodic->fstn->fstn_next;
default:
return &periodic->itd->itd_next;
}
}
static __hc32 *
shadow_next_periodic(struct fotg210_hcd *fotg210,
union fotg210_shadow *periodic, __hc32 tag)
{
switch (hc32_to_cpu(fotg210, tag)) {
/* our fotg210_shadow.qh is actually software part */
case Q_TYPE_QH:
return &periodic->qh->hw->hw_next;
/* others are hw parts */
default:
return periodic->hw_next;
}
}
/* caller must hold fotg210->lock */
static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
void *ptr)
{
union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
__hc32 *hw_p = &fotg210->periodic[frame];
union fotg210_shadow here = *prev_p;
/* find predecessor of "ptr"; hw and shadow lists are in sync */
while (here.ptr && here.ptr != ptr) {
prev_p = periodic_next_shadow(fotg210, prev_p,
Q_NEXT_TYPE(fotg210, *hw_p));
hw_p = shadow_next_periodic(fotg210, &here,
Q_NEXT_TYPE(fotg210, *hw_p));
here = *prev_p;
}
/* an interrupt entry (at list end) could have been shared */
if (!here.ptr)
return;
/* update shadow and hardware lists ... the old "next" pointers
* from ptr may still be in use, the caller updates them.
*/
*prev_p = *periodic_next_shadow(fotg210, &here,
Q_NEXT_TYPE(fotg210, *hw_p));
*hw_p = *shadow_next_periodic(fotg210, &here,
Q_NEXT_TYPE(fotg210, *hw_p));
}
/* how many of the uframe's 125 usecs are allocated? */
static unsigned short
periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
{
__hc32 *hw_p = &fotg210->periodic[frame];
union fotg210_shadow *q = &fotg210->pshadow[frame];
unsigned usecs = 0;
struct fotg210_qh_hw *hw;
while (q->ptr) {
switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
case Q_TYPE_QH:
hw = q->qh->hw;
/* is it in the S-mask? */
if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
usecs += q->qh->usecs;
/* ... or C-mask? */
if (hw->hw_info2 & cpu_to_hc32(fotg210,
1 << (8 + uframe)))
usecs += q->qh->c_usecs;
hw_p = &hw->hw_next;
q = &q->qh->qh_next;
break;
/* case Q_TYPE_FSTN: */
default:
/* for "save place" FSTNs, count the relevant INTR
* bandwidth from the previous frame
*/
if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
hw_p = &q->fstn->hw_next;
q = &q->fstn->fstn_next;
break;
case Q_TYPE_ITD:
if (q->itd->hw_transaction[uframe])
usecs += q->itd->stream->usecs;
hw_p = &q->itd->hw_next;
q = &q->itd->itd_next;
break;
}
}
if (usecs > fotg210->uframe_periodic_max)
fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
frame * 8 + uframe, usecs);
return usecs;
}
/*-------------------------------------------------------------------------*/
static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
{
if (!dev1->tt || !dev2->tt)
return 0;
if (dev1->tt != dev2->tt)
return 0;
if (dev1->tt->multi)
return dev1->ttport == dev2->ttport;
else
return 1;
}
/* return true iff the device's transaction translator is available
* for a periodic transfer starting at the specified frame, using
* all the uframes in the mask.
*/
static int tt_no_collision(
struct fotg210_hcd *fotg210,
unsigned period,
struct usb_device *dev,
unsigned frame,
u32 uf_mask
)
{
if (period == 0) /* error */
return 0;
/* note bandwidth wastage: split never follows csplit
* (different dev or endpoint) until the next uframe.
* calling convention doesn't make that distinction.
*/
for (; frame < fotg210->periodic_size; frame += period) {
union fotg210_shadow here;
__hc32 type;
struct fotg210_qh_hw *hw;
here = fotg210->pshadow[frame];
type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
while (here.ptr) {
switch (hc32_to_cpu(fotg210, type)) {
case Q_TYPE_ITD:
type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
here = here.itd->itd_next;
continue;
case Q_TYPE_QH:
hw = here.qh->hw;
if (same_tt(dev, here.qh->dev)) {
u32 mask;
mask = hc32_to_cpu(fotg210,
hw->hw_info2);
/* "knows" no gap is needed */
mask |= mask >> 8;
if (mask & uf_mask)
break;
}
type = Q_NEXT_TYPE(fotg210, hw->hw_next);
here = here.qh->qh_next;
continue;
/* case Q_TYPE_FSTN: */
default:
fotg210_dbg(fotg210,
"periodic frame %d bogus type %d\n",
frame, type);
}
/* collision or error */
return 0;
}
}
/* no collision */
return 1;
}
/*-------------------------------------------------------------------------*/
static void enable_periodic(struct fotg210_hcd *fotg210)
{
if (fotg210->periodic_count++)
return;
/* Stop waiting to turn off the periodic schedule */
fotg210->enabled_hrtimer_events &=
~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
/* Don't start the schedule until PSS is 0 */
fotg210_poll_PSS(fotg210);
turn_on_io_watchdog(fotg210);
}
static void disable_periodic(struct fotg210_hcd *fotg210)
{
if (--fotg210->periodic_count)
return;
/* Don't turn off the schedule until PSS is 1 */
fotg210_poll_PSS(fotg210);
}
/*-------------------------------------------------------------------------*/
/* periodic schedule slots have iso tds (normal or split) first, then a
* sparse tree for active interrupt transfers.
*
* this just links in a qh; caller guarantees uframe masks are set right.
* no FSTN support (yet; fotg210 0.96+)
*/
static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
unsigned i;
unsigned period = qh->period;
dev_dbg(&qh->dev->dev,
"link qh%d-%04x/%p start %d [%d/%d us]\n",
period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
& (QH_CMASK | QH_SMASK),
qh, qh->start, qh->usecs, qh->c_usecs);
/* high bandwidth, or otherwise every microframe */
if (period == 0)
period = 1;
for (i = qh->start; i < fotg210->periodic_size; i += period) {
union fotg210_shadow *prev = &fotg210->pshadow[i];
__hc32 *hw_p = &fotg210->periodic[i];
union fotg210_shadow here = *prev;
__hc32 type = 0;
/* skip the iso nodes at list head */
while (here.ptr) {
type = Q_NEXT_TYPE(fotg210, *hw_p);
if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
break;
prev = periodic_next_shadow(fotg210, prev, type);
hw_p = shadow_next_periodic(fotg210, &here, type);
here = *prev;
}
/* sorting each branch by period (slow-->fast)
* enables sharing interior tree nodes
*/
while (here.ptr && qh != here.qh) {
if (qh->period > here.qh->period)
break;
prev = &here.qh->qh_next;
hw_p = &here.qh->hw->hw_next;
here = *prev;
}
/* link in this qh, unless some earlier pass did that */
if (qh != here.qh) {
qh->qh_next = here;
if (here.qh)
qh->hw->hw_next = *hw_p;
wmb();
prev->qh = qh;
*hw_p = QH_NEXT(fotg210, qh->qh_dma);
}
}
qh->qh_state = QH_STATE_LINKED;
qh->xacterrs = 0;
/* update per-qh bandwidth for usbfs */
fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
? ((qh->usecs + qh->c_usecs) / qh->period)
: (qh->usecs * 8);
list_add(&qh->intr_node, &fotg210->intr_qh_list);
/* maybe enable periodic schedule processing */
++fotg210->intr_count;
enable_periodic(fotg210);
}
static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
struct fotg210_qh *qh)
{
unsigned i;
unsigned period;
/*
* If qh is for a low/full-speed device, simply unlinking it
* could interfere with an ongoing split transaction. To unlink
* it safely would require setting the QH_INACTIVATE bit and
* waiting at least one frame, as described in EHCI 4.12.2.5.
*
* We won't bother with any of this. Instead, we assume that the
* only reason for unlinking an interrupt QH while the current URB
* is still active is to dequeue all the URBs (flush the whole
* endpoint queue).
*
* If rebalancing the periodic schedule is ever implemented, this
* approach will no longer be valid.
*/
/* high bandwidth, or otherwise part of every microframe */
period = qh->period;
if (!period)
period = 1;
for (i = qh->start; i < fotg210->periodic_size; i += period)
periodic_unlink(fotg210, i, qh);
/* update per-qh bandwidth for usbfs */
fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
? ((qh->usecs + qh->c_usecs) / qh->period)
: (qh->usecs * 8);
dev_dbg(&qh->dev->dev,
"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
qh->period,
hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
/* qh->qh_next still "live" to HC */
qh->qh_state = QH_STATE_UNLINK;
qh->qh_next.ptr = NULL;
if (fotg210->qh_scan_next == qh)
fotg210->qh_scan_next = list_entry(qh->intr_node.next,
struct fotg210_qh, intr_node);
list_del(&qh->intr_node);
}
static void start_unlink_intr(struct fotg210_hcd *fotg210,
struct fotg210_qh *qh)
{
/* If the QH isn't linked then there's nothing we can do
* unless we were called during a giveback, in which case
* qh_completions() has to deal with it.
*/
if (qh->qh_state != QH_STATE_LINKED) {
if (qh->qh_state == QH_STATE_COMPLETING)
qh->needs_rescan = 1;
return;
}
qh_unlink_periodic(fotg210, qh);
/* Make sure the unlinks are visible before starting the timer */
wmb();
/*
* The EHCI spec doesn't say how long it takes the controller to
* stop accessing an unlinked interrupt QH. The timer delay is
* 9 uframes; presumably that will be long enough.
*/
qh->unlink_cycle = fotg210->intr_unlink_cycle;
/* New entries go at the end of the intr_unlink list */
if (fotg210->intr_unlink)
fotg210->intr_unlink_last->unlink_next = qh;
else
fotg210->intr_unlink = qh;
fotg210->intr_unlink_last = qh;
if (fotg210->intr_unlinking)
; /* Avoid recursive calls */
else if (fotg210->rh_state < FOTG210_RH_RUNNING)
fotg210_handle_intr_unlinks(fotg210);
else if (fotg210->intr_unlink == qh) {
fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
true);
++fotg210->intr_unlink_cycle;
}
}
static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
struct fotg210_qh_hw *hw = qh->hw;
int rc;
qh->qh_state = QH_STATE_IDLE;
hw->hw_next = FOTG210_LIST_END(fotg210);
qh_completions(fotg210, qh);
/* reschedule QH iff another request is queued */
if (!list_empty(&qh->qtd_list) &&
fotg210->rh_state == FOTG210_RH_RUNNING) {
rc = qh_schedule(fotg210, qh);
/* An error here likely indicates handshake failure
* or no space left in the schedule. Neither fault
* should happen often ...
*
* FIXME kill the now-dysfunctional queued urbs
*/
if (rc != 0)
fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
qh, rc);
}
/* maybe turn off periodic schedule */
--fotg210->intr_count;
disable_periodic(fotg210);
}
/*-------------------------------------------------------------------------*/
static int check_period(
struct fotg210_hcd *fotg210,
unsigned frame,
unsigned uframe,
unsigned period,
unsigned usecs
) {
int claimed;
/* complete split running into next frame?
* given FSTN support, we could sometimes check...
*/
if (uframe >= 8)
return 0;
/* convert "usecs we need" to "max already claimed" */
usecs = fotg210->uframe_periodic_max - usecs;
/* we "know" 2 and 4 uframe intervals were rejected; so
* for period 0, check _every_ microframe in the schedule.
*/
if (unlikely(period == 0)) {
do {
for (uframe = 0; uframe < 7; uframe++) {
claimed = periodic_usecs(fotg210, frame,
uframe);
if (claimed > usecs)
return 0;
}
} while ((frame += 1) < fotg210->periodic_size);
/* just check the specified uframe, at that period */
} else {
do {
claimed = periodic_usecs(fotg210, frame, uframe);
if (claimed > usecs)
return 0;
} while ((frame += period) < fotg210->periodic_size);
}
/* success! */
return 1;
}
static int check_intr_schedule(
struct fotg210_hcd *fotg210,
unsigned frame,
unsigned uframe,
const struct fotg210_qh *qh,
__hc32 *c_maskp
)
{
int retval = -ENOSPC;
u8 mask = 0;
if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
goto done;
if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
goto done;
if (!qh->c_usecs) {
retval = 0;
*c_maskp = 0;
goto done;
}
/* Make sure this tt's buffer is also available for CSPLITs.
* We pessimize a bit; probably the typical full speed case
* doesn't need the second CSPLIT.
*
* NOTE: both SPLIT and CSPLIT could be checked in just
* one smart pass...
*/
mask = 0x03 << (uframe + qh->gap_uf);
*c_maskp = cpu_to_hc32(fotg210, mask << 8);
mask |= 1 << uframe;
if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
qh->period, qh->c_usecs))
goto done;
if (!check_period(fotg210, frame, uframe + qh->gap_uf,
qh->period, qh->c_usecs))
goto done;
retval = 0;
}
done:
return retval;
}
/* "first fit" scheduling policy used the first time through,
* or when the previous schedule slot can't be re-used.
*/
static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
{
int status;
unsigned uframe;
__hc32 c_mask;
unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
struct fotg210_qh_hw *hw = qh->hw;
qh_refresh(fotg210, qh);
hw->hw_next = FOTG210_LIST_END(fotg210);
frame = qh->start;
/* reuse the previous schedule slots, if we can */
if (frame < qh->period) {
uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
status = check_intr_schedule(fotg210, frame, --uframe,
qh, &c_mask);
} else {
uframe = 0;
c_mask = 0;
status = -ENOSPC;
}
/* else scan the schedule to find a group of slots such that all
* uframes have enough periodic bandwidth available.
*/
if (status) {
/* "normal" case, uframing flexible except with splits */
if (qh->period) {
int i;
for (i = qh->period; status && i > 0; --i) {
frame = ++fotg210->random_frame % qh->period;
for (uframe = 0; uframe < 8; uframe++) {
status = check_intr_schedule(fotg210,
frame, uframe, qh,
&c_mask);
if (status == 0)
break;
}
}
/* qh->period == 0 means every uframe */
} else {
frame = 0;
status = check_intr_schedule(fotg210, 0, 0, qh,
&c_mask);
}
if (status)
goto done;
qh->start = frame;
/* reset S-frame and (maybe) C-frame masks */
hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
hw->hw_info2 |= qh->period
? cpu_to_hc32(fotg210, 1 << uframe)
: cpu_to_hc32(fotg210, QH_SMASK);
hw->hw_info2 |= c_mask;
} else
fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
/* stuff into the periodic schedule */
qh_link_periodic(fotg210, qh);
done:
return status;
}
static int intr_submit(
struct fotg210_hcd *fotg210,
struct urb *urb,
struct list_head *qtd_list,
gfp_t mem_flags
) {
unsigned epnum;
unsigned long flags;
struct fotg210_qh *qh;
int status;
struct list_head empty;
/* get endpoint and transfer/schedule data */
epnum = urb->ep->desc.bEndpointAddress;
spin_lock_irqsave(&fotg210->lock, flags);
if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
status = -ESHUTDOWN;
goto done_not_linked;
}
status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
if (unlikely(status))
goto done_not_linked;
/* get qh and force any scheduling errors */
INIT_LIST_HEAD(&empty);
qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
if (qh == NULL) {
status = -ENOMEM;
goto done;
}
if (qh->qh_state == QH_STATE_IDLE) {
status = qh_schedule(fotg210, qh);
if (status)
goto done;
}
/* then queue the urb's tds to the qh */
qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
BUG_ON(qh == NULL);
/* ... update usbfs periodic stats */
fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
done:
if (unlikely(status))
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
done_not_linked:
spin_unlock_irqrestore(&fotg210->lock, flags);
if (status)
qtd_list_free(fotg210, urb, qtd_list);
return status;
}
static void scan_intr(struct fotg210_hcd *fotg210)
{
struct fotg210_qh *qh;
list_for_each_entry_safe(qh, fotg210->qh_scan_next,
&fotg210->intr_qh_list, intr_node) {
rescan:
/* clean any finished work for this qh */
if (!list_empty(&qh->qtd_list)) {
int temp;
/*
* Unlinks could happen here; completion reporting
* drops the lock. That's why fotg210->qh_scan_next
* always holds the next qh to scan; if the next qh
* gets unlinked then fotg210->qh_scan_next is adjusted
* in qh_unlink_periodic().
*/
temp = qh_completions(fotg210, qh);
if (unlikely(qh->needs_rescan ||
(list_empty(&qh->qtd_list) &&
qh->qh_state == QH_STATE_LINKED)))
start_unlink_intr(fotg210, qh);
else if (temp != 0)
goto rescan;
}
}
}
/*-------------------------------------------------------------------------*/
/* fotg210_iso_stream ops work with both ITD and SITD */
static struct fotg210_iso_stream *
iso_stream_alloc(gfp_t mem_flags)
{
struct fotg210_iso_stream *stream;
stream = kzalloc(sizeof(*stream), mem_flags);
if (likely(stream != NULL)) {
INIT_LIST_HEAD(&stream->td_list);
INIT_LIST_HEAD(&stream->free_list);
stream->next_uframe = -1;
}
return stream;
}
static void
iso_stream_init(
struct fotg210_hcd *fotg210,
struct fotg210_iso_stream *stream,
struct usb_device *dev,
int pipe,
unsigned interval
)
{
u32 buf1;
unsigned epnum, maxp;
int is_input;
long bandwidth;
unsigned multi;
/*
* this might be a "high bandwidth" highspeed endpoint,
* as encoded in the ep descriptor's wMaxPacket field
*/
epnum = usb_pipeendpoint(pipe);
is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
maxp = usb_maxpacket(dev, pipe, !is_input);
if (is_input)
buf1 = (1 << 11);
else
buf1 = 0;
maxp = max_packet(maxp);
multi = hb_mult(maxp);
buf1 |= maxp;
maxp *= multi;
stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
stream->buf1 = cpu_to_hc32(fotg210, buf1);
stream->buf2 = cpu_to_hc32(fotg210, multi);
/* usbfs wants to report the average usecs per frame tied up
* when transfers on this endpoint are scheduled ...
*/
if (dev->speed == USB_SPEED_FULL) {
interval <<= 3;
stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
is_input, 1, maxp));
stream->usecs /= 8;
} else {
stream->highspeed = 1;
stream->usecs = HS_USECS_ISO(maxp);
}
bandwidth = stream->usecs * 8;
bandwidth /= interval;
stream->bandwidth = bandwidth;
stream->udev = dev;
stream->bEndpointAddress = is_input | epnum;
stream->interval = interval;
stream->maxp = maxp;
}
static struct fotg210_iso_stream *
iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
{
unsigned epnum;
struct fotg210_iso_stream *stream;
struct usb_host_endpoint *ep;
unsigned long flags;
epnum = usb_pipeendpoint(urb->pipe);
if (usb_pipein(urb->pipe))
ep = urb->dev->ep_in[epnum];
else
ep = urb->dev->ep_out[epnum];
spin_lock_irqsave(&fotg210->lock, flags);
stream = ep->hcpriv;
if (unlikely(stream == NULL)) {
stream = iso_stream_alloc(GFP_ATOMIC);
if (likely(stream != NULL)) {
ep->hcpriv = stream;
stream->ep = ep;
iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
urb->interval);
}
/* if dev->ep[epnum] is a QH, hw is set */
} else if (unlikely(stream->hw != NULL)) {
fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
urb->dev->devpath, epnum,
usb_pipein(urb->pipe) ? "in" : "out");
stream = NULL;
}
spin_unlock_irqrestore(&fotg210->lock, flags);
return stream;
}
/*-------------------------------------------------------------------------*/
/* fotg210_iso_sched ops can be ITD-only or SITD-only */
static struct fotg210_iso_sched *
iso_sched_alloc(unsigned packets, gfp_t mem_flags)
{
struct fotg210_iso_sched *iso_sched;
int size = sizeof(*iso_sched);
size += packets * sizeof(struct fotg210_iso_packet);
iso_sched = kzalloc(size, mem_flags);
if (likely(iso_sched != NULL))
INIT_LIST_HEAD(&iso_sched->td_list);
return iso_sched;
}
static inline void
itd_sched_init(
struct fotg210_hcd *fotg210,
struct fotg210_iso_sched *iso_sched,
struct fotg210_iso_stream *stream,
struct urb *urb
)
{
unsigned i;
dma_addr_t dma = urb->transfer_dma;
/* how many uframes are needed for these transfers */
iso_sched->span = urb->number_of_packets * stream->interval;
/* figure out per-uframe itd fields that we'll need later
* when we fit new itds into the schedule.
*/
for (i = 0; i < urb->number_of_packets; i++) {
struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
unsigned length;
dma_addr_t buf;
u32 trans;
length = urb->iso_frame_desc[i].length;
buf = dma + urb->iso_frame_desc[i].offset;
trans = FOTG210_ISOC_ACTIVE;
trans |= buf & 0x0fff;
if (unlikely(((i + 1) == urb->number_of_packets))
&& !(urb->transfer_flags & URB_NO_INTERRUPT))
trans |= FOTG210_ITD_IOC;
trans |= length << 16;
uframe->transaction = cpu_to_hc32(fotg210, trans);
/* might need to cross a buffer page within a uframe */
uframe->bufp = (buf & ~(u64)0x0fff);
buf += length;
if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
uframe->cross = 1;
}
}
static void
iso_sched_free(
struct fotg210_iso_stream *stream,
struct fotg210_iso_sched *iso_sched
)
{
if (!iso_sched)
return;
/* caller must hold fotg210->lock!*/
list_splice(&iso_sched->td_list, &stream->free_list);
kfree(iso_sched);
}
static int
itd_urb_transaction(
struct fotg210_iso_stream *stream,
struct fotg210_hcd *fotg210,
struct urb *urb,
gfp_t mem_flags
)
{
struct fotg210_itd *itd;
dma_addr_t itd_dma;
int i;
unsigned num_itds;
struct fotg210_iso_sched *sched;
unsigned long flags;
sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
if (unlikely(sched == NULL))
return -ENOMEM;
itd_sched_init(fotg210, sched, stream, urb);
if (urb->interval < 8)
num_itds = 1 + (sched->span + 7) / 8;
else
num_itds = urb->number_of_packets;
/* allocate/init ITDs */
spin_lock_irqsave(&fotg210->lock, flags);
for (i = 0; i < num_itds; i++) {
/*
* Use iTDs from the free list, but not iTDs that may
* still be in use by the hardware.
*/
if (likely(!list_empty(&stream->free_list))) {
itd = list_first_entry(&stream->free_list,
struct fotg210_itd, itd_list);
if (itd->frame == fotg210->now_frame)
goto alloc_itd;
list_del(&itd->itd_list);
itd_dma = itd->itd_dma;
} else {
alloc_itd:
spin_unlock_irqrestore(&fotg210->lock, flags);
itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
&itd_dma);
spin_lock_irqsave(&fotg210->lock, flags);
if (!itd) {
iso_sched_free(stream, sched);
spin_unlock_irqrestore(&fotg210->lock, flags);
return -ENOMEM;
}
}
memset(itd, 0, sizeof(*itd));
itd->itd_dma = itd_dma;
list_add(&itd->itd_list, &sched->td_list);
}
spin_unlock_irqrestore(&fotg210->lock, flags);
/* temporarily store schedule info in hcpriv */
urb->hcpriv = sched;
urb->error_count = 0;
return 0;
}
/*-------------------------------------------------------------------------*/
static inline int
itd_slot_ok(
struct fotg210_hcd *fotg210,
u32 mod,
u32 uframe,
u8 usecs,
u32 period
)
{
uframe %= period;
do {
/* can't commit more than uframe_periodic_max usec */
if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
> (fotg210->uframe_periodic_max - usecs))
return 0;
/* we know urb->interval is 2^N uframes */
uframe += period;
} while (uframe < mod);
return 1;
}
/*
* This scheduler plans almost as far into the future as it has actual
* periodic schedule slots. (Affected by TUNE_FLS, which defaults to
* "as small as possible" to be cache-friendlier.) That limits the size
* transfers you can stream reliably; avoid more than 64 msec per urb.
* Also avoid queue depths of less than fotg210's worst irq latency (affected
* by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
* and other factors); or more than about 230 msec total (for portability,
* given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
*/
#define SCHEDULE_SLOP 80 /* microframes */
static int
iso_stream_schedule(
struct fotg210_hcd *fotg210,
struct urb *urb,
struct fotg210_iso_stream *stream
)
{
u32 now, next, start, period, span;
int status;
unsigned mod = fotg210->periodic_size << 3;
struct fotg210_iso_sched *sched = urb->hcpriv;
period = urb->interval;
span = sched->span;
if (span > mod - SCHEDULE_SLOP) {
fotg210_dbg(fotg210, "iso request %p too long\n", urb);
status = -EFBIG;
goto fail;
}
now = fotg210_read_frame_index(fotg210) & (mod - 1);
/* Typical case: reuse current schedule, stream is still active.
* Hopefully there are no gaps from the host falling behind
* (irq delays etc), but if there are we'll take the next
* slot in the schedule, implicitly assuming URB_ISO_ASAP.
*/
if (likely(!list_empty(&stream->td_list))) {
u32 excess;
/* For high speed devices, allow scheduling within the
* isochronous scheduling threshold. For full speed devices
* and Intel PCI-based controllers, don't (work around for
* Intel ICH9 bug).
*/
if (!stream->highspeed && fotg210->fs_i_thresh)
next = now + fotg210->i_thresh;
else
next = now;
/* Fell behind (by up to twice the slop amount)?
* We decide based on the time of the last currently-scheduled
* slot, not the time of the next available slot.
*/
excess = (stream->next_uframe - period - next) & (mod - 1);
if (excess >= mod - 2 * SCHEDULE_SLOP)
start = next + excess - mod + period *
DIV_ROUND_UP(mod - excess, period);
else
start = next + excess + period;
if (start - now >= mod) {
fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
urb, start - now - period, period,
mod);
status = -EFBIG;
goto fail;
}
}
/* need to schedule; when's the next (u)frame we could start?
* this is bigger than fotg210->i_thresh allows; scheduling itself
* isn't free, the slop should handle reasonably slow cpus. it
* can also help high bandwidth if the dma and irq loads don't
* jump until after the queue is primed.
*/
else {
int done = 0;
start = SCHEDULE_SLOP + (now & ~0x07);
/* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
/* find a uframe slot with enough bandwidth.
* Early uframes are more precious because full-speed
* iso IN transfers can't use late uframes,
* and therefore they should be allocated last.
*/
next = start;
start += period;
do {
start--;
/* check schedule: enough space? */
if (itd_slot_ok(fotg210, mod, start,
stream->usecs, period))
done = 1;
} while (start > next && !done);
/* no room in the schedule */
if (!done) {
fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
urb, now, now + mod);
status = -ENOSPC;
goto fail;
}
}
/* Tried to schedule too far into the future? */
if (unlikely(start - now + span - period
>= mod - 2 * SCHEDULE_SLOP)) {
fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
urb, start - now, span - period,
mod - 2 * SCHEDULE_SLOP);
status = -EFBIG;
goto fail;
}
stream->next_uframe = start & (mod - 1);
/* report high speed start in uframes; full speed, in frames */
urb->start_frame = stream->next_uframe;
if (!stream->highspeed)
urb->start_frame >>= 3;
/* Make sure scan_isoc() sees these */
if (fotg210->isoc_count == 0)
fotg210->next_frame = now >> 3;
return 0;
fail:
iso_sched_free(stream, sched);
urb->hcpriv = NULL;
return status;
}
/*-------------------------------------------------------------------------*/
static inline void
itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
struct fotg210_itd *itd)
{
int i;
/* it's been recently zeroed */
itd->hw_next = FOTG210_LIST_END(fotg210);
itd->hw_bufp[0] = stream->buf0;
itd->hw_bufp[1] = stream->buf1;
itd->hw_bufp[2] = stream->buf2;
for (i = 0; i < 8; i++)
itd->index[i] = -1;
/* All other fields are filled when scheduling */
}
static inline void
itd_patch(
struct fotg210_hcd *fotg210,
struct fotg210_itd *itd,
struct fotg210_iso_sched *iso_sched,
unsigned index,
u16 uframe
)
{
struct fotg210_iso_packet *uf = &iso_sched->packet[index];
unsigned pg = itd->pg;
uframe &= 0x07;
itd->index[uframe] = index;
itd->hw_transaction[uframe] = uf->transaction;
itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
/* iso_frame_desc[].offset must be strictly increasing */
if (unlikely(uf->cross)) {
u64 bufp = uf->bufp + 4096;
itd->pg = ++pg;
itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
}
}
static inline void
itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
{
union fotg210_shadow *prev = &fotg210->pshadow[frame];
__hc32 *hw_p = &fotg210->periodic[frame];
union fotg210_shadow here = *prev;
__hc32 type = 0;
/* skip any iso nodes which might belong to previous microframes */
while (here.ptr) {
type = Q_NEXT_TYPE(fotg210, *hw_p);
if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
break;
prev = periodic_next_shadow(fotg210, prev, type);
hw_p = shadow_next_periodic(fotg210, &here, type);
here = *prev;
}
itd->itd_next = here;
itd->hw_next = *hw_p;
prev->itd = itd;
itd->frame = frame;
wmb();
*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
}
/* fit urb's itds into the selected schedule slot; activate as needed */
static void itd_link_urb(
struct fotg210_hcd *fotg210,
struct urb *urb,
unsigned mod,
struct fotg210_iso_stream *stream
)
{
int packet;
unsigned next_uframe, uframe, frame;
struct fotg210_iso_sched *iso_sched = urb->hcpriv;
struct fotg210_itd *itd;
next_uframe = stream->next_uframe & (mod - 1);
if (unlikely(list_empty(&stream->td_list))) {
fotg210_to_hcd(fotg210)->self.bandwidth_allocated
+= stream->bandwidth;
fotg210_dbg(fotg210,
"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
urb->dev->devpath, stream->bEndpointAddress & 0x0f,
(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
urb->interval,
next_uframe >> 3, next_uframe & 0x7);
}
/* fill iTDs uframe by uframe */
for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
if (itd == NULL) {
/* ASSERT: we have all necessary itds */
/* ASSERT: no itds for this endpoint in this uframe */
itd = list_entry(iso_sched->td_list.next,
struct fotg210_itd, itd_list);
list_move_tail(&itd->itd_list, &stream->td_list);
itd->stream = stream;
itd->urb = urb;
itd_init(fotg210, stream, itd);
}
uframe = next_uframe & 0x07;
frame = next_uframe >> 3;
itd_patch(fotg210, itd, iso_sched, packet, uframe);
next_uframe += stream->interval;
next_uframe &= mod - 1;
packet++;
/* link completed itds into the schedule */
if (((next_uframe >> 3) != frame)
|| packet == urb->number_of_packets) {
itd_link(fotg210, frame & (fotg210->periodic_size - 1),
itd);
itd = NULL;
}
}
stream->next_uframe = next_uframe;
/* don't need that schedule data any more */
iso_sched_free(stream, iso_sched);
urb->hcpriv = NULL;
++fotg210->isoc_count;
enable_periodic(fotg210);
}
#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
FOTG210_ISOC_XACTERR)
/* Process and recycle a completed ITD. Return true iff its urb completed,
* and hence its completion callback probably added things to the hardware
* schedule.
*
* Note that we carefully avoid recycling this descriptor until after any
* completion callback runs, so that it won't be reused quickly. That is,
* assuming (a) no more than two urbs per frame on this endpoint, and also
* (b) only this endpoint's completions submit URBs. It seems some silicon
* corrupts things if you reuse completed descriptors very quickly...
*/
static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
{
struct urb *urb = itd->urb;
struct usb_iso_packet_descriptor *desc;
u32 t;
unsigned uframe;
int urb_index = -1;
struct fotg210_iso_stream *stream = itd->stream;
struct usb_device *dev;
bool retval = false;
/* for each uframe with a packet */
for (uframe = 0; uframe < 8; uframe++) {
if (likely(itd->index[uframe] == -1))
continue;
urb_index = itd->index[uframe];
desc = &urb->iso_frame_desc[urb_index];
t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
itd->hw_transaction[uframe] = 0;
/* report transfer status */
if (unlikely(t & ISO_ERRS)) {
urb->error_count++;
if (t & FOTG210_ISOC_BUF_ERR)
desc->status = usb_pipein(urb->pipe)
? -ENOSR /* hc couldn't read */
: -ECOMM; /* hc couldn't write */
else if (t & FOTG210_ISOC_BABBLE)
desc->status = -EOVERFLOW;
else /* (t & FOTG210_ISOC_XACTERR) */
desc->status = -EPROTO;
/* HC need not update length with this error */
if (!(t & FOTG210_ISOC_BABBLE)) {
desc->actual_length =
fotg210_itdlen(urb, desc, t);
urb->actual_length += desc->actual_length;
}
} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
desc->status = 0;
desc->actual_length = fotg210_itdlen(urb, desc, t);
urb->actual_length += desc->actual_length;
} else {
/* URB was too late */
desc->status = -EXDEV;
}
}
/* handle completion now? */
if (likely((urb_index + 1) != urb->number_of_packets))
goto done;
/* ASSERT: it's really the last itd for this urb
list_for_each_entry (itd, &stream->td_list, itd_list)
BUG_ON (itd->urb == urb);
*/
/* give urb back to the driver; completion often (re)submits */
dev = urb->dev;
fotg210_urb_done(fotg210, urb, 0);
retval = true;
urb = NULL;
--fotg210->isoc_count;
disable_periodic(fotg210);
if (unlikely(list_is_singular(&stream->td_list))) {
fotg210_to_hcd(fotg210)->self.bandwidth_allocated
-= stream->bandwidth;
fotg210_dbg(fotg210,
"deschedule devp %s ep%d%s-iso\n",
dev->devpath, stream->bEndpointAddress & 0x0f,
(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
}
done:
itd->urb = NULL;
/* Add to the end of the free list for later reuse */
list_move_tail(&itd->itd_list, &stream->free_list);
/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
if (list_empty(&stream->td_list)) {
list_splice_tail_init(&stream->free_list,
&fotg210->cached_itd_list);
start_free_itds(fotg210);
}
return retval;
}
/*-------------------------------------------------------------------------*/
static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
gfp_t mem_flags)
{
int status = -EINVAL;
unsigned long flags;
struct fotg210_iso_stream *stream;
/* Get iso_stream head */
stream = iso_stream_find(fotg210, urb);
if (unlikely(stream == NULL)) {
fotg210_dbg(fotg210, "can't get iso stream\n");
return -ENOMEM;
}
if (unlikely(urb->interval != stream->interval &&
fotg210_port_speed(fotg210, 0) ==
USB_PORT_STAT_HIGH_SPEED)) {
fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
stream->interval, urb->interval);
goto done;
}
#ifdef FOTG210_URB_TRACE
fotg210_dbg(fotg210,
"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
__func__, urb->dev->devpath, urb,
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "in" : "out",
urb->transfer_buffer_length,
urb->number_of_packets, urb->interval,
stream);
#endif
/* allocate ITDs w/o locking anything */
status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
if (unlikely(status < 0)) {
fotg210_dbg(fotg210, "can't init itds\n");
goto done;
}
/* schedule ... need to lock */
spin_lock_irqsave(&fotg210->lock, flags);
if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
status = -ESHUTDOWN;
goto done_not_linked;
}
status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
if (unlikely(status))
goto done_not_linked;
status = iso_stream_schedule(fotg210, urb, stream);
if (likely(status == 0))
itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
else
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
done_not_linked:
spin_unlock_irqrestore(&fotg210->lock, flags);
done:
return status;
}
/*-------------------------------------------------------------------------*/
static void scan_isoc(struct fotg210_hcd *fotg210)
{
unsigned uf, now_frame, frame;
unsigned fmask = fotg210->periodic_size - 1;
bool modified, live;
/*
* When running, scan from last scan point up to "now"
* else clean up by scanning everything that's left.
* Touches as few pages as possible: cache-friendly.
*/
if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
uf = fotg210_read_frame_index(fotg210);
now_frame = (uf >> 3) & fmask;
live = true;
} else {
now_frame = (fotg210->next_frame - 1) & fmask;
live = false;
}
fotg210->now_frame = now_frame;
frame = fotg210->next_frame;
for (;;) {
union fotg210_shadow q, *q_p;
__hc32 type, *hw_p;
restart:
/* scan each element in frame's queue for completions */
q_p = &fotg210->pshadow[frame];
hw_p = &fotg210->periodic[frame];
q.ptr = q_p->ptr;
type = Q_NEXT_TYPE(fotg210, *hw_p);
modified = false;
while (q.ptr != NULL) {
switch (hc32_to_cpu(fotg210, type)) {
case Q_TYPE_ITD:
/* If this ITD is still active, leave it for
* later processing ... check the next entry.
* No need to check for activity unless the
* frame is current.
*/
if (frame == now_frame && live) {
rmb();
for (uf = 0; uf < 8; uf++) {
if (q.itd->hw_transaction[uf] &
ITD_ACTIVE(fotg210))
break;
}
if (uf < 8) {
q_p = &q.itd->itd_next;
hw_p = &q.itd->hw_next;
type = Q_NEXT_TYPE(fotg210,
q.itd->hw_next);
q = *q_p;
break;
}
}
/* Take finished ITDs out of the schedule
* and process them: recycle, maybe report
* URB completion. HC won't cache the
* pointer for much longer, if at all.
*/
*q_p = q.itd->itd_next;
*hw_p = q.itd->hw_next;
type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
wmb();
modified = itd_complete(fotg210, q.itd);
q = *q_p;
break;
default:
fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
type, frame, q.ptr);
/* FALL THROUGH */
case Q_TYPE_QH:
case Q_TYPE_FSTN:
/* End of the iTDs and siTDs */
q.ptr = NULL;
break;
}
/* assume completion callbacks modify the queue */
if (unlikely(modified && fotg210->isoc_count > 0))
goto restart;
}
/* Stop when we have reached the current frame */
if (frame == now_frame)
break;
frame = (frame + 1) & fmask;
}
fotg210->next_frame = now_frame;
}
/*-------------------------------------------------------------------------*/
/*
* Display / Set uframe_periodic_max
*/
static ssize_t show_uframe_periodic_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fotg210_hcd *fotg210;
int n;
fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
return n;
}
static ssize_t store_uframe_periodic_max(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fotg210_hcd *fotg210;
unsigned uframe_periodic_max;
unsigned frame, uframe;
unsigned short allocated_max;
unsigned long flags;
ssize_t ret;
fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
return -EINVAL;
if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
uframe_periodic_max);
return -EINVAL;
}
ret = -EINVAL;
/*
* lock, so that our checking does not race with possible periodic
* bandwidth allocation through submitting new urbs.
*/
spin_lock_irqsave(&fotg210->lock, flags);
/*
* for request to decrease max periodic bandwidth, we have to check
* every microframe in the schedule to see whether the decrease is
* possible.
*/
if (uframe_periodic_max < fotg210->uframe_periodic_max) {
allocated_max = 0;
for (frame = 0; frame < fotg210->periodic_size; ++frame)
for (uframe = 0; uframe < 7; ++uframe)
allocated_max = max(allocated_max,
periodic_usecs(fotg210, frame, uframe));
if (allocated_max > uframe_periodic_max) {
fotg210_info(fotg210,
"cannot decrease uframe_periodic_max because "
"periodic bandwidth is already allocated "
"(%u > %u)\n",
allocated_max, uframe_periodic_max);
goto out_unlock;
}
}
/* increasing is always ok */
fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
100 * uframe_periodic_max/125, uframe_periodic_max);
if (uframe_periodic_max != 100)
fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
fotg210->uframe_periodic_max = uframe_periodic_max;
ret = count;
out_unlock:
spin_unlock_irqrestore(&fotg210->lock, flags);
return ret;
}
static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
store_uframe_periodic_max);
static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
{
struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
int i = 0;
if (i)
goto out;
i = device_create_file(controller, &dev_attr_uframe_periodic_max);
out:
return i;
}
static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
{
struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
device_remove_file(controller, &dev_attr_uframe_periodic_max);
}
/*-------------------------------------------------------------------------*/
/* On some systems, leaving remote wakeup enabled prevents system shutdown.
* The firmware seems to think that powering off is a wakeup event!
* This routine turns off remote wakeup and everything else, on all ports.
*/
static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
{
u32 __iomem *status_reg = &fotg210->regs->port_status;
fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
}
/*
* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
* Must be called with interrupts enabled and the lock not held.
*/
static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
{
fotg210_halt(fotg210);
spin_lock_irq(&fotg210->lock);
fotg210->rh_state = FOTG210_RH_HALTED;
fotg210_turn_off_all_ports(fotg210);
spin_unlock_irq(&fotg210->lock);
}
/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
* This forcibly disables dma and IRQs, helping kexec and other cases
* where the next system software may expect clean state.
*/
static void fotg210_shutdown(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
spin_lock_irq(&fotg210->lock);
fotg210->shutdown = true;
fotg210->rh_state = FOTG210_RH_STOPPING;
fotg210->enabled_hrtimer_events = 0;
spin_unlock_irq(&fotg210->lock);
fotg210_silence_controller(fotg210);
hrtimer_cancel(&fotg210->hrtimer);
}
/*-------------------------------------------------------------------------*/
/*
* fotg210_work is called from some interrupts, timers, and so on.
* it calls driver completion functions, after dropping fotg210->lock.
*/
static void fotg210_work(struct fotg210_hcd *fotg210)
{
/* another CPU may drop fotg210->lock during a schedule scan while
* it reports urb completions. this flag guards against bogus
* attempts at re-entrant schedule scanning.
*/
if (fotg210->scanning) {
fotg210->need_rescan = true;
return;
}
fotg210->scanning = true;
rescan:
fotg210->need_rescan = false;
if (fotg210->async_count)
scan_async(fotg210);
if (fotg210->intr_count > 0)
scan_intr(fotg210);
if (fotg210->isoc_count > 0)
scan_isoc(fotg210);
if (fotg210->need_rescan)
goto rescan;
fotg210->scanning = false;
/* the IO watchdog guards against hardware or driver bugs that
* misplace IRQs, and should let us run completely without IRQs.
* such lossage has been observed on both VT6202 and VT8235.
*/
turn_on_io_watchdog(fotg210);
}
/*
* Called when the fotg210_hcd module is removed.
*/
static void fotg210_stop(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
fotg210_dbg(fotg210, "stop\n");
/* no more interrupts ... */
spin_lock_irq(&fotg210->lock);
fotg210->enabled_hrtimer_events = 0;
spin_unlock_irq(&fotg210->lock);
fotg210_quiesce(fotg210);
fotg210_silence_controller(fotg210);
fotg210_reset(fotg210);
hrtimer_cancel(&fotg210->hrtimer);
remove_sysfs_files(fotg210);
remove_debug_files(fotg210);
/* root hub is shut down separately (first, when possible) */
spin_lock_irq(&fotg210->lock);
end_free_itds(fotg210);
spin_unlock_irq(&fotg210->lock);
fotg210_mem_cleanup(fotg210);
#ifdef FOTG210_STATS
fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
fotg210->stats.lost_iaa);
fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
fotg210->stats.complete, fotg210->stats.unlink);
#endif
dbg_status(fotg210, "fotg210_stop completed",
fotg210_readl(fotg210, &fotg210->regs->status));
}
/* one-time init, only for memory state */
static int hcd_fotg210_init(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
u32 temp;
int retval;
u32 hcc_params;
struct fotg210_qh_hw *hw;
spin_lock_init(&fotg210->lock);
/*
* keep io watchdog by default, those good HCDs could turn off it later
*/
fotg210->need_io_watchdog = 1;
hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
fotg210->hrtimer.function = fotg210_hrtimer_func;
fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
/*
* by default set standard 80% (== 100 usec/uframe) max periodic
* bandwidth as required by USB 2.0
*/
fotg210->uframe_periodic_max = 100;
/*
* hw default: 1K periodic list heads, one per frame.
* periodic_size can shrink by USBCMD update if hcc_params allows.
*/
fotg210->periodic_size = DEFAULT_I_TDPS;
INIT_LIST_HEAD(&fotg210->intr_qh_list);
INIT_LIST_HEAD(&fotg210->cached_itd_list);
if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
/* periodic schedule size can be smaller than default */
switch (FOTG210_TUNE_FLS) {
case 0:
fotg210->periodic_size = 1024;
break;
case 1:
fotg210->periodic_size = 512;
break;
case 2:
fotg210->periodic_size = 256;
break;
default:
BUG();
}
}
retval = fotg210_mem_init(fotg210, GFP_KERNEL);
if (retval < 0)
return retval;
/* controllers may cache some of the periodic schedule ... */
fotg210->i_thresh = 2;
/*
* dedicate a qh for the async ring head, since we couldn't unlink
* a 'real' qh without stopping the async schedule [4.8]. use it
* as the 'reclamation list head' too.
* its dummy is used in hw_alt_next of many tds, to prevent the qh
* from automatically advancing to the next td after short reads.
*/
fotg210->async->qh_next.qh = NULL;
hw = fotg210->async->hw;
hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
fotg210->async->qh_state = QH_STATE_LINKED;
hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
/* clear interrupt enables, set irq latency */
if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
log2_irq_thresh = 0;
temp = 1 << (16 + log2_irq_thresh);
if (HCC_CANPARK(hcc_params)) {
/* HW default park == 3, on hardware that supports it (like
* NVidia and ALI silicon), maximizes throughput on the async
* schedule by avoiding QH fetches between transfers.
*
* With fast usb storage devices and NForce2, "park" seems to
* make problems: throughput reduction (!), data errors...
*/
if (park) {
park = min_t(unsigned, park, 3);
temp |= CMD_PARK;
temp |= park << 8;
}
fotg210_dbg(fotg210, "park %d\n", park);
}
if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
/* periodic schedule size can be smaller than default */
temp &= ~(3 << 2);
temp |= (FOTG210_TUNE_FLS << 2);
}
fotg210->command = temp;
/* Accept arbitrarily long scatter-gather lists */
if (!(hcd->driver->flags & HCD_LOCAL_MEM))
hcd->self.sg_tablesize = ~0;
return 0;
}
/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
static int fotg210_run(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
u32 temp;
u32 hcc_params;
hcd->uses_new_polling = 1;
/* EHCI spec section 4.1 */
fotg210_writel(fotg210, fotg210->periodic_dma,
&fotg210->regs->frame_list);
fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
&fotg210->regs->async_next);
/*
* hcc_params controls whether fotg210->regs->segment must (!!!)
* be used; it constrains QH/ITD/SITD and QTD locations.
* pci_pool consistent memory always uses segment zero.
* streaming mappings for I/O buffers, like pci_map_single(),
* can return segments above 4GB, if the device allows.
*
* NOTE: the dma mask is visible through dma_supported(), so
* drivers can pass this info along ... like NETIF_F_HIGHDMA,
* Scsi_Host.highmem_io, and so forth. It's readonly to all
* host side drivers though.
*/
hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
/*
* Philips, Intel, and maybe others need CMD_RUN before the
* root hub will detect new devices (why?); NEC doesn't
*/
fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
fotg210->command |= CMD_RUN;
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
dbg_cmd(fotg210, "init", fotg210->command);
/*
* Start, enabling full USB 2.0 functionality ... usb 1.1 devices
* are explicitly handed to companion controller(s), so no TT is
* involved with the root hub. (Except where one is integrated,
* and there's no companion controller unless maybe for USB OTG.)
*
* Turning on the CF flag will transfer ownership of all ports
* from the companions to the EHCI controller. If any of the
* companions are in the middle of a port reset at the time, it
* could cause trouble. Write-locking ehci_cf_port_reset_rwsem
* guarantees that no resets are in progress. After we set CF,
* a short delay lets the hardware catch up; new resets shouldn't
* be started before the port switching actions could complete.
*/
down_write(&ehci_cf_port_reset_rwsem);
fotg210->rh_state = FOTG210_RH_RUNNING;
/* unblock posted writes */
fotg210_readl(fotg210, &fotg210->regs->command);
msleep(5);
up_write(&ehci_cf_port_reset_rwsem);
fotg210->last_periodic_enable = ktime_get_real();
temp = HC_VERSION(fotg210,
fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
fotg210_info(fotg210,
"USB %x.%x started, EHCI %x.%02x\n",
((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
temp >> 8, temp & 0xff);
fotg210_writel(fotg210, INTR_MASK,
&fotg210->regs->intr_enable); /* Turn On Interrupts */
/* GRR this is run-once init(), being done every time the HC starts.
* So long as they're part of class devices, we can't do it init()
* since the class device isn't created that early.
*/
create_debug_files(fotg210);
create_sysfs_files(fotg210);
return 0;
}
static int fotg210_setup(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
int retval;
fotg210->regs = (void __iomem *)fotg210->caps +
HC_LENGTH(fotg210,
fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
dbg_hcs_params(fotg210, "reset");
dbg_hcc_params(fotg210, "reset");
/* cache this readonly data; minimize chip reads */
fotg210->hcs_params = fotg210_readl(fotg210,
&fotg210->caps->hcs_params);
fotg210->sbrn = HCD_USB2;
/* data structure init */
retval = hcd_fotg210_init(hcd);
if (retval)
return retval;
retval = fotg210_halt(fotg210);
if (retval)
return retval;
fotg210_reset(fotg210);
return 0;
}
/*-------------------------------------------------------------------------*/
static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
u32 status, masked_status, pcd_status = 0, cmd;
int bh;
spin_lock(&fotg210->lock);
status = fotg210_readl(fotg210, &fotg210->regs->status);
/* e.g. cardbus physical eject */
if (status == ~(u32) 0) {
fotg210_dbg(fotg210, "device removed\n");
goto dead;
}
/*
* We don't use STS_FLR, but some controllers don't like it to
* remain on, so mask it out along with the other status bits.
*/
masked_status = status & (INTR_MASK | STS_FLR);
/* Shared IRQ? */
if (!masked_status ||
unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
spin_unlock(&fotg210->lock);
return IRQ_NONE;
}
/* clear (just) interrupts */
fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
cmd = fotg210_readl(fotg210, &fotg210->regs->command);
bh = 0;
/* unrequested/ignored: Frame List Rollover */
dbg_status(fotg210, "irq", status);
/* INT, ERR, and IAA interrupt rates can be throttled */
/* normal [4.15.1.2] or error [4.15.1.1] completion */
if (likely((status & (STS_INT|STS_ERR)) != 0)) {
if (likely((status & STS_ERR) == 0))
COUNT(fotg210->stats.normal);
else
COUNT(fotg210->stats.error);
bh = 1;
}
/* complete the unlinking of some qh [4.15.2.3] */
if (status & STS_IAA) {
/* Turn off the IAA watchdog */
fotg210->enabled_hrtimer_events &=
~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
/*
* Mild optimization: Allow another IAAD to reset the
* hrtimer, if one occurs before the next expiration.
* In theory we could always cancel the hrtimer, but
* tests show that about half the time it will be reset
* for some other event anyway.
*/
if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
++fotg210->next_hrtimer_event;
/* guard against (alleged) silicon errata */
if (cmd & CMD_IAAD)
fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
if (fotg210->async_iaa) {
COUNT(fotg210->stats.iaa);
end_unlink_async(fotg210);
} else
fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
}
/* remote wakeup [4.3.1] */
if (status & STS_PCD) {
int pstatus;
u32 __iomem *status_reg = &fotg210->regs->port_status;
/* kick root hub later */
pcd_status = status;
/* resume root hub? */
if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
usb_hcd_resume_root_hub(hcd);
pstatus = fotg210_readl(fotg210, status_reg);
if (test_bit(0, &fotg210->suspended_ports) &&
((pstatus & PORT_RESUME) ||
!(pstatus & PORT_SUSPEND)) &&
(pstatus & PORT_PE) &&
fotg210->reset_done[0] == 0) {
/* start 20 msec resume signaling from this port,
* and make hub_wq collect PORT_STAT_C_SUSPEND to
* stop that signaling. Use 5 ms extra for safety,
* like usb_port_resume() does.
*/
fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
set_bit(0, &fotg210->resuming_ports);
fotg210_dbg(fotg210, "port 1 remote wakeup\n");
mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
}
}
/* PCI errors [4.15.2.4] */
if (unlikely((status & STS_FATAL) != 0)) {
fotg210_err(fotg210, "fatal error\n");
dbg_cmd(fotg210, "fatal", cmd);
dbg_status(fotg210, "fatal", status);
dead:
usb_hc_died(hcd);
/* Don't let the controller do anything more */
fotg210->shutdown = true;
fotg210->rh_state = FOTG210_RH_STOPPING;
fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
fotg210_writel(fotg210, fotg210->command,
&fotg210->regs->command);
fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
fotg210_handle_controller_death(fotg210);
/* Handle completions when the controller stops */
bh = 0;
}
if (bh)
fotg210_work(fotg210);
spin_unlock(&fotg210->lock);
if (pcd_status)
usb_hcd_poll_rh_status(hcd);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
/*
* non-error returns are a promise to giveback() the urb later
* we drop ownership so next owner (or urb unlink) can get it
*
* urb + dev is in hcd.self.controller.urb_list
* we're queueing TDs onto software and hardware lists
*
* hcd-specific init for hcpriv hasn't been done yet
*
* NOTE: control, bulk, and interrupt share the same code to append TDs
* to a (possibly active) QH, and the same QH scanning code.
*/
static int fotg210_urb_enqueue(
struct usb_hcd *hcd,
struct urb *urb,
gfp_t mem_flags
) {
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
struct list_head qtd_list;
INIT_LIST_HEAD(&qtd_list);
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
/* qh_completions() code doesn't handle all the fault cases
* in multi-TD control transfers. Even 1KB is rare anyway.
*/
if (urb->transfer_buffer_length > (16 * 1024))
return -EMSGSIZE;
/* FALLTHROUGH */
/* case PIPE_BULK: */
default:
if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
return -ENOMEM;
return submit_async(fotg210, urb, &qtd_list, mem_flags);
case PIPE_INTERRUPT:
if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
return -ENOMEM;
return intr_submit(fotg210, urb, &qtd_list, mem_flags);
case PIPE_ISOCHRONOUS:
return itd_submit(fotg210, urb, mem_flags);
}
}
/* remove from hardware lists
* completions normally happen asynchronously
*/
static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
struct fotg210_qh *qh;
unsigned long flags;
int rc;
spin_lock_irqsave(&fotg210->lock, flags);
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
if (rc)
goto done;
switch (usb_pipetype(urb->pipe)) {
/* case PIPE_CONTROL: */
/* case PIPE_BULK:*/
default:
qh = (struct fotg210_qh *) urb->hcpriv;
if (!qh)
break;
switch (qh->qh_state) {
case QH_STATE_LINKED:
case QH_STATE_COMPLETING:
start_unlink_async(fotg210, qh);
break;
case QH_STATE_UNLINK:
case QH_STATE_UNLINK_WAIT:
/* already started */
break;
case QH_STATE_IDLE:
/* QH might be waiting for a Clear-TT-Buffer */
qh_completions(fotg210, qh);
break;
}
break;
case PIPE_INTERRUPT:
qh = (struct fotg210_qh *) urb->hcpriv;
if (!qh)
break;
switch (qh->qh_state) {
case QH_STATE_LINKED:
case QH_STATE_COMPLETING:
start_unlink_intr(fotg210, qh);
break;
case QH_STATE_IDLE:
qh_completions(fotg210, qh);
break;
default:
fotg210_dbg(fotg210, "bogus qh %p state %d\n",
qh, qh->qh_state);
goto done;
}
break;
case PIPE_ISOCHRONOUS:
/* itd... */
/* wait till next completion, do it then. */
/* completion irqs can wait up to 1024 msec, */
break;
}
done:
spin_unlock_irqrestore(&fotg210->lock, flags);
return rc;
}
/*-------------------------------------------------------------------------*/
/* bulk qh holds the data toggle */
static void
fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
unsigned long flags;
struct fotg210_qh *qh, *tmp;
/* ASSERT: any requests/urbs are being unlinked */
/* ASSERT: nobody can be submitting urbs for this any more */
rescan:
spin_lock_irqsave(&fotg210->lock, flags);
qh = ep->hcpriv;
if (!qh)
goto done;
/* endpoints can be iso streams. for now, we don't
* accelerate iso completions ... so spin a while.
*/
if (qh->hw == NULL) {
struct fotg210_iso_stream *stream = ep->hcpriv;
if (!list_empty(&stream->td_list))
goto idle_timeout;
/* BUG_ON(!list_empty(&stream->free_list)); */
kfree(stream);
goto done;
}
if (fotg210->rh_state < FOTG210_RH_RUNNING)
qh->qh_state = QH_STATE_IDLE;
switch (qh->qh_state) {
case QH_STATE_LINKED:
case QH_STATE_COMPLETING:
for (tmp = fotg210->async->qh_next.qh;
tmp && tmp != qh;
tmp = tmp->qh_next.qh)
continue;
/* periodic qh self-unlinks on empty, and a COMPLETING qh
* may already be unlinked.
*/
if (tmp)
start_unlink_async(fotg210, qh);
/* FALL THROUGH */
case QH_STATE_UNLINK: /* wait for hw to finish? */
case QH_STATE_UNLINK_WAIT:
idle_timeout:
spin_unlock_irqrestore(&fotg210->lock, flags);
schedule_timeout_uninterruptible(1);
goto rescan;
case QH_STATE_IDLE: /* fully unlinked */
if (qh->clearing_tt)
goto idle_timeout;
if (list_empty(&qh->qtd_list)) {
qh_destroy(fotg210, qh);
break;
}
/* else FALL THROUGH */
default:
/* caller was supposed to have unlinked any requests;
* that's not our job. just leak this memory.
*/
fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
qh, ep->desc.bEndpointAddress, qh->qh_state,
list_empty(&qh->qtd_list) ? "" : "(has tds)");
break;
}
done:
ep->hcpriv = NULL;
spin_unlock_irqrestore(&fotg210->lock, flags);
}
static void
fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
struct fotg210_qh *qh;
int eptype = usb_endpoint_type(&ep->desc);
int epnum = usb_endpoint_num(&ep->desc);
int is_out = usb_endpoint_dir_out(&ep->desc);
unsigned long flags;
if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
return;
spin_lock_irqsave(&fotg210->lock, flags);
qh = ep->hcpriv;
/* For Bulk and Interrupt endpoints we maintain the toggle state
* in the hardware; the toggle bits in udev aren't used at all.
* When an endpoint is reset by usb_clear_halt() we must reset
* the toggle bit in the QH.
*/
if (qh) {
usb_settoggle(qh->dev, epnum, is_out, 0);
if (!list_empty(&qh->qtd_list)) {
WARN_ONCE(1, "clear_halt for a busy endpoint\n");
} else if (qh->qh_state == QH_STATE_LINKED ||
qh->qh_state == QH_STATE_COMPLETING) {
/* The toggle value in the QH can't be updated
* while the QH is active. Unlink it now;
* re-linking will call qh_refresh().
*/
if (eptype == USB_ENDPOINT_XFER_BULK)
start_unlink_async(fotg210, qh);
else
start_unlink_intr(fotg210, qh);
}
}
spin_unlock_irqrestore(&fotg210->lock, flags);
}
static int fotg210_get_frame(struct usb_hcd *hcd)
{
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
return (fotg210_read_frame_index(fotg210) >> 3) %
fotg210->periodic_size;
}
/*-------------------------------------------------------------------------*/
/*
* The EHCI in ChipIdea HDRC cannot be a separate module or device,
* because its registers (and irq) are shared between host/gadget/otg
* functions and in order to facilitate role switching we cannot
* give the fotg210 driver exclusive access to those.
*/
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
static const struct hc_driver fotg210_fotg210_hc_driver = {
.description = hcd_name,
.product_desc = "Faraday USB2.0 Host Controller",
.hcd_priv_size = sizeof(struct fotg210_hcd),
/*
* generic hardware linkage
*/
.irq = fotg210_irq,
.flags = HCD_MEMORY | HCD_USB2,
/*
* basic lifecycle operations
*/
.reset = hcd_fotg210_init,
.start = fotg210_run,
.stop = fotg210_stop,
.shutdown = fotg210_shutdown,
/*
* managing i/o requests and associated device resources
*/
.urb_enqueue = fotg210_urb_enqueue,
.urb_dequeue = fotg210_urb_dequeue,
.endpoint_disable = fotg210_endpoint_disable,
.endpoint_reset = fotg210_endpoint_reset,
/*
* scheduling support
*/
.get_frame_number = fotg210_get_frame,
/*
* root hub support
*/
.hub_status_data = fotg210_hub_status_data,
.hub_control = fotg210_hub_control,
.bus_suspend = fotg210_bus_suspend,
.bus_resume = fotg210_bus_resume,
.relinquish_port = fotg210_relinquish_port,
.port_handed_over = fotg210_port_handed_over,
.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
};
static void fotg210_init(struct fotg210_hcd *fotg210)
{
u32 value;
iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
&fotg210->regs->gmir);
value = ioread32(&fotg210->regs->otgcsr);
value &= ~OTGCSR_A_BUS_DROP;
value |= OTGCSR_A_BUS_REQ;
iowrite32(value, &fotg210->regs->otgcsr);
}
/**
* fotg210_hcd_probe - initialize faraday FOTG210 HCDs
*
* Allocates basic resources for this USB host controller, and
* then invokes the start() method for the HCD associated with it
* through the hotplug entry's driver_data.
*/
static int fotg210_hcd_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct usb_hcd *hcd;
struct resource *res;
int irq;
int retval = -ENODEV;
struct fotg210_hcd *fotg210;
if (usb_disabled())
return -ENODEV;
pdev->dev.power.power_state = PMSG_ON;
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(dev,
"Found HC with no IRQ. Check %s setup!\n",
dev_name(dev));
return -ENODEV;
}
irq = res->start;
hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
dev_name(dev));
if (!hcd) {
dev_err(dev, "failed to create hcd with err %d\n", retval);
retval = -ENOMEM;
goto fail_create_hcd;
}
hcd->has_tt = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hcd->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(hcd->regs)) {
retval = PTR_ERR(hcd->regs);
goto failed;
}
hcd->rsrc_start = res->start;
hcd->rsrc_len = resource_size(res);
fotg210 = hcd_to_fotg210(hcd);
fotg210->caps = hcd->regs;
retval = fotg210_setup(hcd);
if (retval)
goto failed;
fotg210_init(fotg210);
retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
if (retval) {
dev_err(dev, "failed to add hcd with err %d\n", retval);
goto failed;
}
device_wakeup_enable(hcd->self.controller);
return retval;
failed:
usb_put_hcd(hcd);
fail_create_hcd:
dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
return retval;
}
/**
* fotg210_hcd_remove - shutdown processing for EHCI HCDs
* @dev: USB Host Controller being removed
*
*/
static int fotg210_hcd_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct usb_hcd *hcd = dev_get_drvdata(dev);
if (!hcd)
return 0;
usb_remove_hcd(hcd);
usb_put_hcd(hcd);
return 0;
}
static struct platform_driver fotg210_hcd_driver = {
.driver = {
.name = "fotg210-hcd",
},
.probe = fotg210_hcd_probe,
.remove = fotg210_hcd_remove,
};
static int __init fotg210_hcd_init(void)
{
int retval = 0;
if (usb_disabled())
return -ENODEV;
pr_info("%s: " DRIVER_DESC "\n", hcd_name);
set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
hcd_name,
sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
sizeof(struct fotg210_itd));
fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
if (!fotg210_debug_root) {
retval = -ENOENT;
goto err_debug;
}
retval = platform_driver_register(&fotg210_hcd_driver);
if (retval < 0)
goto clean;
return retval;
platform_driver_unregister(&fotg210_hcd_driver);
clean:
debugfs_remove(fotg210_debug_root);
fotg210_debug_root = NULL;
err_debug:
clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
return retval;
}
module_init(fotg210_hcd_init);
static void __exit fotg210_hcd_cleanup(void)
{
platform_driver_unregister(&fotg210_hcd_driver);
debugfs_remove(fotg210_debug_root);
clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
}
module_exit(fotg210_hcd_cleanup);