/*
* f_acm.c -- USB CDC serial (ACM) function driver
*
* Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
* Copyright (C) 2008 by David Brownell
* Copyright (C) 2008 by Nokia Corporation
* Copyright (C) 2009 by Samsung Electronics
* Author: Michal Nazarewicz (mina86@mina86.com)
*
* This software is distributed under the terms of the GNU General
* Public License ("GPL") as published by the Free Software Foundation,
* either version 2 of that License or (at your option) any later version.
*/
/* #define VERBOSE_DEBUG */
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/err.h>
#include "u_serial.h"
#include "gadget_chips.h"
/*
* This CDC ACM function support just wraps control functions and
* notifications around the generic serial-over-usb code.
*
* Because CDC ACM is standardized by the USB-IF, many host operating
* systems have drivers for it. Accordingly, ACM is the preferred
* interop solution for serial-port type connections. The control
* models are often not necessary, and in any case don't do much in
* this bare-bones implementation.
*
* Note that even MS-Windows has some support for ACM. However, that
* support is somewhat broken because when you use ACM in a composite
* device, having multiple interfaces confuses the poor OS. It doesn't
* seem to understand CDC Union descriptors. The new "association"
* descriptors (roughly equivalent to CDC Unions) may sometimes help.
*/
struct f_acm {
struct gserial port;
u8 ctrl_id, data_id;
u8 port_num;
u8 pending;
/* lock is mostly for pending and notify_req ... they get accessed
* by callbacks both from tty (open/close/break) under its spinlock,
* and notify_req.complete() which can't use that lock.
*/
spinlock_t lock;
struct usb_ep *notify;
struct usb_request *notify_req;
struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */
/* SetControlLineState request -- CDC 1.1 section 6.2.14 (INPUT) */
u16 port_handshake_bits;
#define ACM_CTRL_RTS (1 << 1) /* unused with full duplex */
#define ACM_CTRL_DTR (1 << 0) /* host is ready for data r/w */
/* SerialState notification -- CDC 1.1 section 6.3.5 (OUTPUT) */
u16 serial_state;
#define ACM_CTRL_OVERRUN (1 << 6)
#define ACM_CTRL_PARITY (1 << 5)
#define ACM_CTRL_FRAMING (1 << 4)
#define ACM_CTRL_RI (1 << 3)
#define ACM_CTRL_BRK (1 << 2)
#define ACM_CTRL_DSR (1 << 1)
#define ACM_CTRL_DCD (1 << 0)
};
static inline struct f_acm *func_to_acm(struct usb_function *f)
{
return container_of(f, struct f_acm, port.func);
}
static inline struct f_acm *port_to_acm(struct gserial *p)
{
return container_of(p, struct f_acm, port);
}
/*-------------------------------------------------------------------------*/
/* notification endpoint uses smallish and infrequent fixed-size messages */
#define GS_NOTIFY_INTERVAL_MS 32
#define GS_NOTIFY_MAXPACKET 10 /* notification + 2 bytes */
/* interface and class descriptors: */
static struct usb_interface_assoc_descriptor
acm_iad_descriptor = {
.bLength = sizeof acm_iad_descriptor,
.bDescriptorType = USB_DT_INTERFACE_ASSOCIATION,
/* .bFirstInterface = DYNAMIC, */
.bInterfaceCount = 2, // control + data
.bFunctionClass = USB_CLASS_COMM,
.bFunctionSubClass = USB_CDC_SUBCLASS_ACM,
.bFunctionProtocol = USB_CDC_ACM_PROTO_AT_V25TER,
/* .iFunction = DYNAMIC */
};
static struct usb_interface_descriptor acm_control_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
/* .bInterfaceNumber = DYNAMIC */
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_COMM,
.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM,
.bInterfaceProtocol = USB_CDC_ACM_PROTO_AT_V25TER,
/* .iInterface = DYNAMIC */
};
static struct usb_interface_descriptor acm_data_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
/* .bInterfaceNumber = DYNAMIC */
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_CDC_DATA,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
/* .iInterface = DYNAMIC */
};
static struct usb_cdc_header_desc acm_header_desc = {
.bLength = sizeof(acm_header_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_HEADER_TYPE,
.bcdCDC = cpu_to_le16(0x0110),
};
static struct usb_cdc_call_mgmt_descriptor
acm_call_mgmt_descriptor = {
.bLength = sizeof(acm_call_mgmt_descriptor),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_CALL_MANAGEMENT_TYPE,
.bmCapabilities = 0,
/* .bDataInterface = DYNAMIC */
};
static struct usb_cdc_acm_descriptor acm_descriptor = {
.bLength = sizeof(acm_descriptor),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_ACM_TYPE,
.bmCapabilities = USB_CDC_CAP_LINE,
};
static struct usb_cdc_union_desc acm_union_desc = {
.bLength = sizeof(acm_union_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_UNION_TYPE,
/* .bMasterInterface0 = DYNAMIC */
/* .bSlaveInterface0 = DYNAMIC */
};
/* full speed support: */
static struct usb_endpoint_descriptor acm_fs_notify_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET),
.bInterval = GS_NOTIFY_INTERVAL_MS,
};
static struct usb_endpoint_descriptor acm_fs_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_endpoint_descriptor acm_fs_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_descriptor_header *acm_fs_function[] = {
(struct usb_descriptor_header *) &acm_iad_descriptor,
(struct usb_descriptor_header *) &acm_control_interface_desc,
(struct usb_descriptor_header *) &acm_header_desc,
(struct usb_descriptor_header *) &acm_call_mgmt_descriptor,
(struct usb_descriptor_header *) &acm_descriptor,
(struct usb_descriptor_header *) &acm_union_desc,
(struct usb_descriptor_header *) &acm_fs_notify_desc,
(struct usb_descriptor_header *) &acm_data_interface_desc,
(struct usb_descriptor_header *) &acm_fs_in_desc,
(struct usb_descriptor_header *) &acm_fs_out_desc,
NULL,
};
/* high speed support: */
static struct usb_endpoint_descriptor acm_hs_notify_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET),
.bInterval = USB_MS_TO_HS_INTERVAL(GS_NOTIFY_INTERVAL_MS),
};
static struct usb_endpoint_descriptor acm_hs_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor acm_hs_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_descriptor_header *acm_hs_function[] = {
(struct usb_descriptor_header *) &acm_iad_descriptor,
(struct usb_descriptor_header *) &acm_control_interface_desc,
(struct usb_descriptor_header *) &acm_header_desc,
(struct usb_descriptor_header *) &acm_call_mgmt_descriptor,
(struct usb_descriptor_header *) &acm_descriptor,
(struct usb_descriptor_header *) &acm_union_desc,
(struct usb_descriptor_header *) &acm_hs_notify_desc,
(struct usb_descriptor_header *) &acm_data_interface_desc,
(struct usb_descriptor_header *) &acm_hs_in_desc,
(struct usb_descriptor_header *) &acm_hs_out_desc,
NULL,
};
static struct usb_endpoint_descriptor acm_ss_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_endpoint_descriptor acm_ss_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor acm_ss_bulk_comp_desc = {
.bLength = sizeof acm_ss_bulk_comp_desc,
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
};
static struct usb_descriptor_header *acm_ss_function[] = {
(struct usb_descriptor_header *) &acm_iad_descriptor,
(struct usb_descriptor_header *) &acm_control_interface_desc,
(struct usb_descriptor_header *) &acm_header_desc,
(struct usb_descriptor_header *) &acm_call_mgmt_descriptor,
(struct usb_descriptor_header *) &acm_descriptor,
(struct usb_descriptor_header *) &acm_union_desc,
(struct usb_descriptor_header *) &acm_hs_notify_desc,
(struct usb_descriptor_header *) &acm_ss_bulk_comp_desc,
(struct usb_descriptor_header *) &acm_data_interface_desc,
(struct usb_descriptor_header *) &acm_ss_in_desc,
(struct usb_descriptor_header *) &acm_ss_bulk_comp_desc,
(struct usb_descriptor_header *) &acm_ss_out_desc,
(struct usb_descriptor_header *) &acm_ss_bulk_comp_desc,
NULL,
};
/* string descriptors: */
#define ACM_CTRL_IDX 0
#define ACM_DATA_IDX 1
#define ACM_IAD_IDX 2
/* static strings, in UTF-8 */
static struct usb_string acm_string_defs[] = {
[ACM_CTRL_IDX].s = "CDC Abstract Control Model (ACM)",
[ACM_DATA_IDX].s = "CDC ACM Data",
[ACM_IAD_IDX ].s = "CDC Serial",
{ } /* end of list */
};
static struct usb_gadget_strings acm_string_table = {
.language = 0x0409, /* en-us */
.strings = acm_string_defs,
};
static struct usb_gadget_strings *acm_strings[] = {
&acm_string_table,
NULL,
};
/*-------------------------------------------------------------------------*/
/* ACM control ... data handling is delegated to tty library code.
* The main task of this function is to activate and deactivate
* that code based on device state; track parameters like line
* speed, handshake state, and so on; and issue notifications.
*/
static void acm_complete_set_line_coding(struct usb_ep *ep,
struct usb_request *req)
{
struct f_acm *acm = ep->driver_data;
struct usb_composite_dev *cdev = acm->port.func.config->cdev;
if (req->status != 0) {
DBG(cdev, "acm ttyGS%d completion, err %d\n",
acm->port_num, req->status);
return;
}
/* normal completion */
if (req->actual != sizeof(acm->port_line_coding)) {
DBG(cdev, "acm ttyGS%d short resp, len %d\n",
acm->port_num, req->actual);
usb_ep_set_halt(ep);
} else {
struct usb_cdc_line_coding *value = req->buf;
/* REVISIT: we currently just remember this data.
* If we change that, (a) validate it first, then
* (b) update whatever hardware needs updating,
* (c) worry about locking. This is information on
* the order of 9600-8-N-1 ... most of which means
* nothing unless we control a real RS232 line.
*/
acm->port_line_coding = *value;
}
}
static int acm_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
struct f_acm *acm = func_to_acm(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
/* composite driver infrastructure handles everything except
* CDC class messages; interface activation uses set_alt().
*
* Note CDC spec table 4 lists the ACM request profile. It requires
* encapsulated command support ... we don't handle any, and respond
* to them by stalling. Options include get/set/clear comm features
* (not that useful) and SEND_BREAK.
*/
switch ((ctrl->bRequestType << 8) | ctrl->bRequest) {
/* SET_LINE_CODING ... just read and save what the host sends */
case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_REQ_SET_LINE_CODING:
if (w_length != sizeof(struct usb_cdc_line_coding)
|| w_index != acm->ctrl_id)
goto invalid;
value = w_length;
cdev->gadget->ep0->driver_data = acm;
req->complete = acm_complete_set_line_coding;
break;
/* GET_LINE_CODING ... return what host sent, or initial value */
case ((USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_REQ_GET_LINE_CODING:
if (w_index != acm->ctrl_id)
goto invalid;
value = min_t(unsigned, w_length,
sizeof(struct usb_cdc_line_coding));
memcpy(req->buf, &acm->port_line_coding, value);
break;
/* SET_CONTROL_LINE_STATE ... save what the host sent */
case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_REQ_SET_CONTROL_LINE_STATE:
if (w_index != acm->ctrl_id)
goto invalid;
value = 0;
/* FIXME we should not allow data to flow until the
* host sets the ACM_CTRL_DTR bit; and when it clears
* that bit, we should return to that no-flow state.
*/
acm->port_handshake_bits = w_value;
break;
default:
invalid:
VDBG(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
}
/* respond with data transfer or status phase? */
if (value >= 0) {
DBG(cdev, "acm ttyGS%d req%02x.%02x v%04x i%04x l%d\n",
acm->port_num, ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
req->zero = 0;
req->length = value;
value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC);
if (value < 0)
ERROR(cdev, "acm response on ttyGS%d, err %d\n",
acm->port_num, value);
}
/* device either stalls (value < 0) or reports success */
return value;
}
static int acm_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
{
struct f_acm *acm = func_to_acm(f);
struct usb_composite_dev *cdev = f->config->cdev;
/* we know alt == 0, so this is an activation or a reset */
if (intf == acm->ctrl_id) {
if (acm->notify->driver_data) {
VDBG(cdev, "reset acm control interface %d\n", intf);
usb_ep_disable(acm->notify);
} else {
VDBG(cdev, "init acm ctrl interface %d\n", intf);
if (config_ep_by_speed(cdev->gadget, f, acm->notify))
return -EINVAL;
}
usb_ep_enable(acm->notify);
acm->notify->driver_data = acm;
} else if (intf == acm->data_id) {
if (acm->port.in->driver_data) {
DBG(cdev, "reset acm ttyGS%d\n", acm->port_num);
gserial_disconnect(&acm->port);
}
if (!acm->port.in->desc || !acm->port.out->desc) {
DBG(cdev, "activate acm ttyGS%d\n", acm->port_num);
if (config_ep_by_speed(cdev->gadget, f,
acm->port.in) ||
config_ep_by_speed(cdev->gadget, f,
acm->port.out)) {
acm->port.in->desc = NULL;
acm->port.out->desc = NULL;
return -EINVAL;
}
}
gserial_connect(&acm->port, acm->port_num);
} else
return -EINVAL;
return 0;
}
static void acm_disable(struct usb_function *f)
{
struct f_acm *acm = func_to_acm(f);
struct usb_composite_dev *cdev = f->config->cdev;
DBG(cdev, "acm ttyGS%d deactivated\n", acm->port_num);
gserial_disconnect(&acm->port);
usb_ep_disable(acm->notify);
acm->notify->driver_data = NULL;
}
/*-------------------------------------------------------------------------*/
/**
* acm_cdc_notify - issue CDC notification to host
* @acm: wraps host to be notified
* @type: notification type
* @value: Refer to cdc specs, wValue field.
* @data: data to be sent
* @length: size of data
* Context: irqs blocked, acm->lock held, acm_notify_req non-null
*
* Returns zero on success or a negative errno.
*
* See section 6.3.5 of the CDC 1.1 specification for information
* about the only notification we issue: SerialState change.
*/
static int acm_cdc_notify(struct f_acm *acm, u8 type, u16 value,
void *data, unsigned length)
{
struct usb_ep *ep = acm->notify;
struct usb_request *req;
struct usb_cdc_notification *notify;
const unsigned len = sizeof(*notify) + length;
void *buf;
int status;
req = acm->notify_req;
acm->notify_req = NULL;
acm->pending = false;
req->length = len;
notify = req->buf;
buf = notify + 1;
notify->bmRequestType = USB_DIR_IN | USB_TYPE_CLASS
| USB_RECIP_INTERFACE;
notify->bNotificationType = type;
notify->wValue = cpu_to_le16(value);
notify->wIndex = cpu_to_le16(acm->ctrl_id);
notify->wLength = cpu_to_le16(length);
memcpy(buf, data, length);
/* ep_queue() can complete immediately if it fills the fifo... */
spin_unlock(&acm->lock);
status = usb_ep_queue(ep, req, GFP_ATOMIC);
spin_lock(&acm->lock);
if (status < 0) {
ERROR(acm->port.func.config->cdev,
"acm ttyGS%d can't notify serial state, %d\n",
acm->port_num, status);
acm->notify_req = req;
}
return status;
}
static int acm_notify_serial_state(struct f_acm *acm)
{
struct usb_composite_dev *cdev = acm->port.func.config->cdev;
int status;
spin_lock(&acm->lock);
if (acm->notify_req) {
DBG(cdev, "acm ttyGS%d serial state %04x\n",
acm->port_num, acm->serial_state);
status = acm_cdc_notify(acm, USB_CDC_NOTIFY_SERIAL_STATE,
0, &acm->serial_state, sizeof(acm->serial_state));
} else {
acm->pending = true;
status = 0;
}
spin_unlock(&acm->lock);
return status;
}
static void acm_cdc_notify_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_acm *acm = req->context;
u8 doit = false;
/* on this call path we do NOT hold the port spinlock,
* which is why ACM needs its own spinlock
*/
spin_lock(&acm->lock);
if (req->status != -ESHUTDOWN)
doit = acm->pending;
acm->notify_req = req;
spin_unlock(&acm->lock);
if (doit)
acm_notify_serial_state(acm);
}
/* connect == the TTY link is open */
static void acm_connect(struct gserial *port)
{
struct f_acm *acm = port_to_acm(port);
acm->serial_state |= ACM_CTRL_DSR | ACM_CTRL_DCD;
acm_notify_serial_state(acm);
}
static void acm_disconnect(struct gserial *port)
{
struct f_acm *acm = port_to_acm(port);
acm->serial_state &= ~(ACM_CTRL_DSR | ACM_CTRL_DCD);
acm_notify_serial_state(acm);
}
static int acm_send_break(struct gserial *port, int duration)
{
struct f_acm *acm = port_to_acm(port);
u16 state;
state = acm->serial_state;
state &= ~ACM_CTRL_BRK;
if (duration)
state |= ACM_CTRL_BRK;
acm->serial_state = state;
return acm_notify_serial_state(acm);
}
/*-------------------------------------------------------------------------*/
/* ACM function driver setup/binding */
static int
acm_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct f_acm *acm = func_to_acm(f);
struct usb_string *us;
int status;
struct usb_ep *ep;
/* REVISIT might want instance-specific strings to help
* distinguish instances ...
*/
/* maybe allocate device-global string IDs, and patch descriptors */
us = usb_gstrings_attach(cdev, acm_strings,
ARRAY_SIZE(acm_string_defs));
if (IS_ERR(us))
return PTR_ERR(us);
acm_control_interface_desc.iInterface = us[ACM_CTRL_IDX].id;
acm_data_interface_desc.iInterface = us[ACM_DATA_IDX].id;
acm_iad_descriptor.iFunction = us[ACM_IAD_IDX].id;
/* allocate instance-specific interface IDs, and patch descriptors */
status = usb_interface_id(c, f);
if (status < 0)
goto fail;
acm->ctrl_id = status;
acm_iad_descriptor.bFirstInterface = status;
acm_control_interface_desc.bInterfaceNumber = status;
acm_union_desc .bMasterInterface0 = status;
status = usb_interface_id(c, f);
if (status < 0)
goto fail;
acm->data_id = status;
acm_data_interface_desc.bInterfaceNumber = status;
acm_union_desc.bSlaveInterface0 = status;
acm_call_mgmt_descriptor.bDataInterface = status;
status = -ENODEV;
/* allocate instance-specific endpoints */
ep = usb_ep_autoconfig(cdev->gadget, &acm_fs_in_desc);
if (!ep)
goto fail;
acm->port.in = ep;
ep->driver_data = cdev; /* claim */
ep = usb_ep_autoconfig(cdev->gadget, &acm_fs_out_desc);
if (!ep)
goto fail;
acm->port.out = ep;
ep->driver_data = cdev; /* claim */
ep = usb_ep_autoconfig(cdev->gadget, &acm_fs_notify_desc);
if (!ep)
goto fail;
acm->notify = ep;
ep->driver_data = cdev; /* claim */
/* allocate notification */
acm->notify_req = gs_alloc_req(ep,
sizeof(struct usb_cdc_notification) + 2,
GFP_KERNEL);
if (!acm->notify_req)
goto fail;
acm->notify_req->complete = acm_cdc_notify_complete;
acm->notify_req->context = acm;
/* support all relevant hardware speeds... we expect that when
* hardware is dual speed, all bulk-capable endpoints work at
* both speeds
*/
acm_hs_in_desc.bEndpointAddress = acm_fs_in_desc.bEndpointAddress;
acm_hs_out_desc.bEndpointAddress = acm_fs_out_desc.bEndpointAddress;
acm_hs_notify_desc.bEndpointAddress =
acm_fs_notify_desc.bEndpointAddress;
acm_ss_in_desc.bEndpointAddress = acm_fs_in_desc.bEndpointAddress;
acm_ss_out_desc.bEndpointAddress = acm_fs_out_desc.bEndpointAddress;
status = usb_assign_descriptors(f, acm_fs_function, acm_hs_function,
acm_ss_function);
if (status)
goto fail;
DBG(cdev, "acm ttyGS%d: %s speed IN/%s OUT/%s NOTIFY/%s\n",
acm->port_num,
gadget_is_superspeed(c->cdev->gadget) ? "super" :
gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full",
acm->port.in->name, acm->port.out->name,
acm->notify->name);
return 0;
fail:
if (acm->notify_req)
gs_free_req(acm->notify, acm->notify_req);
/* we might as well release our claims on endpoints */
if (acm->notify)
acm->notify->driver_data = NULL;
if (acm->port.out)
acm->port.out->driver_data = NULL;
if (acm->port.in)
acm->port.in->driver_data = NULL;
ERROR(cdev, "%s/%p: can't bind, err %d\n", f->name, f, status);
return status;
}
static void acm_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct f_acm *acm = func_to_acm(f);
acm_string_defs[0].id = 0;
usb_free_all_descriptors(f);
if (acm->notify_req)
gs_free_req(acm->notify, acm->notify_req);
}
static void acm_free_func(struct usb_function *f)
{
struct f_acm *acm = func_to_acm(f);
kfree(acm);
}
static struct usb_function *acm_alloc_func(struct usb_function_instance *fi)
{
struct f_serial_opts *opts;
struct f_acm *acm;
acm = kzalloc(sizeof(*acm), GFP_KERNEL);
if (!acm)
return ERR_PTR(-ENOMEM);
spin_lock_init(&acm->lock);
acm->port.connect = acm_connect;
acm->port.disconnect = acm_disconnect;
acm->port.send_break = acm_send_break;
acm->port.func.name = "acm";
acm->port.func.strings = acm_strings;
/* descriptors are per-instance copies */
acm->port.func.bind = acm_bind;
acm->port.func.set_alt = acm_set_alt;
acm->port.func.setup = acm_setup;
acm->port.func.disable = acm_disable;
opts = container_of(fi, struct f_serial_opts, func_inst);
acm->port_num = opts->port_num;
acm->port.func.unbind = acm_unbind;
acm->port.func.free_func = acm_free_func;
return &acm->port.func;
}
static inline struct f_serial_opts *to_f_serial_opts(struct config_item *item)
{
return container_of(to_config_group(item), struct f_serial_opts,
func_inst.group);
}
CONFIGFS_ATTR_STRUCT(f_serial_opts);
static ssize_t f_acm_attr_show(struct config_item *item,
struct configfs_attribute *attr,
char *page)
{
struct f_serial_opts *opts = to_f_serial_opts(item);
struct f_serial_opts_attribute *f_serial_opts_attr =
container_of(attr, struct f_serial_opts_attribute, attr);
ssize_t ret = 0;
if (f_serial_opts_attr->show)
ret = f_serial_opts_attr->show(opts, page);
return ret;
}
static void acm_attr_release(struct config_item *item)
{
struct f_serial_opts *opts = to_f_serial_opts(item);
usb_put_function_instance(&opts->func_inst);
}
static struct configfs_item_operations acm_item_ops = {
.release = acm_attr_release,
.show_attribute = f_acm_attr_show,
};
static ssize_t f_acm_port_num_show(struct f_serial_opts *opts, char *page)
{
return sprintf(page, "%u\n", opts->port_num);
}
static struct f_serial_opts_attribute f_acm_port_num =
__CONFIGFS_ATTR_RO(port_num, f_acm_port_num_show);
static struct configfs_attribute *acm_attrs[] = {
&f_acm_port_num.attr,
NULL,
};
static struct config_item_type acm_func_type = {
.ct_item_ops = &acm_item_ops,
.ct_attrs = acm_attrs,
.ct_owner = THIS_MODULE,
};
static void acm_free_instance(struct usb_function_instance *fi)
{
struct f_serial_opts *opts;
opts = container_of(fi, struct f_serial_opts, func_inst);
gserial_free_line(opts->port_num);
kfree(opts);
}
static struct usb_function_instance *acm_alloc_instance(void)
{
struct f_serial_opts *opts;
int ret;
opts = kzalloc(sizeof(*opts), GFP_KERNEL);
if (!opts)
return ERR_PTR(-ENOMEM);
opts->func_inst.free_func_inst = acm_free_instance;
ret = gserial_alloc_line(&opts->port_num);
if (ret) {
kfree(opts);
return ERR_PTR(ret);
}
config_group_init_type_name(&opts->func_inst.group, "",
&acm_func_type);
return &opts->func_inst;
}
DECLARE_USB_FUNCTION_INIT(acm, acm_alloc_instance, acm_alloc_func);
MODULE_LICENSE("GPL");