summaryrefslogblamecommitdiff
path: root/drivers/usb/core/message.c
blob: 574d0d4b34018d5199fb5049c48a42ecf00d826c (plain) (tree)
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

















































                                                                               










































































































































                                                                                                     





                                                                           




                                                                             
                                     
 


                                                                  

                               
                                           


                               








                                                                    






























































                                                                              


                                                                    




















































                                                                             
                                         



































                                                                           
                                                               







































































                                                                             
                                                                 








































































































































































































































































































































































































































































































































































                                                                                                               
                                                                             
                                                                 
                                                                   
                                         

















































































































































                                                                              


                                                                         
                                                                            













































                                                                              


                                                                             































































































                                                                            
                                                                         











































































































                                                                               
                                            















































                                                                                              
                 




















                                                     
/*
 * message.c - synchronous message handling
 */

#include <linux/config.h>

#ifdef CONFIG_USB_DEBUG
	#define DEBUG
#else
	#undef DEBUG
#endif

#include <linux/pci.h>	/* for scatterlist macros */
#include <linux/usb.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/timer.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <asm/byteorder.h>

#include "hcd.h"	/* for usbcore internals */
#include "usb.h"

static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
{
	complete((struct completion *)urb->context);
}


static void timeout_kill(unsigned long data)
{
	struct urb	*urb = (struct urb *) data;

	usb_unlink_urb(urb);
}

// Starts urb and waits for completion or timeout
// note that this call is NOT interruptible, while
// many device driver i/o requests should be interruptible
static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
{ 
	struct completion	done;
	struct timer_list	timer;
	int			status;

	init_completion(&done); 	
	urb->context = &done;
	urb->actual_length = 0;
	status = usb_submit_urb(urb, GFP_NOIO);

	if (status == 0) {
		if (timeout > 0) {
			init_timer(&timer);
			timer.expires = jiffies + msecs_to_jiffies(timeout);
			timer.data = (unsigned long)urb;
			timer.function = timeout_kill;
			/* grr.  timeout _should_ include submit delays. */
			add_timer(&timer);
		}
		wait_for_completion(&done);
		status = urb->status;
		/* note:  HCDs return ETIMEDOUT for other reasons too */
		if (status == -ECONNRESET) {
			dev_dbg(&urb->dev->dev,
				"%s timed out on ep%d%s len=%d/%d\n",
				current->comm,
				usb_pipeendpoint(urb->pipe),
				usb_pipein(urb->pipe) ? "in" : "out",
				urb->actual_length,
				urb->transfer_buffer_length
				);
			if (urb->actual_length > 0)
				status = 0;
			else
				status = -ETIMEDOUT;
		}
		if (timeout > 0)
			del_timer_sync(&timer);
	}

	if (actual_length)
		*actual_length = urb->actual_length;
	usb_free_urb(urb);
	return status;
}

/*-------------------------------------------------------------------*/
// returns status (negative) or length (positive)
static int usb_internal_control_msg(struct usb_device *usb_dev,
				    unsigned int pipe, 
				    struct usb_ctrlrequest *cmd,
				    void *data, int len, int timeout)
{
	struct urb *urb;
	int retv;
	int length;

	urb = usb_alloc_urb(0, GFP_NOIO);
	if (!urb)
		return -ENOMEM;
  
	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
			     len, usb_api_blocking_completion, NULL);

	retv = usb_start_wait_urb(urb, timeout, &length);
	if (retv < 0)
		return retv;
	else
		return length;
}

/**
 *	usb_control_msg - Builds a control urb, sends it off and waits for completion
 *	@dev: pointer to the usb device to send the message to
 *	@pipe: endpoint "pipe" to send the message to
 *	@request: USB message request value
 *	@requesttype: USB message request type value
 *	@value: USB message value
 *	@index: USB message index value
 *	@data: pointer to the data to send
 *	@size: length in bytes of the data to send
 *	@timeout: time in msecs to wait for the message to complete before
 *		timing out (if 0 the wait is forever)
 *	Context: !in_interrupt ()
 *
 *	This function sends a simple control message to a specified endpoint
 *	and waits for the message to complete, or timeout.
 *	
 *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
 *
 *	Don't use this function from within an interrupt context, like a
 *	bottom half handler.  If you need an asynchronous message, or need to send
 *	a message from within interrupt context, use usb_submit_urb()
 *      If a thread in your driver uses this call, make sure your disconnect()
 *      method can wait for it to complete.  Since you don't have a handle on
 *      the URB used, you can't cancel the request.
 */
int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
{
	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
	int ret;
	
	if (!dr)
		return -ENOMEM;

	dr->bRequestType= requesttype;
	dr->bRequest = request;
	dr->wValue = cpu_to_le16p(&value);
	dr->wIndex = cpu_to_le16p(&index);
	dr->wLength = cpu_to_le16p(&size);

	//dbg("usb_control_msg");	

	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);

	kfree(dr);

	return ret;
}


/**
 *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 *	@usb_dev: pointer to the usb device to send the message to
 *	@pipe: endpoint "pipe" to send the message to
 *	@data: pointer to the data to send
 *	@len: length in bytes of the data to send
 *	@actual_length: pointer to a location to put the actual length transferred in bytes
 *	@timeout: time in msecs to wait for the message to complete before
 *		timing out (if 0 the wait is forever)
 *	Context: !in_interrupt ()
 *
 *	This function sends a simple bulk message to a specified endpoint
 *	and waits for the message to complete, or timeout.
 *	
 *	If successful, it returns 0, otherwise a negative error number.
 *	The number of actual bytes transferred will be stored in the 
 *	actual_length paramater.
 *
 *	Don't use this function from within an interrupt context, like a
 *	bottom half handler.  If you need an asynchronous message, or need to
 *	send a message from within interrupt context, use usb_submit_urb()
 *      If a thread in your driver uses this call, make sure your disconnect()
 *      method can wait for it to complete.  Since you don't have a handle on
 *      the URB used, you can't cancel the request.
 *
 *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
 *	ioctl, users are forced to abuse this routine by using it to submit
 *	URBs for interrupt endpoints.  We will take the liberty of creating
 *	an interrupt URB (with the default interval) if the target is an
 *	interrupt endpoint.
 */
int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 
			void *data, int len, int *actual_length, int timeout)
{
	struct urb *urb;
	struct usb_host_endpoint *ep;

	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
			[usb_pipeendpoint(pipe)];
	if (!ep || len < 0)
		return -EINVAL;

	urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!urb)
		return -ENOMEM;

	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
			USB_ENDPOINT_XFER_INT) {
		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
				usb_api_blocking_completion, NULL,
				ep->desc.bInterval);
	} else
		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
				usb_api_blocking_completion, NULL);

	return usb_start_wait_urb(urb, timeout, actual_length);
}

/*-------------------------------------------------------------------*/

static void sg_clean (struct usb_sg_request *io)
{
	if (io->urbs) {
		while (io->entries--)
			usb_free_urb (io->urbs [io->entries]);
		kfree (io->urbs);
		io->urbs = NULL;
	}
	if (io->dev->dev.dma_mask != NULL)
		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
	io->dev = NULL;
}

static void sg_complete (struct urb *urb, struct pt_regs *regs)
{
	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;

	spin_lock (&io->lock);

	/* In 2.5 we require hcds' endpoint queues not to progress after fault
	 * reports, until the completion callback (this!) returns.  That lets
	 * device driver code (like this routine) unlink queued urbs first,
	 * if it needs to, since the HC won't work on them at all.  So it's
	 * not possible for page N+1 to overwrite page N, and so on.
	 *
	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
	 * complete before the HCD can get requests away from hardware,
	 * though never during cleanup after a hard fault.
	 */
	if (io->status
			&& (io->status != -ECONNRESET
				|| urb->status != -ECONNRESET)
			&& urb->actual_length) {
		dev_err (io->dev->bus->controller,
			"dev %s ep%d%s scatterlist error %d/%d\n",
			io->dev->devpath,
			usb_pipeendpoint (urb->pipe),
			usb_pipein (urb->pipe) ? "in" : "out",
			urb->status, io->status);
		// BUG ();
	}

	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
		int		i, found, status;

		io->status = urb->status;

		/* the previous urbs, and this one, completed already.
		 * unlink pending urbs so they won't rx/tx bad data.
		 * careful: unlink can sometimes be synchronous...
		 */
		spin_unlock (&io->lock);
		for (i = 0, found = 0; i < io->entries; i++) {
			if (!io->urbs [i] || !io->urbs [i]->dev)
				continue;
			if (found) {
				status = usb_unlink_urb (io->urbs [i]);
				if (status != -EINPROGRESS
						&& status != -ENODEV
						&& status != -EBUSY)
					dev_err (&io->dev->dev,
						"%s, unlink --> %d\n",
						__FUNCTION__, status);
			} else if (urb == io->urbs [i])
				found = 1;
		}
		spin_lock (&io->lock);
	}
	urb->dev = NULL;

	/* on the last completion, signal usb_sg_wait() */
	io->bytes += urb->actual_length;
	io->count--;
	if (!io->count)
		complete (&io->complete);

	spin_unlock (&io->lock);
}


/**
 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 * @io: request block being initialized.  until usb_sg_wait() returns,
 *	treat this as a pointer to an opaque block of memory,
 * @dev: the usb device that will send or receive the data
 * @pipe: endpoint "pipe" used to transfer the data
 * @period: polling rate for interrupt endpoints, in frames or
 * 	(for high speed endpoints) microframes; ignored for bulk
 * @sg: scatterlist entries
 * @nents: how many entries in the scatterlist
 * @length: how many bytes to send from the scatterlist, or zero to
 * 	send every byte identified in the list.
 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 *
 * Returns zero for success, else a negative errno value.  This initializes a
 * scatter/gather request, allocating resources such as I/O mappings and urb
 * memory (except maybe memory used by USB controller drivers).
 *
 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 * complete (or to be canceled) and then cleans up all resources allocated by
 * usb_sg_init().
 *
 * The request may be canceled with usb_sg_cancel(), either before or after
 * usb_sg_wait() is called.
 */
int usb_sg_init (
	struct usb_sg_request	*io,
	struct usb_device	*dev,
	unsigned		pipe, 
	unsigned		period,
	struct scatterlist	*sg,
	int			nents,
	size_t			length,
	gfp_t			mem_flags
)
{
	int			i;
	int			urb_flags;
	int			dma;

	if (!io || !dev || !sg
			|| usb_pipecontrol (pipe)
			|| usb_pipeisoc (pipe)
			|| nents <= 0)
		return -EINVAL;

	spin_lock_init (&io->lock);
	io->dev = dev;
	io->pipe = pipe;
	io->sg = sg;
	io->nents = nents;

	/* not all host controllers use DMA (like the mainstream pci ones);
	 * they can use PIO (sl811) or be software over another transport.
	 */
	dma = (dev->dev.dma_mask != NULL);
	if (dma)
		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
	else
		io->entries = nents;

	/* initialize all the urbs we'll use */
	if (io->entries <= 0)
		return io->entries;

	io->count = io->entries;
	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
	if (!io->urbs)
		goto nomem;

	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
	if (usb_pipein (pipe))
		urb_flags |= URB_SHORT_NOT_OK;

	for (i = 0; i < io->entries; i++) {
		unsigned		len;

		io->urbs [i] = usb_alloc_urb (0, mem_flags);
		if (!io->urbs [i]) {
			io->entries = i;
			goto nomem;
		}

		io->urbs [i]->dev = NULL;
		io->urbs [i]->pipe = pipe;
		io->urbs [i]->interval = period;
		io->urbs [i]->transfer_flags = urb_flags;

		io->urbs [i]->complete = sg_complete;
		io->urbs [i]->context = io;
		io->urbs [i]->status = -EINPROGRESS;
		io->urbs [i]->actual_length = 0;

		if (dma) {
			/* hc may use _only_ transfer_dma */
			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
			len = sg_dma_len (sg + i);
		} else {
			/* hc may use _only_ transfer_buffer */
			io->urbs [i]->transfer_buffer =
				page_address (sg [i].page) + sg [i].offset;
			len = sg [i].length;
		}

		if (length) {
			len = min_t (unsigned, len, length);
			length -= len;
			if (length == 0)
				io->entries = i + 1;
		}
		io->urbs [i]->transfer_buffer_length = len;
	}
	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;

	/* transaction state */
	io->status = 0;
	io->bytes = 0;
	init_completion (&io->complete);
	return 0;

nomem:
	sg_clean (io);
	return -ENOMEM;
}


/**
 * usb_sg_wait - synchronously execute scatter/gather request
 * @io: request block handle, as initialized with usb_sg_init().
 * 	some fields become accessible when this call returns.
 * Context: !in_interrupt ()
 *
 * This function blocks until the specified I/O operation completes.  It
 * leverages the grouping of the related I/O requests to get good transfer
 * rates, by queueing the requests.  At higher speeds, such queuing can
 * significantly improve USB throughput.
 *
 * There are three kinds of completion for this function.
 * (1) success, where io->status is zero.  The number of io->bytes
 *     transferred is as requested.
 * (2) error, where io->status is a negative errno value.  The number
 *     of io->bytes transferred before the error is usually less
 *     than requested, and can be nonzero.
 * (3) cancellation, a type of error with status -ECONNRESET that
 *     is initiated by usb_sg_cancel().
 *
 * When this function returns, all memory allocated through usb_sg_init() or
 * this call will have been freed.  The request block parameter may still be
 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 * reinitialized and then reused.
 *
 * Data Transfer Rates:
 *
 * Bulk transfers are valid for full or high speed endpoints.
 * The best full speed data rate is 19 packets of 64 bytes each
 * per frame, or 1216 bytes per millisecond.
 * The best high speed data rate is 13 packets of 512 bytes each
 * per microframe, or 52 KBytes per millisecond.
 *
 * The reason to use interrupt transfers through this API would most likely
 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 * could be transferred.  That capability is less useful for low or full
 * speed interrupt endpoints, which allow at most one packet per millisecond,
 * of at most 8 or 64 bytes (respectively).
 */
void usb_sg_wait (struct usb_sg_request *io)
{
	int		i, entries = io->entries;

	/* queue the urbs.  */
	spin_lock_irq (&io->lock);
	for (i = 0; i < entries && !io->status; i++) {
		int	retval;

		io->urbs [i]->dev = io->dev;
		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);

		/* after we submit, let completions or cancelations fire;
		 * we handshake using io->status.
		 */
		spin_unlock_irq (&io->lock);
		switch (retval) {
			/* maybe we retrying will recover */
		case -ENXIO:	// hc didn't queue this one
		case -EAGAIN:
		case -ENOMEM:
			io->urbs[i]->dev = NULL;
			retval = 0;
			i--;
			yield ();
			break;

			/* no error? continue immediately.
			 *
			 * NOTE: to work better with UHCI (4K I/O buffer may
			 * need 3K of TDs) it may be good to limit how many
			 * URBs are queued at once; N milliseconds?
			 */
		case 0:
			cpu_relax ();
			break;

			/* fail any uncompleted urbs */
		default:
			io->urbs [i]->dev = NULL;
			io->urbs [i]->status = retval;
			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
				__FUNCTION__, retval);
			usb_sg_cancel (io);
		}
		spin_lock_irq (&io->lock);
		if (retval && (io->status == 0 || io->status == -ECONNRESET))
			io->status = retval;
	}
	io->count -= entries - i;
	if (io->count == 0)
		complete (&io->complete);
	spin_unlock_irq (&io->lock);

	/* OK, yes, this could be packaged as non-blocking.
	 * So could the submit loop above ... but it's easier to
	 * solve neither problem than to solve both!
	 */
	wait_for_completion (&io->complete);

	sg_clean (io);
}

/**
 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 * @io: request block, initialized with usb_sg_init()
 *
 * This stops a request after it has been started by usb_sg_wait().
 * It can also prevents one initialized by usb_sg_init() from starting,
 * so that call just frees resources allocated to the request.
 */
void usb_sg_cancel (struct usb_sg_request *io)
{
	unsigned long	flags;

	spin_lock_irqsave (&io->lock, flags);

	/* shut everything down, if it didn't already */
	if (!io->status) {
		int	i;

		io->status = -ECONNRESET;
		spin_unlock (&io->lock);
		for (i = 0; i < io->entries; i++) {
			int	retval;

			if (!io->urbs [i]->dev)
				continue;
			retval = usb_unlink_urb (io->urbs [i]);
			if (retval != -EINPROGRESS && retval != -EBUSY)
				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
					__FUNCTION__, retval);
		}
		spin_lock (&io->lock);
	}
	spin_unlock_irqrestore (&io->lock, flags);
}

/*-------------------------------------------------------------------*/

/**
 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 * @dev: the device whose descriptor is being retrieved
 * @type: the descriptor type (USB_DT_*)
 * @index: the number of the descriptor
 * @buf: where to put the descriptor
 * @size: how big is "buf"?
 * Context: !in_interrupt ()
 *
 * Gets a USB descriptor.  Convenience functions exist to simplify
 * getting some types of descriptors.  Use
 * usb_get_string() or usb_string() for USB_DT_STRING.
 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 * are part of the device structure.
 * In addition to a number of USB-standard descriptors, some
 * devices also use class-specific or vendor-specific descriptors.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 *
 * Returns the number of bytes received on success, or else the status code
 * returned by the underlying usb_control_msg() call.
 */
int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
{
	int i;
	int result;
	
	memset(buf,0,size);	// Make sure we parse really received data

	for (i = 0; i < 3; ++i) {
		/* retry on length 0 or stall; some devices are flakey */
		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
				(type << 8) + index, 0, buf, size,
				USB_CTRL_GET_TIMEOUT);
		if (result == 0 || result == -EPIPE)
			continue;
		if (result > 1 && ((u8 *)buf)[1] != type) {
			result = -EPROTO;
			continue;
		}
		break;
	}
	return result;
}

/**
 * usb_get_string - gets a string descriptor
 * @dev: the device whose string descriptor is being retrieved
 * @langid: code for language chosen (from string descriptor zero)
 * @index: the number of the descriptor
 * @buf: where to put the string
 * @size: how big is "buf"?
 * Context: !in_interrupt ()
 *
 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 * in little-endian byte order).
 * The usb_string() function will often be a convenient way to turn
 * these strings into kernel-printable form.
 *
 * Strings may be referenced in device, configuration, interface, or other
 * descriptors, and could also be used in vendor-specific ways.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 *
 * Returns the number of bytes received on success, or else the status code
 * returned by the underlying usb_control_msg() call.
 */
int usb_get_string(struct usb_device *dev, unsigned short langid,
		unsigned char index, void *buf, int size)
{
	int i;
	int result;

	for (i = 0; i < 3; ++i) {
		/* retry on length 0 or stall; some devices are flakey */
		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
			(USB_DT_STRING << 8) + index, langid, buf, size,
			USB_CTRL_GET_TIMEOUT);
		if (!(result == 0 || result == -EPIPE))
			break;
	}
	return result;
}

static void usb_try_string_workarounds(unsigned char *buf, int *length)
{
	int newlength, oldlength = *length;

	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
		if (!isprint(buf[newlength]) || buf[newlength + 1])
			break;

	if (newlength > 2) {
		buf[0] = newlength;
		*length = newlength;
	}
}

static int usb_string_sub(struct usb_device *dev, unsigned int langid,
		unsigned int index, unsigned char *buf)
{
	int rc;

	/* Try to read the string descriptor by asking for the maximum
	 * possible number of bytes */
	rc = usb_get_string(dev, langid, index, buf, 255);

	/* If that failed try to read the descriptor length, then
	 * ask for just that many bytes */
	if (rc < 2) {
		rc = usb_get_string(dev, langid, index, buf, 2);
		if (rc == 2)
			rc = usb_get_string(dev, langid, index, buf, buf[0]);
	}

	if (rc >= 2) {
		if (!buf[0] && !buf[1])
			usb_try_string_workarounds(buf, &rc);

		/* There might be extra junk at the end of the descriptor */
		if (buf[0] < rc)
			rc = buf[0];

		rc = rc - (rc & 1); /* force a multiple of two */
	}

	if (rc < 2)
		rc = (rc < 0 ? rc : -EINVAL);

	return rc;
}

/**
 * usb_string - returns ISO 8859-1 version of a string descriptor
 * @dev: the device whose string descriptor is being retrieved
 * @index: the number of the descriptor
 * @buf: where to put the string
 * @size: how big is "buf"?
 * Context: !in_interrupt ()
 * 
 * This converts the UTF-16LE encoded strings returned by devices, from
 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
 * that are more usable in most kernel contexts.  Note that all characters
 * in the chosen descriptor that can't be encoded using ISO-8859-1
 * are converted to the question mark ("?") character, and this function
 * chooses strings in the first language supported by the device.
 *
 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
 * and is appropriate for use many uses of English and several other
 * Western European languages.  (But it doesn't include the "Euro" symbol.)
 *
 * This call is synchronous, and may not be used in an interrupt context.
 *
 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
 */
int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
{
	unsigned char *tbuf;
	int err;
	unsigned int u, idx;

	if (dev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;
	if (size <= 0 || !buf || !index)
		return -EINVAL;
	buf[0] = 0;
	tbuf = kmalloc(256, GFP_KERNEL);
	if (!tbuf)
		return -ENOMEM;

	/* get langid for strings if it's not yet known */
	if (!dev->have_langid) {
		err = usb_string_sub(dev, 0, 0, tbuf);
		if (err < 0) {
			dev_err (&dev->dev,
				"string descriptor 0 read error: %d\n",
				err);
			goto errout;
		} else if (err < 4) {
			dev_err (&dev->dev, "string descriptor 0 too short\n");
			err = -EINVAL;
			goto errout;
		} else {
			dev->have_langid = -1;
			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
				/* always use the first langid listed */
			dev_dbg (&dev->dev, "default language 0x%04x\n",
				dev->string_langid);
		}
	}
	
	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
	if (err < 0)
		goto errout;

	size--;		/* leave room for trailing NULL char in output buffer */
	for (idx = 0, u = 2; u < err; u += 2) {
		if (idx >= size)
			break;
		if (tbuf[u+1])			/* high byte */
			buf[idx++] = '?';  /* non ISO-8859-1 character */
		else
			buf[idx++] = tbuf[u];
	}
	buf[idx] = 0;
	err = idx;

	if (tbuf[1] != USB_DT_STRING)
		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);

 errout:
	kfree(tbuf);
	return err;
}

/*
 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 * @dev: the device whose device descriptor is being updated
 * @size: how much of the descriptor to read
 * Context: !in_interrupt ()
 *
 * Updates the copy of the device descriptor stored in the device structure,
 * which dedicates space for this purpose.  Note that several fields are
 * converted to the host CPU's byte order:  the USB version (bcdUSB), and
 * vendors product and version fields (idVendor, idProduct, and bcdDevice).
 * That lets device drivers compare against non-byteswapped constants.
 *
 * Not exported, only for use by the core.  If drivers really want to read
 * the device descriptor directly, they can call usb_get_descriptor() with
 * type = USB_DT_DEVICE and index = 0.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 *
 * Returns the number of bytes received on success, or else the status code
 * returned by the underlying usb_control_msg() call.
 */
int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
{
	struct usb_device_descriptor *desc;
	int ret;

	if (size > sizeof(*desc))
		return -EINVAL;
	desc = kmalloc(sizeof(*desc), GFP_NOIO);
	if (!desc)
		return -ENOMEM;

	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
	if (ret >= 0) 
		memcpy(&dev->descriptor, desc, size);
	kfree(desc);
	return ret;
}

/**
 * usb_get_status - issues a GET_STATUS call
 * @dev: the device whose status is being checked
 * @type: USB_RECIP_*; for device, interface, or endpoint
 * @target: zero (for device), else interface or endpoint number
 * @data: pointer to two bytes of bitmap data
 * Context: !in_interrupt ()
 *
 * Returns device, interface, or endpoint status.  Normally only of
 * interest to see if the device is self powered, or has enabled the
 * remote wakeup facility; or whether a bulk or interrupt endpoint
 * is halted ("stalled").
 *
 * Bits in these status bitmaps are set using the SET_FEATURE request,
 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 * function should be used to clear halt ("stall") status.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 *
 * Returns the number of bytes received on success, or else the status code
 * returned by the underlying usb_control_msg() call.
 */
int usb_get_status(struct usb_device *dev, int type, int target, void *data)
{
	int ret;
	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);

	if (!status)
		return -ENOMEM;

	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
		sizeof(*status), USB_CTRL_GET_TIMEOUT);

	*(u16 *)data = *status;
	kfree(status);
	return ret;
}

/**
 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 * @dev: device whose endpoint is halted
 * @pipe: endpoint "pipe" being cleared
 * Context: !in_interrupt ()
 *
 * This is used to clear halt conditions for bulk and interrupt endpoints,
 * as reported by URB completion status.  Endpoints that are halted are
 * sometimes referred to as being "stalled".  Such endpoints are unable
 * to transmit or receive data until the halt status is cleared.  Any URBs
 * queued for such an endpoint should normally be unlinked by the driver
 * before clearing the halt condition, as described in sections 5.7.5
 * and 5.8.5 of the USB 2.0 spec.
 *
 * Note that control and isochronous endpoints don't halt, although control
 * endpoints report "protocol stall" (for unsupported requests) using the
 * same status code used to report a true stall.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 *
 * Returns zero on success, or else the status code returned by the
 * underlying usb_control_msg() call.
 */
int usb_clear_halt(struct usb_device *dev, int pipe)
{
	int result;
	int endp = usb_pipeendpoint(pipe);
	
	if (usb_pipein (pipe))
		endp |= USB_DIR_IN;

	/* we don't care if it wasn't halted first. in fact some devices
	 * (like some ibmcam model 1 units) seem to expect hosts to make
	 * this request for iso endpoints, which can't halt!
	 */
	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
		USB_ENDPOINT_HALT, endp, NULL, 0,
		USB_CTRL_SET_TIMEOUT);

	/* don't un-halt or force to DATA0 except on success */
	if (result < 0)
		return result;

	/* NOTE:  seems like Microsoft and Apple don't bother verifying
	 * the clear "took", so some devices could lock up if you check...
	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
	 *
	 * NOTE:  make sure the logic here doesn't diverge much from
	 * the copy in usb-storage, for as long as we need two copies.
	 */

	/* toggle was reset by the clear */
	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);

	return 0;
}

/**
 * usb_disable_endpoint -- Disable an endpoint by address
 * @dev: the device whose endpoint is being disabled
 * @epaddr: the endpoint's address.  Endpoint number for output,
 *	endpoint number + USB_DIR_IN for input
 *
 * Deallocates hcd/hardware state for this endpoint ... and nukes all
 * pending urbs.
 *
 * If the HCD hasn't registered a disable() function, this sets the
 * endpoint's maxpacket size to 0 to prevent further submissions.
 */
void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
{
	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
	struct usb_host_endpoint *ep;

	if (!dev)
		return;

	if (usb_endpoint_out(epaddr)) {
		ep = dev->ep_out[epnum];
		dev->ep_out[epnum] = NULL;
	} else {
		ep = dev->ep_in[epnum];
		dev->ep_in[epnum] = NULL;
	}
	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
		dev->bus->op->disable(dev, ep);
}

/**
 * usb_disable_interface -- Disable all endpoints for an interface
 * @dev: the device whose interface is being disabled
 * @intf: pointer to the interface descriptor
 *
 * Disables all the endpoints for the interface's current altsetting.
 */
void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
{
	struct usb_host_interface *alt = intf->cur_altsetting;
	int i;

	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
		usb_disable_endpoint(dev,
				alt->endpoint[i].desc.bEndpointAddress);
	}
}

/*
 * usb_disable_device - Disable all the endpoints for a USB device
 * @dev: the device whose endpoints are being disabled
 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
 *
 * Disables all the device's endpoints, potentially including endpoint 0.
 * Deallocates hcd/hardware state for the endpoints (nuking all or most
 * pending urbs) and usbcore state for the interfaces, so that usbcore
 * must usb_set_configuration() before any interfaces could be used.
 */
void usb_disable_device(struct usb_device *dev, int skip_ep0)
{
	int i;

	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
			skip_ep0 ? "non-ep0" : "all");
	for (i = skip_ep0; i < 16; ++i) {
		usb_disable_endpoint(dev, i);
		usb_disable_endpoint(dev, i + USB_DIR_IN);
	}
	dev->toggle[0] = dev->toggle[1] = 0;

	/* getting rid of interfaces will disconnect
	 * any drivers bound to them (a key side effect)
	 */
	if (dev->actconfig) {
		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
			struct usb_interface	*interface;

			/* remove this interface if it has been registered */
			interface = dev->actconfig->interface[i];
			if (!device_is_registered(&interface->dev))
				continue;
			dev_dbg (&dev->dev, "unregistering interface %s\n",
				interface->dev.bus_id);
			usb_remove_sysfs_intf_files(interface);
			kfree(interface->cur_altsetting->string);
			interface->cur_altsetting->string = NULL;
			device_del (&interface->dev);
		}

		/* Now that the interfaces are unbound, nobody should
		 * try to access them.
		 */
		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
			put_device (&dev->actconfig->interface[i]->dev);
			dev->actconfig->interface[i] = NULL;
		}
		dev->actconfig = NULL;
		if (dev->state == USB_STATE_CONFIGURED)
			usb_set_device_state(dev, USB_STATE_ADDRESS);
	}
}


/*
 * usb_enable_endpoint - Enable an endpoint for USB communications
 * @dev: the device whose interface is being enabled
 * @ep: the endpoint
 *
 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
 * For control endpoints, both the input and output sides are handled.
 */
static void
usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
{
	unsigned int epaddr = ep->desc.bEndpointAddress;
	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
	int is_control;

	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
			== USB_ENDPOINT_XFER_CONTROL);
	if (usb_endpoint_out(epaddr) || is_control) {
		usb_settoggle(dev, epnum, 1, 0);
		dev->ep_out[epnum] = ep;
	}
	if (!usb_endpoint_out(epaddr) || is_control) {
		usb_settoggle(dev, epnum, 0, 0);
		dev->ep_in[epnum] = ep;
	}
}

/*
 * usb_enable_interface - Enable all the endpoints for an interface
 * @dev: the device whose interface is being enabled
 * @intf: pointer to the interface descriptor
 *
 * Enables all the endpoints for the interface's current altsetting.
 */
static void usb_enable_interface(struct usb_device *dev,
				 struct usb_interface *intf)
{
	struct usb_host_interface *alt = intf->cur_altsetting;
	int i;

	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
		usb_enable_endpoint(dev, &alt->endpoint[i]);
}

/**
 * usb_set_interface - Makes a particular alternate setting be current
 * @dev: the device whose interface is being updated
 * @interface: the interface being updated
 * @alternate: the setting being chosen.
 * Context: !in_interrupt ()
 *
 * This is used to enable data transfers on interfaces that may not
 * be enabled by default.  Not all devices support such configurability.
 * Only the driver bound to an interface may change its setting.
 *
 * Within any given configuration, each interface may have several
 * alternative settings.  These are often used to control levels of
 * bandwidth consumption.  For example, the default setting for a high
 * speed interrupt endpoint may not send more than 64 bytes per microframe,
 * while interrupt transfers of up to 3KBytes per microframe are legal.
 * Also, isochronous endpoints may never be part of an
 * interface's default setting.  To access such bandwidth, alternate
 * interface settings must be made current.
 *
 * Note that in the Linux USB subsystem, bandwidth associated with
 * an endpoint in a given alternate setting is not reserved until an URB
 * is submitted that needs that bandwidth.  Some other operating systems
 * allocate bandwidth early, when a configuration is chosen.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 * Also, drivers must not change altsettings while urbs are scheduled for
 * endpoints in that interface; all such urbs must first be completed
 * (perhaps forced by unlinking).
 *
 * Returns zero on success, or else the status code returned by the
 * underlying usb_control_msg() call.
 */
int usb_set_interface(struct usb_device *dev, int interface, int alternate)
{
	struct usb_interface *iface;
	struct usb_host_interface *alt;
	int ret;
	int manual = 0;

	if (dev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;

	iface = usb_ifnum_to_if(dev, interface);
	if (!iface) {
		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
			interface);
		return -EINVAL;
	}

	alt = usb_altnum_to_altsetting(iface, alternate);
	if (!alt) {
		warn("selecting invalid altsetting %d", alternate);
		return -EINVAL;
	}

	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
				   alternate, interface, NULL, 0, 5000);

	/* 9.4.10 says devices don't need this and are free to STALL the
	 * request if the interface only has one alternate setting.
	 */
	if (ret == -EPIPE && iface->num_altsetting == 1) {
		dev_dbg(&dev->dev,
			"manual set_interface for iface %d, alt %d\n",
			interface, alternate);
		manual = 1;
	} else if (ret < 0)
		return ret;

	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
	 * when they implement async or easily-killable versions of this or
	 * other "should-be-internal" functions (like clear_halt).
	 * should hcd+usbcore postprocess control requests?
	 */

	/* prevent submissions using previous endpoint settings */
	usb_disable_interface(dev, iface);

	iface->cur_altsetting = alt;

	/* If the interface only has one altsetting and the device didn't
	 * accept the request, we attempt to carry out the equivalent action
	 * by manually clearing the HALT feature for each endpoint in the
	 * new altsetting.
	 */
	if (manual) {
		int i;

		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
			unsigned int epaddr =
				alt->endpoint[i].desc.bEndpointAddress;
			unsigned int pipe =
	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);

			usb_clear_halt(dev, pipe);
		}
	}

	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
	 *
	 * Note:
	 * Despite EP0 is always present in all interfaces/AS, the list of
	 * endpoints from the descriptor does not contain EP0. Due to its
	 * omnipresence one might expect EP0 being considered "affected" by
	 * any SetInterface request and hence assume toggles need to be reset.
	 * However, EP0 toggles are re-synced for every individual transfer
	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
	 * (Likewise, EP0 never "halts" on well designed devices.)
	 */
	usb_enable_interface(dev, iface);

	return 0;
}

/**
 * usb_reset_configuration - lightweight device reset
 * @dev: the device whose configuration is being reset
 *
 * This issues a standard SET_CONFIGURATION request to the device using
 * the current configuration.  The effect is to reset most USB-related
 * state in the device, including interface altsettings (reset to zero),
 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
 * endpoints).  Other usbcore state is unchanged, including bindings of
 * usb device drivers to interfaces.
 *
 * Because this affects multiple interfaces, avoid using this with composite
 * (multi-interface) devices.  Instead, the driver for each interface may
 * use usb_set_interface() on the interfaces it claims.  Be careful though;
 * some devices don't support the SET_INTERFACE request, and others won't
 * reset all the interface state (notably data toggles).  Resetting the whole
 * configuration would affect other drivers' interfaces.
 *
 * The caller must own the device lock.
 *
 * Returns zero on success, else a negative error code.
 */
int usb_reset_configuration(struct usb_device *dev)
{
	int			i, retval;
	struct usb_host_config	*config;

	if (dev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;

	/* caller must have locked the device and must own
	 * the usb bus readlock (so driver bindings are stable);
	 * calls during probe() are fine
	 */

	for (i = 1; i < 16; ++i) {
		usb_disable_endpoint(dev, i);
		usb_disable_endpoint(dev, i + USB_DIR_IN);
	}

	config = dev->actconfig;
	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
			USB_REQ_SET_CONFIGURATION, 0,
			config->desc.bConfigurationValue, 0,
			NULL, 0, USB_CTRL_SET_TIMEOUT);
	if (retval < 0) {
		usb_set_device_state(dev, USB_STATE_ADDRESS);
		return retval;
	}

	dev->toggle[0] = dev->toggle[1] = 0;

	/* re-init hc/hcd interface/endpoint state */
	for (i = 0; i < config->desc.bNumInterfaces; i++) {
		struct usb_interface *intf = config->interface[i];
		struct usb_host_interface *alt;

		alt = usb_altnum_to_altsetting(intf, 0);

		/* No altsetting 0?  We'll assume the first altsetting.
		 * We could use a GetInterface call, but if a device is
		 * so non-compliant that it doesn't have altsetting 0
		 * then I wouldn't trust its reply anyway.
		 */
		if (!alt)
			alt = &intf->altsetting[0];

		intf->cur_altsetting = alt;
		usb_enable_interface(dev, intf);
	}
	return 0;
}

static void release_interface(struct device *dev)
{
	struct usb_interface *intf = to_usb_interface(dev);
	struct usb_interface_cache *intfc =
			altsetting_to_usb_interface_cache(intf->altsetting);

	kref_put(&intfc->ref, usb_release_interface_cache);
	kfree(intf);
}

/*
 * usb_set_configuration - Makes a particular device setting be current
 * @dev: the device whose configuration is being updated
 * @configuration: the configuration being chosen.
 * Context: !in_interrupt(), caller owns the device lock
 *
 * This is used to enable non-default device modes.  Not all devices
 * use this kind of configurability; many devices only have one
 * configuration.
 *
 * USB device configurations may affect Linux interoperability,
 * power consumption and the functionality available.  For example,
 * the default configuration is limited to using 100mA of bus power,
 * so that when certain device functionality requires more power,
 * and the device is bus powered, that functionality should be in some
 * non-default device configuration.  Other device modes may also be
 * reflected as configuration options, such as whether two ISDN
 * channels are available independently; and choosing between open
 * standard device protocols (like CDC) or proprietary ones.
 *
 * Note that USB has an additional level of device configurability,
 * associated with interfaces.  That configurability is accessed using
 * usb_set_interface().
 *
 * This call is synchronous. The calling context must be able to sleep,
 * must own the device lock, and must not hold the driver model's USB
 * bus rwsem; usb device driver probe() methods cannot use this routine.
 *
 * Returns zero on success, or else the status code returned by the
 * underlying call that failed.  On successful completion, each interface
 * in the original device configuration has been destroyed, and each one
 * in the new configuration has been probed by all relevant usb device
 * drivers currently known to the kernel.
 */
int usb_set_configuration(struct usb_device *dev, int configuration)
{
	int i, ret;
	struct usb_host_config *cp = NULL;
	struct usb_interface **new_interfaces = NULL;
	int n, nintf;

	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
		if (dev->config[i].desc.bConfigurationValue == configuration) {
			cp = &dev->config[i];
			break;
		}
	}
	if ((!cp && configuration != 0))
		return -EINVAL;

	/* The USB spec says configuration 0 means unconfigured.
	 * But if a device includes a configuration numbered 0,
	 * we will accept it as a correctly configured state.
	 */
	if (cp && configuration == 0)
		dev_warn(&dev->dev, "config 0 descriptor??\n");

	if (dev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;

	/* Allocate memory for new interfaces before doing anything else,
	 * so that if we run out then nothing will have changed. */
	n = nintf = 0;
	if (cp) {
		nintf = cp->desc.bNumInterfaces;
		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
				GFP_KERNEL);
		if (!new_interfaces) {
			dev_err(&dev->dev, "Out of memory");
			return -ENOMEM;
		}

		for (; n < nintf; ++n) {
			new_interfaces[n] = kmalloc(
					sizeof(struct usb_interface),
					GFP_KERNEL);
			if (!new_interfaces[n]) {
				dev_err(&dev->dev, "Out of memory");
				ret = -ENOMEM;
free_interfaces:
				while (--n >= 0)
					kfree(new_interfaces[n]);
				kfree(new_interfaces);
				return ret;
			}
		}
	}

	/* if it's already configured, clear out old state first.
	 * getting rid of old interfaces means unbinding their drivers.
	 */
	if (dev->state != USB_STATE_ADDRESS)
		usb_disable_device (dev, 1);	// Skip ep0

	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0)
		goto free_interfaces;

	dev->actconfig = cp;
	if (!cp)
		usb_set_device_state(dev, USB_STATE_ADDRESS);
	else {
		usb_set_device_state(dev, USB_STATE_CONFIGURED);

		/* Initialize the new interface structures and the
		 * hc/hcd/usbcore interface/endpoint state.
		 */
		for (i = 0; i < nintf; ++i) {
			struct usb_interface_cache *intfc;
			struct usb_interface *intf;
			struct usb_host_interface *alt;

			cp->interface[i] = intf = new_interfaces[i];
			memset(intf, 0, sizeof(*intf));
			intfc = cp->intf_cache[i];
			intf->altsetting = intfc->altsetting;
			intf->num_altsetting = intfc->num_altsetting;
			kref_get(&intfc->ref);

			alt = usb_altnum_to_altsetting(intf, 0);

			/* No altsetting 0?  We'll assume the first altsetting.
			 * We could use a GetInterface call, but if a device is
			 * so non-compliant that it doesn't have altsetting 0
			 * then I wouldn't trust its reply anyway.
			 */
			if (!alt)
				alt = &intf->altsetting[0];

			intf->cur_altsetting = alt;
			usb_enable_interface(dev, intf);
			intf->dev.parent = &dev->dev;
			intf->dev.driver = NULL;
			intf->dev.bus = &usb_bus_type;
			intf->dev.dma_mask = dev->dev.dma_mask;
			intf->dev.release = release_interface;
			device_initialize (&intf->dev);
			mark_quiesced(intf);
			sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
				 dev->bus->busnum, dev->devpath,
				 configuration,
				 alt->desc.bInterfaceNumber);
		}
		kfree(new_interfaces);

		if ((cp->desc.iConfiguration) &&
		    (cp->string == NULL)) {
			cp->string = kmalloc(256, GFP_KERNEL);
			if (cp->string)
				usb_string(dev, cp->desc.iConfiguration, cp->string, 256);
		}

		/* Now that all the interfaces are set up, register them
		 * to trigger binding of drivers to interfaces.  probe()
		 * routines may install different altsettings and may
		 * claim() any interfaces not yet bound.  Many class drivers
		 * need that: CDC, audio, video, etc.
		 */
		for (i = 0; i < nintf; ++i) {
			struct usb_interface *intf = cp->interface[i];
			struct usb_interface_descriptor *desc;

			desc = &intf->altsetting [0].desc;
			dev_dbg (&dev->dev,
				"adding %s (config #%d, interface %d)\n",
				intf->dev.bus_id, configuration,
				desc->bInterfaceNumber);
			ret = device_add (&intf->dev);
			if (ret != 0) {
				dev_err(&dev->dev,
					"device_add(%s) --> %d\n",
					intf->dev.bus_id,
					ret);
				continue;
			}
			if ((intf->cur_altsetting->desc.iInterface) &&
			    (intf->cur_altsetting->string == NULL)) {
				intf->cur_altsetting->string = kmalloc(256, GFP_KERNEL);
				if (intf->cur_altsetting->string)
					usb_string(dev, intf->cur_altsetting->desc.iInterface,
						   intf->cur_altsetting->string, 256);
			}
			usb_create_sysfs_intf_files (intf);
		}
	}

	return 0;
}

// synchronous request completion model
EXPORT_SYMBOL(usb_control_msg);
EXPORT_SYMBOL(usb_bulk_msg);

EXPORT_SYMBOL(usb_sg_init);
EXPORT_SYMBOL(usb_sg_cancel);
EXPORT_SYMBOL(usb_sg_wait);

// synchronous control message convenience routines
EXPORT_SYMBOL(usb_get_descriptor);
EXPORT_SYMBOL(usb_get_status);
EXPORT_SYMBOL(usb_get_string);
EXPORT_SYMBOL(usb_string);

// synchronous calls that also maintain usbcore state
EXPORT_SYMBOL(usb_clear_halt);
EXPORT_SYMBOL(usb_reset_configuration);
EXPORT_SYMBOL(usb_set_interface);