/*
* Copyright (c) 2016 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/if_vlan.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <libcxgb_cm.h>
#include "cxgbit.h"
#include "clip_tbl.h"
static void cxgbit_init_wr_wait(struct cxgbit_wr_wait *wr_waitp)
{
wr_waitp->ret = 0;
reinit_completion(&wr_waitp->completion);
}
static void
cxgbit_wake_up(struct cxgbit_wr_wait *wr_waitp, const char *func, u8 ret)
{
if (ret == CPL_ERR_NONE)
wr_waitp->ret = 0;
else
wr_waitp->ret = -EIO;
if (wr_waitp->ret)
pr_err("%s: err:%u", func, ret);
complete(&wr_waitp->completion);
}
static int
cxgbit_wait_for_reply(struct cxgbit_device *cdev,
struct cxgbit_wr_wait *wr_waitp, u32 tid, u32 timeout,
const char *func)
{
int ret;
if (!test_bit(CDEV_STATE_UP, &cdev->flags)) {
wr_waitp->ret = -EIO;
goto out;
}
ret = wait_for_completion_timeout(&wr_waitp->completion, timeout * HZ);
if (!ret) {
pr_info("%s - Device %s not responding tid %u\n",
func, pci_name(cdev->lldi.pdev), tid);
wr_waitp->ret = -ETIMEDOUT;
}
out:
if (wr_waitp->ret)
pr_info("%s: FW reply %d tid %u\n",
pci_name(cdev->lldi.pdev), wr_waitp->ret, tid);
return wr_waitp->ret;
}
/* Returns whether a CPL status conveys negative advice.
*/
static int cxgbit_is_neg_adv(unsigned int status)
{
return status == CPL_ERR_RTX_NEG_ADVICE ||
status == CPL_ERR_PERSIST_NEG_ADVICE ||
status == CPL_ERR_KEEPALV_NEG_ADVICE;
}
static int cxgbit_np_hashfn(const struct cxgbit_np *cnp)
{
return ((unsigned long)cnp >> 10) & (NP_INFO_HASH_SIZE - 1);
}
static struct np_info *
cxgbit_np_hash_add(struct cxgbit_device *cdev, struct cxgbit_np *cnp,
unsigned int stid)
{
struct np_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p) {
int bucket = cxgbit_np_hashfn(cnp);
p->cnp = cnp;
p->stid = stid;
spin_lock(&cdev->np_lock);
p->next = cdev->np_hash_tab[bucket];
cdev->np_hash_tab[bucket] = p;
spin_unlock(&cdev->np_lock);
}
return p;
}
static int
cxgbit_np_hash_find(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid = -1, bucket = cxgbit_np_hashfn(cnp);
struct np_info *p;
spin_lock(&cdev->np_lock);
for (p = cdev->np_hash_tab[bucket]; p; p = p->next) {
if (p->cnp == cnp) {
stid = p->stid;
break;
}
}
spin_unlock(&cdev->np_lock);
return stid;
}
static int cxgbit_np_hash_del(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid = -1, bucket = cxgbit_np_hashfn(cnp);
struct np_info *p, **prev = &cdev->np_hash_tab[bucket];
spin_lock(&cdev->np_lock);
for (p = *prev; p; prev = &p->next, p = p->next) {
if (p->cnp == cnp) {
stid = p->stid;
*prev = p->next;
kfree(p);
break;
}
}
spin_unlock(&cdev->np_lock);
return stid;
}
void _cxgbit_free_cnp(struct kref *kref)
{
struct cxgbit_np *cnp;
cnp = container_of(kref, struct cxgbit_np, kref);
kfree(cnp);
}
static int
cxgbit_create_server6(struct cxgbit_device *cdev, unsigned int stid,
struct cxgbit_np *cnp)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&cnp->com.local_addr;
int addr_type;
int ret;
pr_debug("%s: dev = %s; stid = %u; sin6_port = %u\n",
__func__, cdev->lldi.ports[0]->name, stid, sin6->sin6_port);
addr_type = ipv6_addr_type((const struct in6_addr *)
&sin6->sin6_addr);
if (addr_type != IPV6_ADDR_ANY) {
ret = cxgb4_clip_get(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
if (ret) {
pr_err("Unable to find clip table entry. laddr %pI6. Error:%d.\n",
sin6->sin6_addr.s6_addr, ret);
return -ENOMEM;
}
}
cxgbit_get_cnp(cnp);
cxgbit_init_wr_wait(&cnp->com.wr_wait);
ret = cxgb4_create_server6(cdev->lldi.ports[0],
stid, &sin6->sin6_addr,
sin6->sin6_port,
cdev->lldi.rxq_ids[0]);
if (!ret)
ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait,
0, 10, __func__);
else if (ret > 0)
ret = net_xmit_errno(ret);
else
cxgbit_put_cnp(cnp);
if (ret) {
if (ret != -ETIMEDOUT)
cxgb4_clip_release(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr, 1);
pr_err("create server6 err %d stid %d laddr %pI6 lport %d\n",
ret, stid, sin6->sin6_addr.s6_addr,
ntohs(sin6->sin6_port));
}
return ret;
}
static int
cxgbit_create_server4(struct cxgbit_device *cdev, unsigned int stid,
struct cxgbit_np *cnp)
{
struct sockaddr_in *sin = (struct sockaddr_in *)
&cnp->com.local_addr;
int ret;
pr_debug("%s: dev = %s; stid = %u; sin_port = %u\n",
__func__, cdev->lldi.ports[0]->name, stid, sin->sin_port);
cxgbit_get_cnp(cnp);
cxgbit_init_wr_wait(&cnp->com.wr_wait);
ret = cxgb4_create_server(cdev->lldi.ports[0],
stid, sin->sin_addr.s_addr,
sin->sin_port, 0,
cdev->lldi.rxq_ids[0]);
if (!ret)
ret = cxgbit_wait_for_reply(cdev,
&cnp->com.wr_wait,
0, 10, __func__);
else if (ret > 0)
ret = net_xmit_errno(ret);
else
cxgbit_put_cnp(cnp);
if (ret)
pr_err("create server failed err %d stid %d laddr %pI4 lport %d\n",
ret, stid, &sin->sin_addr, ntohs(sin->sin_port));
return ret;
}
struct cxgbit_device *cxgbit_find_device(struct net_device *ndev, u8 *port_id)
{
struct cxgbit_device *cdev;
u8 i;
list_for_each_entry(cdev, &cdev_list_head, list) {
struct cxgb4_lld_info *lldi = &cdev->lldi;
for (i = 0; i < lldi->nports; i++) {
if (lldi->ports[i] == ndev) {
if (port_id)
*port_id = i;
return cdev;
}
}
}
return NULL;
}
static struct net_device *cxgbit_get_real_dev(struct net_device *ndev)
{
if (ndev->priv_flags & IFF_BONDING) {
pr_err("Bond devices are not supported. Interface:%s\n",
ndev->name);
return NULL;
}
if (is_vlan_dev(ndev))
return vlan_dev_real_dev(ndev);
return ndev;
}
static struct net_device *cxgbit_ipv4_netdev(__be32 saddr)
{
struct net_device *ndev;
ndev = __ip_dev_find(&init_net, saddr, false);
if (!ndev)
return NULL;
return cxgbit_get_real_dev(ndev);
}
static struct net_device *cxgbit_ipv6_netdev(struct in6_addr *addr6)
{
struct net_device *ndev = NULL;
bool found = false;
if (IS_ENABLED(CONFIG_IPV6)) {
for_each_netdev_rcu(&init_net, ndev)
if (ipv6_chk_addr(&init_net, addr6, ndev, 1)) {
found = true;
break;
}
}
if (!found)
return NULL;
return cxgbit_get_real_dev(ndev);
}
static struct cxgbit_device *cxgbit_find_np_cdev(struct cxgbit_np *cnp)
{
struct sockaddr_storage *sockaddr = &cnp->com.local_addr;
int ss_family = sockaddr->ss_family;
struct net_device *ndev = NULL;
struct cxgbit_device *cdev = NULL;
rcu_read_lock();
if (ss_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)sockaddr;
ndev = cxgbit_ipv4_netdev(sin->sin_addr.s_addr);
} else if (ss_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sockaddr;
ndev = cxgbit_ipv6_netdev(&sin6->sin6_addr);
}
if (!ndev)
goto out;
cdev = cxgbit_find_device(ndev, NULL);
out:
rcu_read_unlock();
return cdev;
}
static bool cxgbit_inaddr_any(struct cxgbit_np *cnp)
{
struct sockaddr_storage *sockaddr = &cnp->com.local_addr;
int ss_family = sockaddr->ss_family;
int addr_type;
if (ss_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)sockaddr;
if (sin->sin_addr.s_addr == htonl(INADDR_ANY))
return true;
} else if (ss_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sockaddr;
addr_type = ipv6_addr_type((const struct in6_addr *)
&sin6->sin6_addr);
if (addr_type == IPV6_ADDR_ANY)
return true;
}
return false;
}
static int
__cxgbit_setup_cdev_np(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid, ret;
int ss_family = cnp->com.local_addr.ss_family;
if (!test_bit(CDEV_STATE_UP, &cdev->flags))
return -EINVAL;
stid = cxgb4_alloc_stid(cdev->lldi.tids, ss_family, cnp);
if (stid < 0)
return -EINVAL;
if (!cxgbit_np_hash_add(cdev, cnp, stid)) {
cxgb4_free_stid(cdev->lldi.tids, stid, ss_family);
return -EINVAL;
}
if (ss_family == AF_INET)
ret = cxgbit_create_server4(cdev, stid, cnp);
else
ret = cxgbit_create_server6(cdev, stid, cnp);
if (ret) {
if (ret != -ETIMEDOUT)
cxgb4_free_stid(cdev->lldi.tids, stid,
ss_family);
cxgbit_np_hash_del(cdev, cnp);
return ret;
}
return ret;
}
static int cxgbit_setup_cdev_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
int ret = -1;
mutex_lock(&cdev_list_lock);
cdev = cxgbit_find_np_cdev(cnp);
if (!cdev)
goto out;
if (cxgbit_np_hash_find(cdev, cnp) >= 0)
goto out;
if (__cxgbit_setup_cdev_np(cdev, cnp))
goto out;
cnp->com.cdev = cdev;
ret = 0;
out:
mutex_unlock(&cdev_list_lock);
return ret;
}
static int cxgbit_setup_all_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
int ret;
u32 count = 0;
mutex_lock(&cdev_list_lock);
list_for_each_entry(cdev, &cdev_list_head, list) {
if (cxgbit_np_hash_find(cdev, cnp) >= 0) {
mutex_unlock(&cdev_list_lock);
return -1;
}
}
list_for_each_entry(cdev, &cdev_list_head, list) {
ret = __cxgbit_setup_cdev_np(cdev, cnp);
if (ret == -ETIMEDOUT)
break;
if (ret != 0)
continue;
count++;
}
mutex_unlock(&cdev_list_lock);
return count ? 0 : -1;
}
int cxgbit_setup_np(struct iscsi_np *np, struct sockaddr_storage *ksockaddr)
{
struct cxgbit_np *cnp;
int ret;
if ((ksockaddr->ss_family != AF_INET) &&
(ksockaddr->ss_family != AF_INET6))
return -EINVAL;
cnp = kzalloc(sizeof(*cnp), GFP_KERNEL);
if (!cnp)
return -ENOMEM;
init_waitqueue_head(&cnp->accept_wait);
init_completion(&cnp->com.wr_wait.completion);
init_completion(&cnp->accept_comp);
INIT_LIST_HEAD(&cnp->np_accept_list);
spin_lock_init(&cnp->np_accept_lock);
kref_init(&cnp->kref);
memcpy(&np->np_sockaddr, ksockaddr,
sizeof(struct sockaddr_storage));
memcpy(&cnp->com.local_addr, &np->np_sockaddr,
sizeof(cnp->com.local_addr));
cnp->np = np;
cnp->com.cdev = NULL;
if (cxgbit_inaddr_any(cnp))
ret = cxgbit_setup_all_np(cnp);
else
ret = cxgbit_setup_cdev_np(cnp);
if (ret) {
cxgbit_put_cnp(cnp);
return -EINVAL;
}
np->np_context = cnp;
cnp->com.state = CSK_STATE_LISTEN;
return 0;
}
static void
cxgbit_set_conn_info(struct iscsi_np *np, struct iscsi_conn *conn,
struct cxgbit_sock *csk)
{
conn->login_family = np->np_sockaddr.ss_family;
conn->login_sockaddr = csk->com.remote_addr;
conn->local_sockaddr = csk->com.local_addr;
}
int cxgbit_accept_np(struct iscsi_np *np, struct iscsi_conn *conn)
{
struct cxgbit_np *cnp = np->np_context;
struct cxgbit_sock *csk;
int ret = 0;
accept_wait:
ret = wait_for_completion_interruptible(&cnp->accept_comp);
if (ret)
return -ENODEV;
spin_lock_bh(&np->np_thread_lock);
if (np->np_thread_state >= ISCSI_NP_THREAD_RESET) {
spin_unlock_bh(&np->np_thread_lock);
/**
* No point in stalling here when np_thread
* is in state RESET/SHUTDOWN/EXIT - bail
**/
return -ENODEV;
}
spin_unlock_bh(&np->np_thread_lock);
spin_lock_bh(&cnp->np_accept_lock);
if (list_empty(&cnp->np_accept_list)) {
spin_unlock_bh(&cnp->np_accept_lock);
goto accept_wait;
}
csk = list_first_entry(&cnp->np_accept_list,
struct cxgbit_sock,
accept_node);
list_del_init(&csk->accept_node);
spin_unlock_bh(&cnp->np_accept_lock);
conn->context = csk;
csk->conn = conn;
cxgbit_set_conn_info(np, conn, csk);
return 0;
}
static int
__cxgbit_free_cdev_np(struct cxgbit_device *cdev, struct cxgbit_np *cnp)
{
int stid, ret;
bool ipv6 = false;
stid = cxgbit_np_hash_del(cdev, cnp);
if (stid < 0)
return -EINVAL;
if (!test_bit(CDEV_STATE_UP, &cdev->flags))
return -EINVAL;
if (cnp->np->np_sockaddr.ss_family == AF_INET6)
ipv6 = true;
cxgbit_get_cnp(cnp);
cxgbit_init_wr_wait(&cnp->com.wr_wait);
ret = cxgb4_remove_server(cdev->lldi.ports[0], stid,
cdev->lldi.rxq_ids[0], ipv6);
if (ret > 0)
ret = net_xmit_errno(ret);
if (ret) {
cxgbit_put_cnp(cnp);
return ret;
}
ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait,
0, 10, __func__);
if (ret == -ETIMEDOUT)
return ret;
if (ipv6 && cnp->com.cdev) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&cnp->com.local_addr;
cxgb4_clip_release(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr,
1);
}
cxgb4_free_stid(cdev->lldi.tids, stid,
cnp->com.local_addr.ss_family);
return 0;
}
static void cxgbit_free_all_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
int ret;
mutex_lock(&cdev_list_lock);
list_for_each_entry(cdev, &cdev_list_head, list) {
ret = __cxgbit_free_cdev_np(cdev, cnp);
if (ret == -ETIMEDOUT)
break;
}
mutex_unlock(&cdev_list_lock);
}
static void cxgbit_free_cdev_np(struct cxgbit_np *cnp)
{
struct cxgbit_device *cdev;
bool found = false;
mutex_lock(&cdev_list_lock);
list_for_each_entry(cdev, &cdev_list_head, list) {
if (cdev == cnp->com.cdev) {
found = true;
break;
}
}
if (!found)
goto out;
__cxgbit_free_cdev_np(cdev, cnp);
out:
mutex_unlock(&cdev_list_lock);
}
void cxgbit_free_np(struct iscsi_np *np)
{
struct cxgbit_np *cnp = np->np_context;
cnp->com.state = CSK_STATE_DEAD;
if (cnp->com.cdev)
cxgbit_free_cdev_np(cnp);
else
cxgbit_free_all_np(cnp);
np->np_context = NULL;
cxgbit_put_cnp(cnp);
}
static void cxgbit_send_halfclose(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct cpl_close_con_req *req;
unsigned int len = roundup(sizeof(struct cpl_close_con_req), 16);
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
return;
req = (struct cpl_close_con_req *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
csk->tid));
req->rsvd = 0;
cxgbit_skcb_flags(skb) |= SKCBF_TX_FLAG_COMPL;
__skb_queue_tail(&csk->txq, skb);
cxgbit_push_tx_frames(csk);
}
static void cxgbit_arp_failure_discard(void *handle, struct sk_buff *skb)
{
pr_debug("%s cxgbit_device %p\n", __func__, handle);
kfree_skb(skb);
}
static void cxgbit_abort_arp_failure(void *handle, struct sk_buff *skb)
{
struct cxgbit_device *cdev = handle;
struct cpl_abort_req *req = cplhdr(skb);
pr_debug("%s cdev %p\n", __func__, cdev);
req->cmd = CPL_ABORT_NO_RST;
cxgbit_ofld_send(cdev, skb);
}
static int cxgbit_send_abort_req(struct cxgbit_sock *csk)
{
struct cpl_abort_req *req;
unsigned int len = roundup(sizeof(*req), 16);
struct sk_buff *skb;
pr_debug("%s: csk %p tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
__skb_queue_purge(&csk->txq);
if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags))
cxgbit_send_tx_flowc_wr(csk);
skb = __skb_dequeue(&csk->skbq);
req = (struct cpl_abort_req *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
t4_set_arp_err_handler(skb, csk->com.cdev, cxgbit_abort_arp_failure);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ,
csk->tid));
req->cmd = CPL_ABORT_SEND_RST;
return cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t);
}
void cxgbit_free_conn(struct iscsi_conn *conn)
{
struct cxgbit_sock *csk = conn->context;
bool release = false;
pr_debug("%s: state %d\n",
__func__, csk->com.state);
spin_lock_bh(&csk->lock);
switch (csk->com.state) {
case CSK_STATE_ESTABLISHED:
if (conn->conn_state == TARG_CONN_STATE_IN_LOGOUT) {
csk->com.state = CSK_STATE_CLOSING;
cxgbit_send_halfclose(csk);
} else {
csk->com.state = CSK_STATE_ABORTING;
cxgbit_send_abort_req(csk);
}
break;
case CSK_STATE_CLOSING:
csk->com.state = CSK_STATE_MORIBUND;
cxgbit_send_halfclose(csk);
break;
case CSK_STATE_DEAD:
release = true;
break;
default:
pr_err("%s: csk %p; state %d\n",
__func__, csk, csk->com.state);
}
spin_unlock_bh(&csk->lock);
if (release)
cxgbit_put_csk(csk);
}
static void cxgbit_set_emss(struct cxgbit_sock *csk, u16 opt)
{
csk->emss = csk->com.cdev->lldi.mtus[TCPOPT_MSS_G(opt)] -
((csk->com.remote_addr.ss_family == AF_INET) ?
sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
sizeof(struct tcphdr);
csk->mss = csk->emss;
if (TCPOPT_TSTAMP_G(opt))
csk->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
if (csk->emss < 128)
csk->emss = 128;
if (csk->emss & 7)
pr_info("Warning: misaligned mtu idx %u mss %u emss=%u\n",
TCPOPT_MSS_G(opt), csk->mss, csk->emss);
pr_debug("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
csk->mss, csk->emss);
}
static void cxgbit_free_skb(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
__skb_queue_purge(&csk->txq);
__skb_queue_purge(&csk->rxq);
__skb_queue_purge(&csk->backlogq);
__skb_queue_purge(&csk->ppodq);
__skb_queue_purge(&csk->skbq);
while ((skb = cxgbit_sock_dequeue_wr(csk)))
kfree_skb(skb);
__kfree_skb(csk->lro_hskb);
}
void _cxgbit_free_csk(struct kref *kref)
{
struct cxgbit_sock *csk;
struct cxgbit_device *cdev;
csk = container_of(kref, struct cxgbit_sock, kref);
pr_debug("%s csk %p state %d\n", __func__, csk, csk->com.state);
if (csk->com.local_addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&csk->com.local_addr;
cxgb4_clip_release(csk->com.cdev->lldi.ports[0],
(const u32 *)
&sin6->sin6_addr.s6_addr, 1);
}
cxgb4_remove_tid(csk->com.cdev->lldi.tids, 0, csk->tid);
dst_release(csk->dst);
cxgb4_l2t_release(csk->l2t);
cdev = csk->com.cdev;
spin_lock_bh(&cdev->cskq.lock);
list_del(&csk->list);
spin_unlock_bh(&cdev->cskq.lock);
cxgbit_free_skb(csk);
cxgbit_put_cdev(cdev);
kfree(csk);
}
static int
cxgbit_our_interface(struct cxgbit_device *cdev, struct net_device *egress_dev)
{
u8 i;
egress_dev = cxgbit_get_real_dev(egress_dev);
for (i = 0; i < cdev->lldi.nports; i++)
if (cdev->lldi.ports[i] == egress_dev)
return 1;
return 0;
}
static struct dst_entry *
cxgbit_find_route6(struct cxgbit_device *cdev, __u8 *local_ip, __u8 *peer_ip,
__be16 local_port, __be16 peer_port, u8 tos,
__u32 sin6_scope_id)
{
struct dst_entry *dst = NULL;
if (IS_ENABLED(CONFIG_IPV6)) {
struct flowi6 fl6;
memset(&fl6, 0, sizeof(fl6));
memcpy(&fl6.daddr, peer_ip, 16);
memcpy(&fl6.saddr, local_ip, 16);
if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
fl6.flowi6_oif = sin6_scope_id;
dst = ip6_route_output(&init_net, NULL, &fl6);
if (!dst)
goto out;
if (!cxgbit_our_interface(cdev, ip6_dst_idev(dst)->dev) &&
!(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
dst_release(dst);
dst = NULL;
}
}
out:
return dst;
}
static struct dst_entry *
cxgbit_find_route(struct cxgbit_device *cdev, __be32 local_ip, __be32 peer_ip,
__be16 local_port, __be16 peer_port, u8 tos)
{
struct rtable *rt;
struct flowi4 fl4;
struct neighbour *n;
rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip,
local_ip,
peer_port, local_port, IPPROTO_TCP,
tos, 0);
if (IS_ERR(rt))
return NULL;
n = dst_neigh_lookup(&rt->dst, &peer_ip);
if (!n)
return NULL;
if (!cxgbit_our_interface(cdev, n->dev) &&
!(n->dev->flags & IFF_LOOPBACK)) {
neigh_release(n);
dst_release(&rt->dst);
return NULL;
}
neigh_release(n);
return &rt->dst;
}
static void cxgbit_set_tcp_window(struct cxgbit_sock *csk, struct port_info *pi)
{
unsigned int linkspeed;
u8 scale;
linkspeed = pi->link_cfg.speed;
scale = linkspeed / SPEED_10000;
#define CXGBIT_10G_RCV_WIN (256 * 1024)
csk->rcv_win = CXGBIT_10G_RCV_WIN;
if (scale)
csk->rcv_win *= scale;
#define CXGBIT_10G_SND_WIN (256 * 1024)
csk->snd_win = CXGBIT_10G_SND_WIN;
if (scale)
csk->snd_win *= scale;
pr_debug("%s snd_win %d rcv_win %d\n",
__func__, csk->snd_win, csk->rcv_win);
}
#ifdef CONFIG_CHELSIO_T4_DCB
static u8 cxgbit_get_iscsi_dcb_state(struct net_device *ndev)
{
return ndev->dcbnl_ops->getstate(ndev);
}
static int cxgbit_select_priority(int pri_mask)
{
if (!pri_mask)
return 0;
return (ffs(pri_mask) - 1);
}
static u8 cxgbit_get_iscsi_dcb_priority(struct net_device *ndev, u16 local_port)
{
int ret;
u8 caps;
struct dcb_app iscsi_dcb_app = {
.protocol = local_port
};
ret = (int)ndev->dcbnl_ops->getcap(ndev, DCB_CAP_ATTR_DCBX, &caps);
if (ret)
return 0;
if (caps & DCB_CAP_DCBX_VER_IEEE) {
iscsi_dcb_app.selector = IEEE_8021QAZ_APP_SEL_ANY;
ret = dcb_ieee_getapp_mask(ndev, &iscsi_dcb_app);
} else if (caps & DCB_CAP_DCBX_VER_CEE) {
iscsi_dcb_app.selector = DCB_APP_IDTYPE_PORTNUM;
ret = dcb_getapp(ndev, &iscsi_dcb_app);
}
pr_info("iSCSI priority is set to %u\n", cxgbit_select_priority(ret));
return cxgbit_select_priority(ret);
}
#endif
static int
cxgbit_offload_init(struct cxgbit_sock *csk, int iptype, __u8 *peer_ip,
u16 local_port, struct dst_entry *dst,
struct cxgbit_device *cdev)
{
struct neighbour *n;
int ret, step;
struct net_device *ndev;
u16 rxq_idx, port_id;
#ifdef CONFIG_CHELSIO_T4_DCB
u8 priority = 0;
#endif
n = dst_neigh_lookup(dst, peer_ip);
if (!n)
return -ENODEV;
rcu_read_lock();
ret = -ENOMEM;
if (n->dev->flags & IFF_LOOPBACK) {
if (iptype == 4)
ndev = cxgbit_ipv4_netdev(*(__be32 *)peer_ip);
else if (IS_ENABLED(CONFIG_IPV6))
ndev = cxgbit_ipv6_netdev((struct in6_addr *)peer_ip);
else
ndev = NULL;
if (!ndev) {
ret = -ENODEV;
goto out;
}
csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t,
n, ndev, 0);
if (!csk->l2t)
goto out;
csk->mtu = ndev->mtu;
csk->tx_chan = cxgb4_port_chan(ndev);
csk->smac_idx = (cxgb4_port_viid(ndev) & 0x7F) << 1;
step = cdev->lldi.ntxq /
cdev->lldi.nchan;
csk->txq_idx = cxgb4_port_idx(ndev) * step;
step = cdev->lldi.nrxq /
cdev->lldi.nchan;
csk->ctrlq_idx = cxgb4_port_idx(ndev);
csk->rss_qid = cdev->lldi.rxq_ids[
cxgb4_port_idx(ndev) * step];
csk->port_id = cxgb4_port_idx(ndev);
cxgbit_set_tcp_window(csk,
(struct port_info *)netdev_priv(ndev));
} else {
ndev = cxgbit_get_real_dev(n->dev);
if (!ndev) {
ret = -ENODEV;
goto out;
}
#ifdef CONFIG_CHELSIO_T4_DCB
if (cxgbit_get_iscsi_dcb_state(ndev))
priority = cxgbit_get_iscsi_dcb_priority(ndev,
local_port);
csk->dcb_priority = priority;
csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, priority);
#else
csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, 0);
#endif
if (!csk->l2t)
goto out;
port_id = cxgb4_port_idx(ndev);
csk->mtu = dst_mtu(dst);
csk->tx_chan = cxgb4_port_chan(ndev);
csk->smac_idx = (cxgb4_port_viid(ndev) & 0x7F) << 1;
step = cdev->lldi.ntxq /
cdev->lldi.nports;
csk->txq_idx = (port_id * step) +
(cdev->selectq[port_id][0]++ % step);
csk->ctrlq_idx = cxgb4_port_idx(ndev);
step = cdev->lldi.nrxq /
cdev->lldi.nports;
rxq_idx = (port_id * step) +
(cdev->selectq[port_id][1]++ % step);
csk->rss_qid = cdev->lldi.rxq_ids[rxq_idx];
csk->port_id = port_id;
cxgbit_set_tcp_window(csk,
(struct port_info *)netdev_priv(ndev));
}
ret = 0;
out:
rcu_read_unlock();
neigh_release(n);
return ret;
}
int cxgbit_ofld_send(struct cxgbit_device *cdev, struct sk_buff *skb)
{
int ret = 0;
if (!test_bit(CDEV_STATE_UP, &cdev->flags)) {
kfree_skb(skb);
pr_err("%s - device not up - dropping\n", __func__);
return -EIO;
}
ret = cxgb4_ofld_send(cdev->lldi.ports[0], skb);
if (ret < 0)
kfree_skb(skb);
return ret < 0 ? ret : 0;
}
static void cxgbit_release_tid(struct cxgbit_device *cdev, u32 tid)
{
struct cpl_tid_release *req;
unsigned int len = roundup(sizeof(*req), 16);
struct sk_buff *skb;
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
return;
req = (struct cpl_tid_release *)__skb_put(skb, len);
memset(req, 0, len);
INIT_TP_WR(req, tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(
CPL_TID_RELEASE, tid));
set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
cxgbit_ofld_send(cdev, skb);
}
int
cxgbit_l2t_send(struct cxgbit_device *cdev, struct sk_buff *skb,
struct l2t_entry *l2e)
{
int ret = 0;
if (!test_bit(CDEV_STATE_UP, &cdev->flags)) {
kfree_skb(skb);
pr_err("%s - device not up - dropping\n", __func__);
return -EIO;
}
ret = cxgb4_l2t_send(cdev->lldi.ports[0], skb, l2e);
if (ret < 0)
kfree_skb(skb);
return ret < 0 ? ret : 0;
}
static void
cxgbit_best_mtu(const unsigned short *mtus, unsigned short mtu,
unsigned int *idx, int use_ts, int ipv6)
{
unsigned short hdr_size = (ipv6 ? sizeof(struct ipv6hdr) :
sizeof(struct iphdr)) +
sizeof(struct tcphdr) +
(use_ts ? round_up(TCPOLEN_TIMESTAMP,
4) : 0);
unsigned short data_size = mtu - hdr_size;
cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
}
static void cxgbit_send_rx_credits(struct cxgbit_sock *csk, struct sk_buff *skb)
{
if (csk->com.state != CSK_STATE_ESTABLISHED) {
__kfree_skb(skb);
return;
}
cxgbit_ofld_send(csk->com.cdev, skb);
}
/*
* CPL connection rx data ack: host ->
* Send RX credits through an RX_DATA_ACK CPL message.
* Returns the number of credits sent.
*/
int cxgbit_rx_data_ack(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct cpl_rx_data_ack *req;
unsigned int len = roundup(sizeof(*req), 16);
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -1;
req = (struct cpl_rx_data_ack *)__skb_put(skb, len);
memset(req, 0, len);
set_wr_txq(skb, CPL_PRIORITY_ACK, csk->ctrlq_idx);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
csk->tid));
req->credit_dack = cpu_to_be32(RX_DACK_CHANGE_F | RX_DACK_MODE_V(1) |
RX_CREDITS_V(csk->rx_credits));
csk->rx_credits = 0;
spin_lock_bh(&csk->lock);
if (csk->lock_owner) {
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_send_rx_credits;
__skb_queue_tail(&csk->backlogq, skb);
spin_unlock_bh(&csk->lock);
return 0;
}
cxgbit_send_rx_credits(csk, skb);
spin_unlock_bh(&csk->lock);
return 0;
}
#define FLOWC_WR_NPARAMS_MIN 9
#define FLOWC_WR_NPARAMS_MAX 11
static int cxgbit_alloc_csk_skb(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
u32 len, flowclen;
u8 i;
flowclen = offsetof(struct fw_flowc_wr,
mnemval[FLOWC_WR_NPARAMS_MAX]);
len = max_t(u32, sizeof(struct cpl_abort_req),
sizeof(struct cpl_abort_rpl));
len = max(len, flowclen);
len = roundup(len, 16);
for (i = 0; i < 3; i++) {
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
goto out;
__skb_queue_tail(&csk->skbq, skb);
}
skb = alloc_skb(LRO_SKB_MIN_HEADROOM, GFP_ATOMIC);
if (!skb)
goto out;
memset(skb->data, 0, LRO_SKB_MIN_HEADROOM);
csk->lro_hskb = skb;
return 0;
out:
__skb_queue_purge(&csk->skbq);
return -ENOMEM;
}
static u32 cxgbit_compute_wscale(u32 win)
{
u32 wscale = 0;
while (wscale < 14 && (65535 << wscale) < win)
wscale++;
return wscale;
}
static void
cxgbit_pass_accept_rpl(struct cxgbit_sock *csk, struct cpl_pass_accept_req *req)
{
struct sk_buff *skb;
const struct tcphdr *tcph;
struct cpl_t5_pass_accept_rpl *rpl5;
unsigned int len = roundup(sizeof(*rpl5), 16);
unsigned int mtu_idx;
u64 opt0;
u32 opt2, hlen;
u32 wscale;
u32 win;
pr_debug("%s csk %p tid %u\n", __func__, csk, csk->tid);
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb) {
cxgbit_put_csk(csk);
return;
}
rpl5 = (struct cpl_t5_pass_accept_rpl *)__skb_put(skb, len);
memset(rpl5, 0, len);
INIT_TP_WR(rpl5, csk->tid);
OPCODE_TID(rpl5) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
csk->tid));
cxgbit_best_mtu(csk->com.cdev->lldi.mtus, csk->mtu, &mtu_idx,
req->tcpopt.tstamp,
(csk->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
wscale = cxgbit_compute_wscale(csk->rcv_win);
/*
* Specify the largest window that will fit in opt0. The
* remainder will be specified in the rx_data_ack.
*/
win = csk->rcv_win >> 10;
if (win > RCV_BUFSIZ_M)
win = RCV_BUFSIZ_M;
opt0 = TCAM_BYPASS_F |
WND_SCALE_V(wscale) |
MSS_IDX_V(mtu_idx) |
L2T_IDX_V(csk->l2t->idx) |
TX_CHAN_V(csk->tx_chan) |
SMAC_SEL_V(csk->smac_idx) |
DSCP_V(csk->tos >> 2) |
ULP_MODE_V(ULP_MODE_ISCSI) |
RCV_BUFSIZ_V(win);
opt2 = RX_CHANNEL_V(0) |
RSS_QUEUE_VALID_F | RSS_QUEUE_V(csk->rss_qid);
if (req->tcpopt.tstamp)
opt2 |= TSTAMPS_EN_F;
if (req->tcpopt.sack)
opt2 |= SACK_EN_F;
if (wscale)
opt2 |= WND_SCALE_EN_F;
hlen = ntohl(req->hdr_len);
tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
IP_HDR_LEN_G(hlen);
if (tcph->ece && tcph->cwr)
opt2 |= CCTRL_ECN_V(1);
opt2 |= RX_COALESCE_V(3);
opt2 |= CONG_CNTRL_V(CONG_ALG_NEWRENO);
opt2 |= T5_ISS_F;
rpl5->iss = cpu_to_be32((prandom_u32() & ~7UL) - 1);
opt2 |= T5_OPT_2_VALID_F;
rpl5->opt0 = cpu_to_be64(opt0);
rpl5->opt2 = cpu_to_be32(opt2);
set_wr_txq(skb, CPL_PRIORITY_SETUP, csk->ctrlq_idx);
t4_set_arp_err_handler(skb, NULL, cxgbit_arp_failure_discard);
cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t);
}
static void
cxgbit_pass_accept_req(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk = NULL;
struct cxgbit_np *cnp;
struct cpl_pass_accept_req *req = cplhdr(skb);
unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
struct tid_info *t = cdev->lldi.tids;
unsigned int tid = GET_TID(req);
u16 peer_mss = ntohs(req->tcpopt.mss);
unsigned short hdrs;
struct dst_entry *dst;
__u8 local_ip[16], peer_ip[16];
__be16 local_port, peer_port;
int ret;
int iptype;
pr_debug("%s: cdev = %p; stid = %u; tid = %u\n",
__func__, cdev, stid, tid);
cnp = lookup_stid(t, stid);
if (!cnp) {
pr_err("%s connect request on invalid stid %d\n",
__func__, stid);
goto rel_skb;
}
if (cnp->com.state != CSK_STATE_LISTEN) {
pr_err("%s - listening parent not in CSK_STATE_LISTEN\n",
__func__);
goto reject;
}
csk = lookup_tid(t, tid);
if (csk) {
pr_err("%s csk not null tid %u\n",
__func__, tid);
goto rel_skb;
}
cxgb_get_4tuple(req, cdev->lldi.adapter_type, &iptype, local_ip,
peer_ip, &local_port, &peer_port);
/* Find output route */
if (iptype == 4) {
pr_debug("%s parent sock %p tid %u laddr %pI4 raddr %pI4 "
"lport %d rport %d peer_mss %d\n"
, __func__, cnp, tid,
local_ip, peer_ip, ntohs(local_port),
ntohs(peer_port), peer_mss);
dst = cxgbit_find_route(cdev, *(__be32 *)local_ip,
*(__be32 *)peer_ip,
local_port, peer_port,
PASS_OPEN_TOS_G(ntohl(req->tos_stid)));
} else {
pr_debug("%s parent sock %p tid %u laddr %pI6 raddr %pI6 "
"lport %d rport %d peer_mss %d\n"
, __func__, cnp, tid,
local_ip, peer_ip, ntohs(local_port),
ntohs(peer_port), peer_mss);
dst = cxgbit_find_route6(cdev, local_ip, peer_ip,
local_port, peer_port,
PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
((struct sockaddr_in6 *)
&cnp->com.local_addr)->sin6_scope_id);
}
if (!dst) {
pr_err("%s - failed to find dst entry!\n",
__func__);
goto reject;
}
csk = kzalloc(sizeof(*csk), GFP_ATOMIC);
if (!csk) {
dst_release(dst);
goto rel_skb;
}
ret = cxgbit_offload_init(csk, iptype, peer_ip, ntohs(local_port),
dst, cdev);
if (ret) {
pr_err("%s - failed to allocate l2t entry!\n",
__func__);
dst_release(dst);
kfree(csk);
goto reject;
}
kref_init(&csk->kref);
init_completion(&csk->com.wr_wait.completion);
INIT_LIST_HEAD(&csk->accept_node);
hdrs = (iptype == 4 ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
sizeof(struct tcphdr) + (req->tcpopt.tstamp ? 12 : 0);
if (peer_mss && csk->mtu > (peer_mss + hdrs))
csk->mtu = peer_mss + hdrs;
csk->com.state = CSK_STATE_CONNECTING;
csk->com.cdev = cdev;
csk->cnp = cnp;
csk->tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
csk->dst = dst;
csk->tid = tid;
csk->wr_cred = cdev->lldi.wr_cred -
DIV_ROUND_UP(sizeof(struct cpl_abort_req), 16);
csk->wr_max_cred = csk->wr_cred;
csk->wr_una_cred = 0;
if (iptype == 4) {
struct sockaddr_in *sin = (struct sockaddr_in *)
&csk->com.local_addr;
sin->sin_family = AF_INET;
sin->sin_port = local_port;
sin->sin_addr.s_addr = *(__be32 *)local_ip;
sin = (struct sockaddr_in *)&csk->com.remote_addr;
sin->sin_family = AF_INET;
sin->sin_port = peer_port;
sin->sin_addr.s_addr = *(__be32 *)peer_ip;
} else {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
&csk->com.local_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = local_port;
memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
cxgb4_clip_get(cdev->lldi.ports[0],
(const u32 *)&sin6->sin6_addr.s6_addr,
1);
sin6 = (struct sockaddr_in6 *)&csk->com.remote_addr;
sin6->sin6_family = PF_INET6;
sin6->sin6_port = peer_port;
memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
}
skb_queue_head_init(&csk->rxq);
skb_queue_head_init(&csk->txq);
skb_queue_head_init(&csk->ppodq);
skb_queue_head_init(&csk->backlogq);
skb_queue_head_init(&csk->skbq);
cxgbit_sock_reset_wr_list(csk);
spin_lock_init(&csk->lock);
init_waitqueue_head(&csk->waitq);
init_waitqueue_head(&csk->ack_waitq);
csk->lock_owner = false;
if (cxgbit_alloc_csk_skb(csk)) {
dst_release(dst);
kfree(csk);
goto rel_skb;
}
cxgbit_get_cdev(cdev);
spin_lock(&cdev->cskq.lock);
list_add_tail(&csk->list, &cdev->cskq.list);
spin_unlock(&cdev->cskq.lock);
cxgb4_insert_tid(t, csk, tid);
cxgbit_pass_accept_rpl(csk, req);
goto rel_skb;
reject:
cxgbit_release_tid(cdev, tid);
rel_skb:
__kfree_skb(skb);
}
static u32
cxgbit_tx_flowc_wr_credits(struct cxgbit_sock *csk, u32 *nparamsp,
u32 *flowclenp)
{
u32 nparams, flowclen16, flowclen;
nparams = FLOWC_WR_NPARAMS_MIN;
if (csk->snd_wscale)
nparams++;
#ifdef CONFIG_CHELSIO_T4_DCB
nparams++;
#endif
flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
flowclen16 = DIV_ROUND_UP(flowclen, 16);
flowclen = flowclen16 * 16;
/*
* Return the number of 16-byte credits used by the flowc request.
* Pass back the nparams and actual flowc length if requested.
*/
if (nparamsp)
*nparamsp = nparams;
if (flowclenp)
*flowclenp = flowclen;
return flowclen16;
}
u32 cxgbit_send_tx_flowc_wr(struct cxgbit_sock *csk)
{
struct cxgbit_device *cdev = csk->com.cdev;
struct fw_flowc_wr *flowc;
u32 nparams, flowclen16, flowclen;
struct sk_buff *skb;
u8 index;
#ifdef CONFIG_CHELSIO_T4_DCB
u16 vlan = ((struct l2t_entry *)csk->l2t)->vlan;
#endif
flowclen16 = cxgbit_tx_flowc_wr_credits(csk, &nparams, &flowclen);
skb = __skb_dequeue(&csk->skbq);
flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
memset(flowc, 0, flowclen);
flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
FW_FLOWC_WR_NPARAMS_V(nparams));
flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
FW_WR_FLOWID_V(csk->tid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
(csk->com.cdev->lldi.pf));
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
flowc->mnemval[1].val = cpu_to_be32(csk->tx_chan);
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
flowc->mnemval[2].val = cpu_to_be32(csk->tx_chan);
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
flowc->mnemval[3].val = cpu_to_be32(csk->rss_qid);
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
flowc->mnemval[4].val = cpu_to_be32(csk->snd_nxt);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
flowc->mnemval[5].val = cpu_to_be32(csk->rcv_nxt);
flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
flowc->mnemval[6].val = cpu_to_be32(csk->snd_win);
flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
flowc->mnemval[7].val = cpu_to_be32(csk->emss);
flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_TXDATAPLEN_MAX;
if (test_bit(CDEV_ISO_ENABLE, &cdev->flags))
flowc->mnemval[8].val = cpu_to_be32(CXGBIT_MAX_ISO_PAYLOAD);
else
flowc->mnemval[8].val = cpu_to_be32(16384);
index = 9;
if (csk->snd_wscale) {
flowc->mnemval[index].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
flowc->mnemval[index].val = cpu_to_be32(csk->snd_wscale);
index++;
}
#ifdef CONFIG_CHELSIO_T4_DCB
flowc->mnemval[index].mnemonic = FW_FLOWC_MNEM_DCBPRIO;
if (vlan == VLAN_NONE) {
pr_warn("csk %u without VLAN Tag on DCB Link\n", csk->tid);
flowc->mnemval[index].val = cpu_to_be32(0);
} else
flowc->mnemval[index].val = cpu_to_be32(
(vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT);
#endif
pr_debug("%s: csk %p; tx_chan = %u; rss_qid = %u; snd_seq = %u;"
" rcv_seq = %u; snd_win = %u; emss = %u\n",
__func__, csk, csk->tx_chan, csk->rss_qid, csk->snd_nxt,
csk->rcv_nxt, csk->snd_win, csk->emss);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
cxgbit_ofld_send(csk->com.cdev, skb);
return flowclen16;
}
int cxgbit_setup_conn_digest(struct cxgbit_sock *csk)
{
struct sk_buff *skb;
struct cpl_set_tcb_field *req;
u8 hcrc = csk->submode & CXGBIT_SUBMODE_HCRC;
u8 dcrc = csk->submode & CXGBIT_SUBMODE_DCRC;
unsigned int len = roundup(sizeof(*req), 16);
int ret;
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
/* set up ulp submode */
req = (struct cpl_set_tcb_field *)__skb_put(skb, len);
memset(req, 0, len);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, csk->tid));
req->reply_ctrl = htons(NO_REPLY_V(0) | QUEUENO_V(csk->rss_qid));
req->word_cookie = htons(0);
req->mask = cpu_to_be64(0x3 << 4);
req->val = cpu_to_be64(((hcrc ? ULP_CRC_HEADER : 0) |
(dcrc ? ULP_CRC_DATA : 0)) << 4);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->ctrlq_idx);
cxgbit_get_csk(csk);
cxgbit_init_wr_wait(&csk->com.wr_wait);
cxgbit_ofld_send(csk->com.cdev, skb);
ret = cxgbit_wait_for_reply(csk->com.cdev,
&csk->com.wr_wait,
csk->tid, 5, __func__);
if (ret)
return -1;
return 0;
}
int cxgbit_setup_conn_pgidx(struct cxgbit_sock *csk, u32 pg_idx)
{
struct sk_buff *skb;
struct cpl_set_tcb_field *req;
unsigned int len = roundup(sizeof(*req), 16);
int ret;
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
req = (struct cpl_set_tcb_field *)__skb_put(skb, len);
memset(req, 0, len);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, csk->tid));
req->reply_ctrl = htons(NO_REPLY_V(0) | QUEUENO_V(csk->rss_qid));
req->word_cookie = htons(0);
req->mask = cpu_to_be64(0x3 << 8);
req->val = cpu_to_be64(pg_idx << 8);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->ctrlq_idx);
cxgbit_get_csk(csk);
cxgbit_init_wr_wait(&csk->com.wr_wait);
cxgbit_ofld_send(csk->com.cdev, skb);
ret = cxgbit_wait_for_reply(csk->com.cdev,
&csk->com.wr_wait,
csk->tid, 5, __func__);
if (ret)
return -1;
return 0;
}
static void
cxgbit_pass_open_rpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cpl_pass_open_rpl *rpl = cplhdr(skb);
struct tid_info *t = cdev->lldi.tids;
unsigned int stid = GET_TID(rpl);
struct cxgbit_np *cnp = lookup_stid(t, stid);
pr_debug("%s: cnp = %p; stid = %u; status = %d\n",
__func__, cnp, stid, rpl->status);
if (!cnp) {
pr_info("%s stid %d lookup failure\n", __func__, stid);
return;
}
cxgbit_wake_up(&cnp->com.wr_wait, __func__, rpl->status);
cxgbit_put_cnp(cnp);
}
static void
cxgbit_close_listsrv_rpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
struct tid_info *t = cdev->lldi.tids;
unsigned int stid = GET_TID(rpl);
struct cxgbit_np *cnp = lookup_stid(t, stid);
pr_debug("%s: cnp = %p; stid = %u; status = %d\n",
__func__, cnp, stid, rpl->status);
if (!cnp) {
pr_info("%s stid %d lookup failure\n", __func__, stid);
return;
}
cxgbit_wake_up(&cnp->com.wr_wait, __func__, rpl->status);
cxgbit_put_cnp(cnp);
}
static void
cxgbit_pass_establish(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cpl_pass_establish *req = cplhdr(skb);
struct tid_info *t = cdev->lldi.tids;
unsigned int tid = GET_TID(req);
struct cxgbit_sock *csk;
struct cxgbit_np *cnp;
u16 tcp_opt = be16_to_cpu(req->tcp_opt);
u32 snd_isn = be32_to_cpu(req->snd_isn);
u32 rcv_isn = be32_to_cpu(req->rcv_isn);
csk = lookup_tid(t, tid);
if (unlikely(!csk)) {
pr_err("can't find connection for tid %u.\n", tid);
goto rel_skb;
}
cnp = csk->cnp;
pr_debug("%s: csk %p; tid %u; cnp %p\n",
__func__, csk, tid, cnp);
csk->write_seq = snd_isn;
csk->snd_una = snd_isn;
csk->snd_nxt = snd_isn;
csk->rcv_nxt = rcv_isn;
if (csk->rcv_win > (RCV_BUFSIZ_M << 10))
csk->rx_credits = (csk->rcv_win - (RCV_BUFSIZ_M << 10));
csk->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
cxgbit_set_emss(csk, tcp_opt);
dst_confirm(csk->dst);
csk->com.state = CSK_STATE_ESTABLISHED;
spin_lock_bh(&cnp->np_accept_lock);
list_add_tail(&csk->accept_node, &cnp->np_accept_list);
spin_unlock_bh(&cnp->np_accept_lock);
complete(&cnp->accept_comp);
rel_skb:
__kfree_skb(skb);
}
static void cxgbit_queue_rx_skb(struct cxgbit_sock *csk, struct sk_buff *skb)
{
cxgbit_skcb_flags(skb) = 0;
spin_lock_bh(&csk->rxq.lock);
__skb_queue_tail(&csk->rxq, skb);
spin_unlock_bh(&csk->rxq.lock);
wake_up(&csk->waitq);
}
static void cxgbit_peer_close(struct cxgbit_sock *csk, struct sk_buff *skb)
{
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
switch (csk->com.state) {
case CSK_STATE_ESTABLISHED:
csk->com.state = CSK_STATE_CLOSING;
cxgbit_queue_rx_skb(csk, skb);
return;
case CSK_STATE_CLOSING:
/* simultaneous close */
csk->com.state = CSK_STATE_MORIBUND;
break;
case CSK_STATE_MORIBUND:
csk->com.state = CSK_STATE_DEAD;
cxgbit_put_csk(csk);
break;
case CSK_STATE_ABORTING:
break;
default:
pr_info("%s: cpl_peer_close in bad state %d\n",
__func__, csk->com.state);
}
__kfree_skb(skb);
}
static void cxgbit_close_con_rpl(struct cxgbit_sock *csk, struct sk_buff *skb)
{
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
switch (csk->com.state) {
case CSK_STATE_CLOSING:
csk->com.state = CSK_STATE_MORIBUND;
break;
case CSK_STATE_MORIBUND:
csk->com.state = CSK_STATE_DEAD;
cxgbit_put_csk(csk);
break;
case CSK_STATE_ABORTING:
case CSK_STATE_DEAD:
break;
default:
pr_info("%s: cpl_close_con_rpl in bad state %d\n",
__func__, csk->com.state);
}
__kfree_skb(skb);
}
static void cxgbit_abort_req_rss(struct cxgbit_sock *csk, struct sk_buff *skb)
{
struct cpl_abort_req_rss *hdr = cplhdr(skb);
unsigned int tid = GET_TID(hdr);
struct cpl_abort_rpl *rpl;
struct sk_buff *rpl_skb;
bool release = false;
bool wakeup_thread = false;
unsigned int len = roundup(sizeof(*rpl), 16);
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, tid, csk->com.state);
if (cxgbit_is_neg_adv(hdr->status)) {
pr_err("%s: got neg advise %d on tid %u\n",
__func__, hdr->status, tid);
goto rel_skb;
}
switch (csk->com.state) {
case CSK_STATE_CONNECTING:
case CSK_STATE_MORIBUND:
csk->com.state = CSK_STATE_DEAD;
release = true;
break;
case CSK_STATE_ESTABLISHED:
csk->com.state = CSK_STATE_DEAD;
wakeup_thread = true;
break;
case CSK_STATE_CLOSING:
csk->com.state = CSK_STATE_DEAD;
if (!csk->conn)
release = true;
break;
case CSK_STATE_ABORTING:
break;
default:
pr_info("%s: cpl_abort_req_rss in bad state %d\n",
__func__, csk->com.state);
csk->com.state = CSK_STATE_DEAD;
}
__skb_queue_purge(&csk->txq);
if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags))
cxgbit_send_tx_flowc_wr(csk);
rpl_skb = __skb_dequeue(&csk->skbq);
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx);
rpl = (struct cpl_abort_rpl *)__skb_put(rpl_skb, len);
memset(rpl, 0, len);
INIT_TP_WR(rpl, csk->tid);
OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
rpl->cmd = CPL_ABORT_NO_RST;
cxgbit_ofld_send(csk->com.cdev, rpl_skb);
if (wakeup_thread) {
cxgbit_queue_rx_skb(csk, skb);
return;
}
if (release)
cxgbit_put_csk(csk);
rel_skb:
__kfree_skb(skb);
}
static void cxgbit_abort_rpl_rss(struct cxgbit_sock *csk, struct sk_buff *skb)
{
pr_debug("%s: csk %p; tid %u; state %d\n",
__func__, csk, csk->tid, csk->com.state);
switch (csk->com.state) {
case CSK_STATE_ABORTING:
csk->com.state = CSK_STATE_DEAD;
cxgbit_put_csk(csk);
break;
default:
pr_info("%s: cpl_abort_rpl_rss in state %d\n",
__func__, csk->com.state);
}
__kfree_skb(skb);
}
static bool cxgbit_credit_err(const struct cxgbit_sock *csk)
{
const struct sk_buff *skb = csk->wr_pending_head;
u32 credit = 0;
if (unlikely(csk->wr_cred > csk->wr_max_cred)) {
pr_err("csk 0x%p, tid %u, credit %u > %u\n",
csk, csk->tid, csk->wr_cred, csk->wr_max_cred);
return true;
}
while (skb) {
credit += skb->csum;
skb = cxgbit_skcb_tx_wr_next(skb);
}
if (unlikely((csk->wr_cred + credit) != csk->wr_max_cred)) {
pr_err("csk 0x%p, tid %u, credit %u + %u != %u.\n",
csk, csk->tid, csk->wr_cred,
credit, csk->wr_max_cred);
return true;
}
return false;
}
static void cxgbit_fw4_ack(struct cxgbit_sock *csk, struct sk_buff *skb)
{
struct cpl_fw4_ack *rpl = (struct cpl_fw4_ack *)cplhdr(skb);
u32 credits = rpl->credits;
u32 snd_una = ntohl(rpl->snd_una);
csk->wr_cred += credits;
if (csk->wr_una_cred > (csk->wr_max_cred - csk->wr_cred))
csk->wr_una_cred = csk->wr_max_cred - csk->wr_cred;
while (credits) {
struct sk_buff *p = cxgbit_sock_peek_wr(csk);
if (unlikely(!p)) {
pr_err("csk 0x%p,%u, cr %u,%u+%u, empty.\n",
csk, csk->tid, credits,
csk->wr_cred, csk->wr_una_cred);
break;
}
if (unlikely(credits < p->csum)) {
pr_warn("csk 0x%p,%u, cr %u,%u+%u, < %u.\n",
csk, csk->tid,
credits, csk->wr_cred, csk->wr_una_cred,
p->csum);
p->csum -= credits;
break;
}
cxgbit_sock_dequeue_wr(csk);
credits -= p->csum;
kfree_skb(p);
}
if (unlikely(cxgbit_credit_err(csk))) {
cxgbit_queue_rx_skb(csk, skb);
return;
}
if (rpl->seq_vld & CPL_FW4_ACK_FLAGS_SEQVAL) {
if (unlikely(before(snd_una, csk->snd_una))) {
pr_warn("csk 0x%p,%u, snd_una %u/%u.",
csk, csk->tid, snd_una,
csk->snd_una);
goto rel_skb;
}
if (csk->snd_una != snd_una) {
csk->snd_una = snd_una;
dst_confirm(csk->dst);
wake_up(&csk->ack_waitq);
}
}
if (skb_queue_len(&csk->txq))
cxgbit_push_tx_frames(csk);
rel_skb:
__kfree_skb(skb);
}
static void cxgbit_set_tcb_rpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk;
struct cpl_set_tcb_rpl *rpl = (struct cpl_set_tcb_rpl *)skb->data;
unsigned int tid = GET_TID(rpl);
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct tid_info *t = lldi->tids;
csk = lookup_tid(t, tid);
if (unlikely(!csk))
pr_err("can't find connection for tid %u.\n", tid);
else
cxgbit_wake_up(&csk->com.wr_wait, __func__, rpl->status);
cxgbit_put_csk(csk);
}
static void cxgbit_rx_data(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk;
struct cpl_rx_data *cpl = cplhdr(skb);
unsigned int tid = GET_TID(cpl);
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct tid_info *t = lldi->tids;
csk = lookup_tid(t, tid);
if (unlikely(!csk)) {
pr_err("can't find conn. for tid %u.\n", tid);
goto rel_skb;
}
cxgbit_queue_rx_skb(csk, skb);
return;
rel_skb:
__kfree_skb(skb);
}
static void
__cxgbit_process_rx_cpl(struct cxgbit_sock *csk, struct sk_buff *skb)
{
spin_lock(&csk->lock);
if (csk->lock_owner) {
__skb_queue_tail(&csk->backlogq, skb);
spin_unlock(&csk->lock);
return;
}
cxgbit_skcb_rx_backlog_fn(skb)(csk, skb);
spin_unlock(&csk->lock);
}
static void cxgbit_process_rx_cpl(struct cxgbit_sock *csk, struct sk_buff *skb)
{
cxgbit_get_csk(csk);
__cxgbit_process_rx_cpl(csk, skb);
cxgbit_put_csk(csk);
}
static void cxgbit_rx_cpl(struct cxgbit_device *cdev, struct sk_buff *skb)
{
struct cxgbit_sock *csk;
struct cpl_tx_data *cpl = cplhdr(skb);
struct cxgb4_lld_info *lldi = &cdev->lldi;
struct tid_info *t = lldi->tids;
unsigned int tid = GET_TID(cpl);
u8 opcode = cxgbit_skcb_rx_opcode(skb);
bool ref = true;
switch (opcode) {
case CPL_FW4_ACK:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_fw4_ack;
ref = false;
break;
case CPL_PEER_CLOSE:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_peer_close;
break;
case CPL_CLOSE_CON_RPL:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_close_con_rpl;
break;
case CPL_ABORT_REQ_RSS:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_abort_req_rss;
break;
case CPL_ABORT_RPL_RSS:
cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_abort_rpl_rss;
break;
default:
goto rel_skb;
}
csk = lookup_tid(t, tid);
if (unlikely(!csk)) {
pr_err("can't find conn. for tid %u.\n", tid);
goto rel_skb;
}
if (ref)
cxgbit_process_rx_cpl(csk, skb);
else
__cxgbit_process_rx_cpl(csk, skb);
return;
rel_skb:
__kfree_skb(skb);
}
cxgbit_cplhandler_func cxgbit_cplhandlers[NUM_CPL_CMDS] = {
[CPL_PASS_OPEN_RPL] = cxgbit_pass_open_rpl,
[CPL_CLOSE_LISTSRV_RPL] = cxgbit_close_listsrv_rpl,
[CPL_PASS_ACCEPT_REQ] = cxgbit_pass_accept_req,
[CPL_PASS_ESTABLISH] = cxgbit_pass_establish,
[CPL_SET_TCB_RPL] = cxgbit_set_tcb_rpl,
[CPL_RX_DATA] = cxgbit_rx_data,
[CPL_FW4_ACK] = cxgbit_rx_cpl,
[CPL_PEER_CLOSE] = cxgbit_rx_cpl,
[CPL_CLOSE_CON_RPL] = cxgbit_rx_cpl,
[CPL_ABORT_REQ_RSS] = cxgbit_rx_cpl,
[CPL_ABORT_RPL_RSS] = cxgbit_rx_cpl,
};