// SPDX-License-Identifier: GPL-2.0
// spi-uniphier.c - Socionext UniPhier SPI controller driver
// Copyright 2012 Panasonic Corporation
// Copyright 2016-2018 Socionext Inc.
#include <linux/kernel.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <asm/unaligned.h>
#define SSI_TIMEOUT_MS 2000
#define SSI_POLL_TIMEOUT_US 200
#define SSI_MAX_CLK_DIVIDER 254
#define SSI_MIN_CLK_DIVIDER 4
struct uniphier_spi_priv {
void __iomem *base;
dma_addr_t base_dma_addr;
struct clk *clk;
struct spi_master *master;
struct completion xfer_done;
int error;
unsigned int tx_bytes;
unsigned int rx_bytes;
const u8 *tx_buf;
u8 *rx_buf;
atomic_t dma_busy;
bool is_save_param;
u8 bits_per_word;
u16 mode;
u32 speed_hz;
};
#define SSI_CTL 0x00
#define SSI_CTL_EN BIT(0)
#define SSI_CKS 0x04
#define SSI_CKS_CKRAT_MASK GENMASK(7, 0)
#define SSI_CKS_CKPHS BIT(14)
#define SSI_CKS_CKINIT BIT(13)
#define SSI_CKS_CKDLY BIT(12)
#define SSI_TXWDS 0x08
#define SSI_TXWDS_WDLEN_MASK GENMASK(13, 8)
#define SSI_TXWDS_TDTF_MASK GENMASK(7, 6)
#define SSI_TXWDS_DTLEN_MASK GENMASK(5, 0)
#define SSI_RXWDS 0x0c
#define SSI_RXWDS_DTLEN_MASK GENMASK(5, 0)
#define SSI_FPS 0x10
#define SSI_FPS_FSPOL BIT(15)
#define SSI_FPS_FSTRT BIT(14)
#define SSI_SR 0x14
#define SSI_SR_BUSY BIT(7)
#define SSI_SR_RNE BIT(0)
#define SSI_IE 0x18
#define SSI_IE_TCIE BIT(4)
#define SSI_IE_RCIE BIT(3)
#define SSI_IE_TXRE BIT(2)
#define SSI_IE_RXRE BIT(1)
#define SSI_IE_RORIE BIT(0)
#define SSI_IE_ALL_MASK GENMASK(4, 0)
#define SSI_IS 0x1c
#define SSI_IS_RXRS BIT(9)
#define SSI_IS_RCID BIT(3)
#define SSI_IS_RORID BIT(0)
#define SSI_IC 0x1c
#define SSI_IC_TCIC BIT(4)
#define SSI_IC_RCIC BIT(3)
#define SSI_IC_RORIC BIT(0)
#define SSI_FC 0x20
#define SSI_FC_TXFFL BIT(12)
#define SSI_FC_TXFTH_MASK GENMASK(11, 8)
#define SSI_FC_RXFFL BIT(4)
#define SSI_FC_RXFTH_MASK GENMASK(3, 0)
#define SSI_TXDR 0x24
#define SSI_RXDR 0x24
#define SSI_FIFO_DEPTH 8U
#define SSI_FIFO_BURST_NUM 1
#define SSI_DMA_RX_BUSY BIT(1)
#define SSI_DMA_TX_BUSY BIT(0)
static inline unsigned int bytes_per_word(unsigned int bits)
{
return bits <= 8 ? 1 : (bits <= 16 ? 2 : 4);
}
static inline void uniphier_spi_irq_enable(struct uniphier_spi_priv *priv,
u32 mask)
{
u32 val;
val = readl(priv->base + SSI_IE);
val |= mask;
writel(val, priv->base + SSI_IE);
}
static inline void uniphier_spi_irq_disable(struct uniphier_spi_priv *priv,
u32 mask)
{
u32 val;
val = readl(priv->base + SSI_IE);
val &= ~mask;
writel(val, priv->base + SSI_IE);
}
static void uniphier_spi_set_mode(struct spi_device *spi)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
u32 val1, val2;
/*
* clock setting
* CKPHS capture timing. 0:rising edge, 1:falling edge
* CKINIT clock initial level. 0:low, 1:high
* CKDLY clock delay. 0:no delay, 1:delay depending on FSTRT
* (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
*
* frame setting
* FSPOL frame signal porarity. 0: low, 1: high
* FSTRT start frame timing
* 0: rising edge of clock, 1: falling edge of clock
*/
switch (spi->mode & SPI_MODE_X_MASK) {
case SPI_MODE_0:
/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
val1 = SSI_CKS_CKPHS | SSI_CKS_CKDLY;
val2 = 0;
break;
case SPI_MODE_1:
/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
val1 = 0;
val2 = SSI_FPS_FSTRT;
break;
case SPI_MODE_2:
/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
val1 = SSI_CKS_CKINIT | SSI_CKS_CKDLY;
val2 = SSI_FPS_FSTRT;
break;
case SPI_MODE_3:
/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
val1 = SSI_CKS_CKPHS | SSI_CKS_CKINIT;
val2 = 0;
break;
}
if (!(spi->mode & SPI_CS_HIGH))
val2 |= SSI_FPS_FSPOL;
writel(val1, priv->base + SSI_CKS);
writel(val2, priv->base + SSI_FPS);
val1 = 0;
if (spi->mode & SPI_LSB_FIRST)
val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
writel(val1, priv->base + SSI_TXWDS);
writel(val1, priv->base + SSI_RXWDS);
}
static void uniphier_spi_set_transfer_size(struct spi_device *spi, int size)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
u32 val;
val = readl(priv->base + SSI_TXWDS);
val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
writel(val, priv->base + SSI_TXWDS);
val = readl(priv->base + SSI_RXWDS);
val &= ~SSI_RXWDS_DTLEN_MASK;
val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
writel(val, priv->base + SSI_RXWDS);
}
static void uniphier_spi_set_baudrate(struct spi_device *spi,
unsigned int speed)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
u32 val, ckdiv;
/*
* the supported rates are even numbers from 4 to 254. (4,6,8...254)
* round up as we look for equal or less speed
*/
ckdiv = DIV_ROUND_UP(clk_get_rate(priv->clk), speed);
ckdiv = round_up(ckdiv, 2);
val = readl(priv->base + SSI_CKS);
val &= ~SSI_CKS_CKRAT_MASK;
val |= ckdiv & SSI_CKS_CKRAT_MASK;
writel(val, priv->base + SSI_CKS);
}
static void uniphier_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
u32 val;
priv->error = 0;
priv->tx_buf = t->tx_buf;
priv->rx_buf = t->rx_buf;
priv->tx_bytes = priv->rx_bytes = t->len;
if (!priv->is_save_param || priv->mode != spi->mode) {
uniphier_spi_set_mode(spi);
priv->mode = spi->mode;
priv->is_save_param = false;
}
if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) {
uniphier_spi_set_transfer_size(spi, t->bits_per_word);
priv->bits_per_word = t->bits_per_word;
}
if (!priv->is_save_param || priv->speed_hz != t->speed_hz) {
uniphier_spi_set_baudrate(spi, t->speed_hz);
priv->speed_hz = t->speed_hz;
}
priv->is_save_param = true;
/* reset FIFOs */
val = SSI_FC_TXFFL | SSI_FC_RXFFL;
writel(val, priv->base + SSI_FC);
}
static void uniphier_spi_send(struct uniphier_spi_priv *priv)
{
int wsize;
u32 val = 0;
wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes);
priv->tx_bytes -= wsize;
if (priv->tx_buf) {
switch (wsize) {
case 1:
val = *priv->tx_buf;
break;
case 2:
val = get_unaligned_le16(priv->tx_buf);
break;
case 4:
val = get_unaligned_le32(priv->tx_buf);
break;
}
priv->tx_buf += wsize;
}
writel(val, priv->base + SSI_TXDR);
}
static void uniphier_spi_recv(struct uniphier_spi_priv *priv)
{
int rsize;
u32 val;
rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes);
priv->rx_bytes -= rsize;
val = readl(priv->base + SSI_RXDR);
if (priv->rx_buf) {
switch (rsize) {
case 1:
*priv->rx_buf = val;
break;
case 2:
put_unaligned_le16(val, priv->rx_buf);
break;
case 4:
put_unaligned_le32(val, priv->rx_buf);
break;
}
priv->rx_buf += rsize;
}
}
static void uniphier_spi_set_fifo_threshold(struct uniphier_spi_priv *priv,
unsigned int threshold)
{
u32 val;
val = readl(priv->base + SSI_FC);
val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
val |= FIELD_PREP(SSI_FC_TXFTH_MASK, SSI_FIFO_DEPTH - threshold);
val |= FIELD_PREP(SSI_FC_RXFTH_MASK, threshold);
writel(val, priv->base + SSI_FC);
}
static void uniphier_spi_fill_tx_fifo(struct uniphier_spi_priv *priv)
{
unsigned int fifo_threshold, fill_words;
unsigned int bpw = bytes_per_word(priv->bits_per_word);
fifo_threshold = DIV_ROUND_UP(priv->rx_bytes, bpw);
fifo_threshold = min(fifo_threshold, SSI_FIFO_DEPTH);
uniphier_spi_set_fifo_threshold(priv, fifo_threshold);
fill_words = fifo_threshold -
DIV_ROUND_UP(priv->rx_bytes - priv->tx_bytes, bpw);
while (fill_words--)
uniphier_spi_send(priv);
}
static void uniphier_spi_set_cs(struct spi_device *spi, bool enable)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
u32 val;
val = readl(priv->base + SSI_FPS);
if (enable)
val |= SSI_FPS_FSPOL;
else
val &= ~SSI_FPS_FSPOL;
writel(val, priv->base + SSI_FPS);
}
static bool uniphier_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
unsigned int bpw = bytes_per_word(priv->bits_per_word);
if ((!master->dma_tx && !master->dma_rx)
|| (!master->dma_tx && t->tx_buf)
|| (!master->dma_rx && t->rx_buf))
return false;
return DIV_ROUND_UP(t->len, bpw) > SSI_FIFO_DEPTH;
}
static void uniphier_spi_dma_rxcb(void *data)
{
struct spi_master *master = data;
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
int state = atomic_fetch_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy);
uniphier_spi_irq_disable(priv, SSI_IE_RXRE);
if (!(state & SSI_DMA_TX_BUSY))
spi_finalize_current_transfer(master);
}
static void uniphier_spi_dma_txcb(void *data)
{
struct spi_master *master = data;
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
int state = atomic_fetch_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy);
uniphier_spi_irq_disable(priv, SSI_IE_TXRE);
if (!(state & SSI_DMA_RX_BUSY))
spi_finalize_current_transfer(master);
}
static int uniphier_spi_transfer_one_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
struct dma_async_tx_descriptor *rxdesc = NULL, *txdesc = NULL;
int buswidth;
atomic_set(&priv->dma_busy, 0);
uniphier_spi_set_fifo_threshold(priv, SSI_FIFO_BURST_NUM);
if (priv->bits_per_word <= 8)
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (priv->bits_per_word <= 16)
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
else
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
if (priv->rx_buf) {
struct dma_slave_config rxconf = {
.direction = DMA_DEV_TO_MEM,
.src_addr = priv->base_dma_addr + SSI_RXDR,
.src_addr_width = buswidth,
.src_maxburst = SSI_FIFO_BURST_NUM,
};
dmaengine_slave_config(master->dma_rx, &rxconf);
rxdesc = dmaengine_prep_slave_sg(
master->dma_rx,
t->rx_sg.sgl, t->rx_sg.nents,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
goto out_err_prep;
rxdesc->callback = uniphier_spi_dma_rxcb;
rxdesc->callback_param = master;
uniphier_spi_irq_enable(priv, SSI_IE_RXRE);
atomic_or(SSI_DMA_RX_BUSY, &priv->dma_busy);
dmaengine_submit(rxdesc);
dma_async_issue_pending(master->dma_rx);
}
if (priv->tx_buf) {
struct dma_slave_config txconf = {
.direction = DMA_MEM_TO_DEV,
.dst_addr = priv->base_dma_addr + SSI_TXDR,
.dst_addr_width = buswidth,
.dst_maxburst = SSI_FIFO_BURST_NUM,
};
dmaengine_slave_config(master->dma_tx, &txconf);
txdesc = dmaengine_prep_slave_sg(
master->dma_tx,
t->tx_sg.sgl, t->tx_sg.nents,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
goto out_err_prep;
txdesc->callback = uniphier_spi_dma_txcb;
txdesc->callback_param = master;
uniphier_spi_irq_enable(priv, SSI_IE_TXRE);
atomic_or(SSI_DMA_TX_BUSY, &priv->dma_busy);
dmaengine_submit(txdesc);
dma_async_issue_pending(master->dma_tx);
}
/* signal that we need to wait for completion */
return (priv->tx_buf || priv->rx_buf);
out_err_prep:
if (rxdesc)
dmaengine_terminate_sync(master->dma_rx);
return -EINVAL;
}
static int uniphier_spi_transfer_one_irq(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
struct device *dev = master->dev.parent;
unsigned long time_left;
reinit_completion(&priv->xfer_done);
uniphier_spi_fill_tx_fifo(priv);
uniphier_spi_irq_enable(priv, SSI_IE_RCIE | SSI_IE_RORIE);
time_left = wait_for_completion_timeout(&priv->xfer_done,
msecs_to_jiffies(SSI_TIMEOUT_MS));
uniphier_spi_irq_disable(priv, SSI_IE_RCIE | SSI_IE_RORIE);
if (!time_left) {
dev_err(dev, "transfer timeout.\n");
return -ETIMEDOUT;
}
return priv->error;
}
static int uniphier_spi_transfer_one_poll(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
int loop = SSI_POLL_TIMEOUT_US * 10;
while (priv->tx_bytes) {
uniphier_spi_fill_tx_fifo(priv);
while ((priv->rx_bytes - priv->tx_bytes) > 0) {
while (!(readl(priv->base + SSI_SR) & SSI_SR_RNE)
&& loop--)
ndelay(100);
if (loop == -1)
goto irq_transfer;
uniphier_spi_recv(priv);
}
}
return 0;
irq_transfer:
return uniphier_spi_transfer_one_irq(master, spi, t);
}
static int uniphier_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
unsigned long threshold;
bool use_dma;
/* Terminate and return success for 0 byte length transfer */
if (!t->len)
return 0;
uniphier_spi_setup_transfer(spi, t);
use_dma = master->can_dma ? master->can_dma(master, spi, t) : false;
if (use_dma)
return uniphier_spi_transfer_one_dma(master, spi, t);
/*
* If the transfer operation will take longer than
* SSI_POLL_TIMEOUT_US, it should use irq.
*/
threshold = DIV_ROUND_UP(SSI_POLL_TIMEOUT_US * priv->speed_hz,
USEC_PER_SEC * BITS_PER_BYTE);
if (t->len > threshold)
return uniphier_spi_transfer_one_irq(master, spi, t);
else
return uniphier_spi_transfer_one_poll(master, spi, t);
}
static int uniphier_spi_prepare_transfer_hardware(struct spi_master *master)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
writel(SSI_CTL_EN, priv->base + SSI_CTL);
return 0;
}
static int uniphier_spi_unprepare_transfer_hardware(struct spi_master *master)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
writel(0, priv->base + SSI_CTL);
return 0;
}
static void uniphier_spi_handle_err(struct spi_master *master,
struct spi_message *msg)
{
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
u32 val;
/* stop running spi transfer */
writel(0, priv->base + SSI_CTL);
/* reset FIFOs */
val = SSI_FC_TXFFL | SSI_FC_RXFFL;
writel(val, priv->base + SSI_FC);
uniphier_spi_irq_disable(priv, SSI_IE_ALL_MASK);
if (atomic_read(&priv->dma_busy) & SSI_DMA_TX_BUSY) {
dmaengine_terminate_async(master->dma_tx);
atomic_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy);
}
if (atomic_read(&priv->dma_busy) & SSI_DMA_RX_BUSY) {
dmaengine_terminate_async(master->dma_rx);
atomic_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy);
}
}
static irqreturn_t uniphier_spi_handler(int irq, void *dev_id)
{
struct uniphier_spi_priv *priv = dev_id;
u32 val, stat;
stat = readl(priv->base + SSI_IS);
val = SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC;
writel(val, priv->base + SSI_IC);
/* rx fifo overrun */
if (stat & SSI_IS_RORID) {
priv->error = -EIO;
goto done;
}
/* rx complete */
if ((stat & SSI_IS_RCID) && (stat & SSI_IS_RXRS)) {
while ((readl(priv->base + SSI_SR) & SSI_SR_RNE) &&
(priv->rx_bytes - priv->tx_bytes) > 0)
uniphier_spi_recv(priv);
if ((readl(priv->base + SSI_SR) & SSI_SR_RNE) ||
(priv->rx_bytes != priv->tx_bytes)) {
priv->error = -EIO;
goto done;
} else if (priv->rx_bytes == 0)
goto done;
/* next tx transfer */
uniphier_spi_fill_tx_fifo(priv);
return IRQ_HANDLED;
}
return IRQ_NONE;
done:
complete(&priv->xfer_done);
return IRQ_HANDLED;
}
static int uniphier_spi_probe(struct platform_device *pdev)
{
struct uniphier_spi_priv *priv;
struct spi_master *master;
struct resource *res;
struct dma_slave_caps caps;
u32 dma_tx_burst = 0, dma_rx_burst = 0;
unsigned long clk_rate;
int irq;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(*priv));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
priv = spi_master_get_devdata(master);
priv->master = master;
priv->is_save_param = false;
priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto out_master_put;
}
priv->base_dma_addr = res->start;
priv->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
ret = PTR_ERR(priv->clk);
goto out_master_put;
}
ret = clk_prepare_enable(priv->clk);
if (ret)
goto out_master_put;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_disable_clk;
}
ret = devm_request_irq(&pdev->dev, irq, uniphier_spi_handler,
0, "uniphier-spi", priv);
if (ret) {
dev_err(&pdev->dev, "failed to request IRQ\n");
goto out_disable_clk;
}
init_completion(&priv->xfer_done);
clk_rate = clk_get_rate(priv->clk);
master->max_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MIN_CLK_DIVIDER);
master->min_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MAX_CLK_DIVIDER);
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
master->set_cs = uniphier_spi_set_cs;
master->transfer_one = uniphier_spi_transfer_one;
master->prepare_transfer_hardware
= uniphier_spi_prepare_transfer_hardware;
master->unprepare_transfer_hardware
= uniphier_spi_unprepare_transfer_hardware;
master->handle_err = uniphier_spi_handle_err;
master->can_dma = uniphier_spi_can_dma;
master->num_chipselect = 1;
master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
master->dma_tx = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR_OR_NULL(master->dma_tx)) {
if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto out_disable_clk;
}
master->dma_tx = NULL;
dma_tx_burst = INT_MAX;
} else {
ret = dma_get_slave_caps(master->dma_tx, &caps);
if (ret) {
dev_err(&pdev->dev, "failed to get TX DMA capacities: %d\n",
ret);
goto out_release_dma;
}
dma_tx_burst = caps.max_burst;
}
master->dma_rx = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR_OR_NULL(master->dma_rx)) {
if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto out_release_dma;
}
master->dma_rx = NULL;
dma_rx_burst = INT_MAX;
} else {
ret = dma_get_slave_caps(master->dma_rx, &caps);
if (ret) {
dev_err(&pdev->dev, "failed to get RX DMA capacities: %d\n",
ret);
goto out_release_dma;
}
dma_rx_burst = caps.max_burst;
}
master->max_dma_len = min(dma_tx_burst, dma_rx_burst);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret)
goto out_release_dma;
return 0;
out_release_dma:
if (!IS_ERR_OR_NULL(master->dma_rx)) {
dma_release_channel(master->dma_rx);
master->dma_rx = NULL;
}
if (!IS_ERR_OR_NULL(master->dma_tx)) {
dma_release_channel(master->dma_tx);
master->dma_tx = NULL;
}
out_disable_clk:
clk_disable_unprepare(priv->clk);
out_master_put:
spi_master_put(master);
return ret;
}
static int uniphier_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
if (master->dma_tx)
dma_release_channel(master->dma_tx);
if (master->dma_rx)
dma_release_channel(master->dma_rx);
clk_disable_unprepare(priv->clk);
return 0;
}
static const struct of_device_id uniphier_spi_match[] = {
{ .compatible = "socionext,uniphier-scssi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_spi_match);
static struct platform_driver uniphier_spi_driver = {
.probe = uniphier_spi_probe,
.remove = uniphier_spi_remove,
.driver = {
.name = "uniphier-spi",
.of_match_table = uniphier_spi_match,
},
};
module_platform_driver(uniphier_spi_driver);
MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
MODULE_AUTHOR("Keiji Hayashibara <hayashibara.keiji@socionext.com>");
MODULE_DESCRIPTION("Socionext UniPhier SPI controller driver");
MODULE_LICENSE("GPL v2");