/*
* SuperH MSIOF SPI Master Interface
*
* Copyright (c) 2009 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/sh_msiof.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <asm/unaligned.h>
struct sh_msiof_spi_priv {
struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */
void __iomem *mapbase;
struct clk *clk;
struct platform_device *pdev;
struct sh_msiof_spi_info *info;
struct completion done;
unsigned long flags;
int tx_fifo_size;
int rx_fifo_size;
};
#define TMDR1 0x00 /* Transmit Mode Register 1 */
#define TMDR2 0x04 /* Transmit Mode Register 2 */
#define TMDR3 0x08 /* Transmit Mode Register 3 */
#define RMDR1 0x10 /* Receive Mode Register 1 */
#define RMDR2 0x14 /* Receive Mode Register 2 */
#define RMDR3 0x18 /* Receive Mode Register 3 */
#define TSCR 0x20 /* Transmit Clock Select Register */
#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
#define CTR 0x28 /* Control Register */
#define FCTR 0x30 /* FIFO Control Register */
#define STR 0x40 /* Status Register */
#define IER 0x44 /* Interrupt Enable Register */
#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
#define TFDR 0x50 /* Transmit FIFO Data Register */
#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
#define RFDR 0x60 /* Receive FIFO Data Register */
/* TMDR1 and RMDR1 */
#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
#define MDR1_FLD_MASK 0x000000c0 /* Frame Sync Signal Interval (0-3) */
#define MDR1_FLD_SHIFT 2
#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
/* TMDR1 */
#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
/* TMDR2 and RMDR2 */
#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
/* TSCR and RSCR */
#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
#define SCR_BRPS(i) (((i) - 1) << 8)
#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
#define SCR_BRDV_DIV_2 0x0000
#define SCR_BRDV_DIV_4 0x0001
#define SCR_BRDV_DIV_8 0x0002
#define SCR_BRDV_DIV_16 0x0003
#define SCR_BRDV_DIV_32 0x0004
#define SCR_BRDV_DIV_1 0x0007
/* CTR */
#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
#define CTR_TXE 0x00000200 /* Transmit Enable */
#define CTR_RXE 0x00000100 /* Receive Enable */
/* STR and IER */
#define STR_TEOF 0x00800000 /* Frame Transmission End */
#define STR_REOF 0x00000080 /* Frame Reception End */
#define DEFAULT_TX_FIFO_SIZE 64
#define DEFAULT_RX_FIFO_SIZE 64
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
{
switch (reg_offs) {
case TSCR:
case RSCR:
return ioread16(p->mapbase + reg_offs);
default:
return ioread32(p->mapbase + reg_offs);
}
}
static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
u32 value)
{
switch (reg_offs) {
case TSCR:
case RSCR:
iowrite16(value, p->mapbase + reg_offs);
break;
default:
iowrite32(value, p->mapbase + reg_offs);
break;
}
}
static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
u32 clr, u32 set)
{
u32 mask = clr | set;
u32 data;
int k;
data = sh_msiof_read(p, CTR);
data &= ~clr;
data |= set;
sh_msiof_write(p, CTR, data);
for (k = 100; k > 0; k--) {
if ((sh_msiof_read(p, CTR) & mask) == set)
break;
udelay(10);
}
return k > 0 ? 0 : -ETIMEDOUT;
}
static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
struct sh_msiof_spi_priv *p = data;
/* just disable the interrupt and wake up */
sh_msiof_write(p, IER, 0);
complete(&p->done);
return IRQ_HANDLED;
}
static struct {
unsigned short div;
unsigned short scr;
} const sh_msiof_spi_clk_table[] = {
{ 1, SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
{ 2, SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
{ 4, SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
{ 8, SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
{ 16, SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
{ 32, SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
{ 64, SCR_BRPS(32) | SCR_BRDV_DIV_2 },
{ 128, SCR_BRPS(32) | SCR_BRDV_DIV_4 },
{ 256, SCR_BRPS(32) | SCR_BRDV_DIV_8 },
{ 512, SCR_BRPS(32) | SCR_BRDV_DIV_16 },
{ 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
};
static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
unsigned long parent_rate, u32 spi_hz)
{
unsigned long div = 1024;
size_t k;
if (!WARN_ON(!spi_hz || !parent_rate))
div = DIV_ROUND_UP(parent_rate, spi_hz);
/* TODO: make more fine grained */
for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
if (sh_msiof_spi_clk_table[k].div >= div)
break;
}
k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
}
static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
u32 cpol, u32 cpha,
u32 tx_hi_z, u32 lsb_first, u32 cs_high)
{
u32 tmp;
int edge;
/*
* CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
* 0 0 10 10 1 1
* 0 1 10 10 0 0
* 1 0 11 11 0 0
* 1 1 11 11 1 1
*/
sh_msiof_write(p, FCTR, 0);
tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
tmp |= lsb_first << MDR1_BITLSB_SHIFT;
sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
sh_msiof_write(p, RMDR1, tmp);
tmp = 0;
tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
edge = cpol ^ !cpha;
tmp |= edge << CTR_TEDG_SHIFT;
tmp |= edge << CTR_REDG_SHIFT;
tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
sh_msiof_write(p, CTR, tmp);
}
static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
const void *tx_buf, void *rx_buf,
u32 bits, u32 words)
{
u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
if (tx_buf)
sh_msiof_write(p, TMDR2, dr2);
else
sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
if (rx_buf)
sh_msiof_write(p, RMDR2, dr2);
sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
}
static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
sh_msiof_write(p, STR, sh_msiof_read(p, STR));
}
static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u8 *buf_8 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, buf_8[k] << fs);
}
static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u16 *buf_16 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, buf_16[k] << fs);
}
static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u16 *buf_16 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
}
static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u32 *buf_32 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, buf_32[k] << fs);
}
static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u32 *buf_32 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
}
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u32 *buf_32 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
}
static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
const void *tx_buf, int words, int fs)
{
const u32 *buf_32 = tx_buf;
int k;
for (k = 0; k < words; k++)
sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u8 *buf_8 = rx_buf;
int k;
for (k = 0; k < words; k++)
buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
}
static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u16 *buf_16 = rx_buf;
int k;
for (k = 0; k < words; k++)
buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
}
static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u16 *buf_16 = rx_buf;
int k;
for (k = 0; k < words; k++)
put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
}
static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u32 *buf_32 = rx_buf;
int k;
for (k = 0; k < words; k++)
buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
}
static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u32 *buf_32 = rx_buf;
int k;
for (k = 0; k < words; k++)
put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
}
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u32 *buf_32 = rx_buf;
int k;
for (k = 0; k < words; k++)
buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
}
static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
void *rx_buf, int words, int fs)
{
u32 *buf_32 = rx_buf;
int k;
for (k = 0; k < words; k++)
put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
}
static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t)
{
int bits;
bits = t ? t->bits_per_word : 0;
if (!bits)
bits = spi->bits_per_word;
return bits;
}
static u32 sh_msiof_spi_hz(struct spi_device *spi, struct spi_transfer *t)
{
u32 hz;
hz = t ? t->speed_hz : 0;
if (!hz)
hz = spi->max_speed_hz;
return hz;
}
static int sh_msiof_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
int bits;
/* noting to check hz values against since parent clock is disabled */
bits = sh_msiof_spi_bits(spi, t);
if (bits < 8)
return -EINVAL;
if (bits > 32)
return -EINVAL;
return spi_bitbang_setup_transfer(spi, t);
}
static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on)
{
struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
int value;
/* chip select is active low unless SPI_CS_HIGH is set */
if (spi->mode & SPI_CS_HIGH)
value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0;
else
value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1;
if (is_on == BITBANG_CS_ACTIVE) {
if (!test_and_set_bit(0, &p->flags)) {
pm_runtime_get_sync(&p->pdev->dev);
clk_enable(p->clk);
}
/* Configure pins before asserting CS */
sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
!!(spi->mode & SPI_CPHA),
!!(spi->mode & SPI_3WIRE),
!!(spi->mode & SPI_LSB_FIRST),
!!(spi->mode & SPI_CS_HIGH));
}
/* use spi->controller data for CS (same strategy as spi_gpio) */
gpio_set_value((uintptr_t)spi->controller_data, value);
if (is_on == BITBANG_CS_INACTIVE) {
if (test_and_clear_bit(0, &p->flags)) {
clk_disable(p->clk);
pm_runtime_put(&p->pdev->dev);
}
}
}
static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
void (*tx_fifo)(struct sh_msiof_spi_priv *,
const void *, int, int),
void (*rx_fifo)(struct sh_msiof_spi_priv *,
void *, int, int),
const void *tx_buf, void *rx_buf,
int words, int bits)
{
int fifo_shift;
int ret;
/* limit maximum word transfer to rx/tx fifo size */
if (tx_buf)
words = min_t(int, words, p->tx_fifo_size);
if (rx_buf)
words = min_t(int, words, p->rx_fifo_size);
/* the fifo contents need shifting */
fifo_shift = 32 - bits;
/* setup msiof transfer mode registers */
sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
/* write tx fifo */
if (tx_buf)
tx_fifo(p, tx_buf, words, fifo_shift);
/* setup clock and rx/tx signals */
ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
if (rx_buf)
ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
/* start by setting frame bit */
reinit_completion(&p->done);
ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
if (ret) {
dev_err(&p->pdev->dev, "failed to start hardware\n");
goto err;
}
/* wait for tx fifo to be emptied / rx fifo to be filled */
wait_for_completion(&p->done);
/* read rx fifo */
if (rx_buf)
rx_fifo(p, rx_buf, words, fifo_shift);
/* clear status bits */
sh_msiof_reset_str(p);
/* shut down frame, rx/tx and clock signals */
ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
if (rx_buf)
ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
if (ret) {
dev_err(&p->pdev->dev, "failed to shut down hardware\n");
goto err;
}
return words;
err:
sh_msiof_write(p, IER, 0);
return ret;
}
static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
{
struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
int bits;
int bytes_per_word;
int bytes_done;
int words;
int n;
bool swab;
bits = sh_msiof_spi_bits(spi, t);
if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
bits = 32;
swab = true;
} else {
swab = false;
}
/* setup bytes per word and fifo read/write functions */
if (bits <= 8) {
bytes_per_word = 1;
tx_fifo = sh_msiof_spi_write_fifo_8;
rx_fifo = sh_msiof_spi_read_fifo_8;
} else if (bits <= 16) {
bytes_per_word = 2;
if ((unsigned long)t->tx_buf & 0x01)
tx_fifo = sh_msiof_spi_write_fifo_16u;
else
tx_fifo = sh_msiof_spi_write_fifo_16;
if ((unsigned long)t->rx_buf & 0x01)
rx_fifo = sh_msiof_spi_read_fifo_16u;
else
rx_fifo = sh_msiof_spi_read_fifo_16;
} else if (swab) {
bytes_per_word = 4;
if ((unsigned long)t->tx_buf & 0x03)
tx_fifo = sh_msiof_spi_write_fifo_s32u;
else
tx_fifo = sh_msiof_spi_write_fifo_s32;
if ((unsigned long)t->rx_buf & 0x03)
rx_fifo = sh_msiof_spi_read_fifo_s32u;
else
rx_fifo = sh_msiof_spi_read_fifo_s32;
} else {
bytes_per_word = 4;
if ((unsigned long)t->tx_buf & 0x03)
tx_fifo = sh_msiof_spi_write_fifo_32u;
else
tx_fifo = sh_msiof_spi_write_fifo_32;
if ((unsigned long)t->rx_buf & 0x03)
rx_fifo = sh_msiof_spi_read_fifo_32u;
else
rx_fifo = sh_msiof_spi_read_fifo_32;
}
/* setup clocks (clock already enabled in chipselect()) */
sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk),
sh_msiof_spi_hz(spi, t));
/* transfer in fifo sized chunks */
words = t->len / bytes_per_word;
bytes_done = 0;
while (bytes_done < t->len) {
void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
tx_buf,
rx_buf,
words, bits);
if (n < 0)
break;
bytes_done += n * bytes_per_word;
words -= n;
}
return bytes_done;
}
static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs,
u32 word, u8 bits)
{
BUG(); /* unused but needed by bitbang code */
return 0;
}
#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
struct sh_msiof_spi_info *info;
struct device_node *np = dev->of_node;
u32 num_cs = 0;
info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
if (!info) {
dev_err(dev, "failed to allocate setup data\n");
return NULL;
}
/* Parse the MSIOF properties */
of_property_read_u32(np, "num-cs", &num_cs);
of_property_read_u32(np, "renesas,tx-fifo-size",
&info->tx_fifo_override);
of_property_read_u32(np, "renesas,rx-fifo-size",
&info->rx_fifo_override);
info->num_chipselect = num_cs;
return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
return NULL;
}
#endif
static int sh_msiof_spi_probe(struct platform_device *pdev)
{
struct resource *r;
struct spi_master *master;
struct sh_msiof_spi_priv *p;
int i;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
if (master == NULL) {
dev_err(&pdev->dev, "failed to allocate spi master\n");
return -ENOMEM;
}
p = spi_master_get_devdata(master);
platform_set_drvdata(pdev, p);
if (pdev->dev.of_node)
p->info = sh_msiof_spi_parse_dt(&pdev->dev);
else
p->info = dev_get_platdata(&pdev->dev);
if (!p->info) {
dev_err(&pdev->dev, "failed to obtain device info\n");
ret = -ENXIO;
goto err1;
}
init_completion(&p->done);
p->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(p->clk)) {
dev_err(&pdev->dev, "cannot get clock\n");
ret = PTR_ERR(p->clk);
goto err1;
}
i = platform_get_irq(pdev, 0);
if (i < 0) {
dev_err(&pdev->dev, "cannot get platform IRQ\n");
ret = -ENOENT;
goto err1;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
p->mapbase = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(p->mapbase)) {
ret = PTR_ERR(p->mapbase);
goto err1;
}
ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
dev_name(&pdev->dev), p);
if (ret) {
dev_err(&pdev->dev, "unable to request irq\n");
goto err1;
}
ret = clk_prepare(p->clk);
if (ret < 0) {
dev_err(&pdev->dev, "unable to prepare clock\n");
goto err1;
}
p->pdev = pdev;
pm_runtime_enable(&pdev->dev);
/* The standard version of MSIOF use 64 word FIFOs */
p->tx_fifo_size = DEFAULT_TX_FIFO_SIZE;
p->rx_fifo_size = DEFAULT_RX_FIFO_SIZE;
/* Platform data may override FIFO sizes */
if (p->info->tx_fifo_override)
p->tx_fifo_size = p->info->tx_fifo_override;
if (p->info->rx_fifo_override)
p->rx_fifo_size = p->info->rx_fifo_override;
/* init master and bitbang code */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
master->flags = 0;
master->bus_num = pdev->id;
master->dev.of_node = pdev->dev.of_node;
master->num_chipselect = p->info->num_chipselect;
master->setup = spi_bitbang_setup;
master->cleanup = spi_bitbang_cleanup;
p->bitbang.master = master;
p->bitbang.chipselect = sh_msiof_spi_chipselect;
p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer;
p->bitbang.txrx_bufs = sh_msiof_spi_txrx;
p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word;
p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word;
p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word;
p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word;
ret = spi_bitbang_start(&p->bitbang);
if (ret == 0)
return 0;
pm_runtime_disable(&pdev->dev);
clk_unprepare(p->clk);
err1:
spi_master_put(master);
return ret;
}
static int sh_msiof_spi_remove(struct platform_device *pdev)
{
struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
int ret;
ret = spi_bitbang_stop(&p->bitbang);
if (!ret) {
pm_runtime_disable(&pdev->dev);
clk_unprepare(p->clk);
spi_master_put(p->bitbang.master);
}
return ret;
}
#ifdef CONFIG_OF
static const struct of_device_id sh_msiof_match[] = {
{ .compatible = "renesas,sh-msiof", },
{ .compatible = "renesas,sh-mobile-msiof", },
{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);
#endif
static struct platform_driver sh_msiof_spi_drv = {
.probe = sh_msiof_spi_probe,
.remove = sh_msiof_spi_remove,
.driver = {
.name = "spi_sh_msiof",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(sh_msiof_match),
},
};
module_platform_driver(sh_msiof_spi_drv);
MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");