summaryrefslogblamecommitdiff
path: root/drivers/spi/spi-mtk-snfi.c
blob: ddd98ddb79130a77c831b82d14355f65f0bd99c3 (plain) (tree)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936













































































                                                                                

                                  
















































                                   

                                         






























                                                                        
                                 


































                                      

                                         









                                  


                                  
















                                                          




                                                                               









                              
                         













                                                        
                                          












                                                        
                                          



                                                        













                                                        











                                    
                             






















































































                                                                              
                                                                                 





























































































































































































































































































































































































































































































































































                                                                                

                                                   



























































































































































































                                                                                

                                                   
































































































































                                                                               
                                                                                

























                                                                                
                                                                                










































                                                                                
                                                                              




                                       





                                                        

                               





                                                  
                                                            






















                                                               
                                                                  





                                                                              
                                                                  





                                                                              
                                                                             





                                                                               




                                            
                                 




                                                                    
                                 




                                                             
                                 




                                           












                                                                             

                                                                               
                                                        

                                                                        
                                 










                                                                        
                                 










                                                                                
                                 


                 




                                 
                                                          




                                                                 

                                 



                                                  
                                       










                                                                
// SPDX-License-Identifier: GPL-2.0
//
// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
//
// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
//
// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
//
// Copyright (C) 2020 MediaTek Inc.
// Author: Weijie Gao <weijie.gao@mediatek.com>
//
// This controller organize the page data as several interleaved sectors
// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
// +---------+------+------+---------+------+------+-----+
// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
// +---------+------+------+---------+------+------+-----+
// With auto-format turned on, DMA only returns this part:
// +---------+---------+-----+
// | Sector1 | Sector2 | ... |
// +---------+---------+-----+
// The FDM data will be filled to the registers, and ECC parity data isn't
// accessible.
// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
// in it's original order shown in the first table. ECC can't be turned on when
// auto-format is off.
//
// However, Linux SPI-NAND driver expects the data returned as:
// +------+-----+
// | Page | OOB |
// +------+-----+
// where the page data is continuously stored instead of interleaved.
// So we assume all instructions matching the page_op template between ECC
// prepare_io_req and finish_io_req are for page cache r/w.
// Here's how this spi-mem driver operates when reading:
//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
//  2. Perform page ops and let the controller fill the DMA bounce buffer with
//     de-interleaved sector data and set FDM registers.
//  3. Return the data as:
//     +---------+---------+-----+------+------+-----+
//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
//     +---------+---------+-----+------+------+-----+
//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
//     read the data with auto-format off into the bounce buffer and copy
//     needed data to the buffer specified in the request.
//
// Write requests operates in a similar manner.
// As a limitation of this strategy, we won't be able to access any ECC parity
// data at all in Linux.
//
// Here's the bad block mark situation on MTK chips:
// In older chips like mt7622, MTK uses the first FDM byte in the first sector
// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
// in the returned data, which is the BBM position expected by kernel. However,
// the conventional bad block mark is the first byte of the OOB, which is part
// of the last sector data in the interleaved layout. Instead of fixing their
// hardware, MTK decided to address this inconsistency in software. On these
// later chips, the BootROM expects the following:
// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
// 2. The original byte stored at that position in the DMA buffer will be stored
//    as the first byte of the FDM section in the last sector.
// We can't disagree with the BootROM, so after de-interleaving, we need to
// perform the following swaps in read:
// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
//    which is the expected BBM position by kernel.
// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
//    [page_size - (nsectors - 1) * spare_size]
// Similarly, when writing, we need to perform swaps in the other direction.

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/mtd/nand-ecc-mtk.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/mtd/nand.h>

// NFI registers
#define NFI_CNFG 0x000
#define CNFG_OP_MODE_S 12
#define CNFG_OP_MODE_CUST 6
#define CNFG_OP_MODE_PROGRAM 3
#define CNFG_AUTO_FMT_EN BIT(9)
#define CNFG_HW_ECC_EN BIT(8)
#define CNFG_DMA_BURST_EN BIT(2)
#define CNFG_READ_MODE BIT(1)
#define CNFG_DMA_MODE BIT(0)

#define NFI_PAGEFMT 0x0004
#define NFI_SPARE_SIZE_LS_S 16
#define NFI_FDM_ECC_NUM_S 12
#define NFI_FDM_NUM_S 8
#define NFI_SPARE_SIZE_S 4
#define NFI_SEC_SEL_512 BIT(2)
#define NFI_PAGE_SIZE_S 0
#define NFI_PAGE_SIZE_512_2K 0
#define NFI_PAGE_SIZE_2K_4K 1
#define NFI_PAGE_SIZE_4K_8K 2
#define NFI_PAGE_SIZE_8K_16K 3

#define NFI_CON 0x008
#define CON_SEC_NUM_S 12
#define CON_BWR BIT(9)
#define CON_BRD BIT(8)
#define CON_NFI_RST BIT(1)
#define CON_FIFO_FLUSH BIT(0)

#define NFI_INTR_EN 0x010
#define NFI_INTR_STA 0x014
#define NFI_IRQ_INTR_EN BIT(31)
#define NFI_IRQ_CUS_READ BIT(8)
#define NFI_IRQ_CUS_PG BIT(7)

#define NFI_CMD 0x020
#define NFI_CMD_DUMMY_READ 0x00
#define NFI_CMD_DUMMY_WRITE 0x80

#define NFI_STRDATA 0x040
#define STR_DATA BIT(0)

#define NFI_STA 0x060
#define NFI_NAND_FSM_7622 GENMASK(28, 24)
#define NFI_NAND_FSM_7986 GENMASK(29, 23)
#define NFI_FSM GENMASK(19, 16)
#define READ_EMPTY BIT(12)

#define NFI_FIFOSTA 0x064
#define FIFO_WR_REMAIN_S 8
#define FIFO_RD_REMAIN_S 0

#define NFI_ADDRCNTR 0x070
#define SEC_CNTR GENMASK(16, 12)
#define SEC_CNTR_S 12
#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)

#define NFI_STRADDR 0x080

#define NFI_BYTELEN 0x084
#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)

#define NFI_FDM0L 0x0a0
#define NFI_FDM0M 0x0a4
#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)

#define NFI_DEBUG_CON1 0x220
#define WBUF_EN BIT(2)

#define NFI_MASTERSTA 0x224
#define MAS_ADDR GENMASK(11, 9)
#define MAS_RD GENMASK(8, 6)
#define MAS_WR GENMASK(5, 3)
#define MAS_RDDLY GENMASK(2, 0)
#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
#define NFI_MASTERSTA_MASK_7986 3

// SNFI registers
#define SNF_MAC_CTL 0x500
#define MAC_XIO_SEL BIT(4)
#define SF_MAC_EN BIT(3)
#define SF_TRIG BIT(2)
#define WIP_READY BIT(1)
#define WIP BIT(0)

#define SNF_MAC_OUTL 0x504
#define SNF_MAC_INL 0x508

#define SNF_RD_CTL2 0x510
#define DATA_READ_DUMMY_S 8
#define DATA_READ_MAX_DUMMY 0xf
#define DATA_READ_CMD_S 0

#define SNF_RD_CTL3 0x514

#define SNF_PG_CTL1 0x524
#define PG_LOAD_CMD_S 8

#define SNF_PG_CTL2 0x528

#define SNF_MISC_CTL 0x538
#define SW_RST BIT(28)
#define FIFO_RD_LTC_S 25
#define PG_LOAD_X4_EN BIT(20)
#define DATA_READ_MODE_S 16
#define DATA_READ_MODE GENMASK(18, 16)
#define DATA_READ_MODE_X1 0
#define DATA_READ_MODE_X2 1
#define DATA_READ_MODE_X4 2
#define DATA_READ_MODE_DUAL 5
#define DATA_READ_MODE_QUAD 6
#define DATA_READ_LATCH_LAT GENMASK(9, 8)
#define DATA_READ_LATCH_LAT_S 8
#define PG_LOAD_CUSTOM_EN BIT(7)
#define DATARD_CUSTOM_EN BIT(6)
#define CS_DESELECT_CYC_S 0

#define SNF_MISC_CTL2 0x53c
#define PROGRAM_LOAD_BYTE_NUM_S 16
#define READ_DATA_BYTE_NUM_S 11

#define SNF_DLY_CTL3 0x548
#define SFCK_SAM_DLY_S 0
#define SFCK_SAM_DLY GENMASK(5, 0)
#define SFCK_SAM_DLY_TOTAL 9
#define SFCK_SAM_DLY_RANGE 47

#define SNF_STA_CTL1 0x550
#define CUS_PG_DONE BIT(28)
#define CUS_READ_DONE BIT(27)
#define SPI_STATE_S 0
#define SPI_STATE GENMASK(3, 0)

#define SNF_CFG 0x55c
#define SPI_MODE BIT(0)

#define SNF_GPRAM 0x800
#define SNF_GPRAM_SIZE 0xa0

#define SNFI_POLL_INTERVAL 1000000

static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };

static const u8 mt7986_spare_sizes[] = {
	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
	74
};

struct mtk_snand_caps {
	u16 sector_size;
	u16 max_sectors;
	u16 fdm_size;
	u16 fdm_ecc_size;
	u16 fifo_size;

	bool bbm_swap;
	bool empty_page_check;
	u32 mastersta_mask;
	u32 nandfsm_mask;

	const u8 *spare_sizes;
	u32 num_spare_size;
};

static const struct mtk_snand_caps mt7622_snand_caps = {
	.sector_size = 512,
	.max_sectors = 8,
	.fdm_size = 8,
	.fdm_ecc_size = 1,
	.fifo_size = 32,
	.bbm_swap = false,
	.empty_page_check = false,
	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
	.nandfsm_mask = NFI_NAND_FSM_7622,
	.spare_sizes = mt7622_spare_sizes,
	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
};

static const struct mtk_snand_caps mt7629_snand_caps = {
	.sector_size = 512,
	.max_sectors = 8,
	.fdm_size = 8,
	.fdm_ecc_size = 1,
	.fifo_size = 32,
	.bbm_swap = true,
	.empty_page_check = false,
	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
	.nandfsm_mask = NFI_NAND_FSM_7622,
	.spare_sizes = mt7622_spare_sizes,
	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
};

static const struct mtk_snand_caps mt7986_snand_caps = {
	.sector_size = 1024,
	.max_sectors = 8,
	.fdm_size = 8,
	.fdm_ecc_size = 1,
	.fifo_size = 64,
	.bbm_swap = true,
	.empty_page_check = true,
	.mastersta_mask = NFI_MASTERSTA_MASK_7986,
	.nandfsm_mask = NFI_NAND_FSM_7986,
	.spare_sizes = mt7986_spare_sizes,
	.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
};

struct mtk_snand_conf {
	size_t page_size;
	size_t oob_size;
	u8 nsectors;
	u8 spare_size;
};

struct mtk_snand {
	struct spi_controller *ctlr;
	struct device *dev;
	struct clk *nfi_clk;
	struct clk *pad_clk;
	struct clk *nfi_hclk;
	void __iomem *nfi_base;
	int irq;
	struct completion op_done;
	const struct mtk_snand_caps *caps;
	struct mtk_ecc_config *ecc_cfg;
	struct mtk_ecc *ecc;
	struct mtk_snand_conf nfi_cfg;
	struct mtk_ecc_stats ecc_stats;
	struct nand_ecc_engine ecc_eng;
	bool autofmt;
	u8 *buf;
	size_t buf_len;
};

static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
{
	struct nand_ecc_engine *eng = nand->ecc.engine;

	return container_of(eng, struct mtk_snand, ecc_eng);
}

static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
{
	if (snf->buf_len >= size)
		return 0;
	kfree(snf->buf);
	snf->buf = kmalloc(size, GFP_KERNEL);
	if (!snf->buf)
		return -ENOMEM;
	snf->buf_len = size;
	memset(snf->buf, 0xff, snf->buf_len);
	return 0;
}

static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
{
	return readl(snf->nfi_base + reg);
}

static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
{
	writel(val, snf->nfi_base + reg);
}

static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
{
	writew(val, snf->nfi_base + reg);
}

static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
{
	u32 val;

	val = readl(snf->nfi_base + reg);
	val &= ~clr;
	val |= set;
	writel(val, snf->nfi_base + reg);
}

static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
{
	u32 i, val = 0, es = sizeof(u32);

	for (i = reg; i < reg + len; i++) {
		if (i == reg || i % es == 0)
			val = nfi_read32(snf, i & ~(es - 1));

		*data++ = (u8)(val >> (8 * (i % es)));
	}
}

static int mtk_nfi_reset(struct mtk_snand *snf)
{
	u32 val, fifo_mask;
	int ret;

	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);

	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
				 !(val & snf->caps->mastersta_mask), 0,
				 SNFI_POLL_INTERVAL);
	if (ret) {
		dev_err(snf->dev, "NFI master is still busy after reset\n");
		return ret;
	}

	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
				 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
				 SNFI_POLL_INTERVAL);
	if (ret) {
		dev_err(snf->dev, "Failed to reset NFI\n");
		return ret;
	}

	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
	if (ret) {
		dev_err(snf->dev, "NFI FIFOs are not empty\n");
		return ret;
	}

	return 0;
}

static int mtk_snand_mac_reset(struct mtk_snand *snf)
{
	int ret;
	u32 val;

	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);

	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
	if (ret)
		dev_err(snf->dev, "Failed to reset SNFI MAC\n");

	nfi_write32(snf, SNF_MISC_CTL,
		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));

	return ret;
}

static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
{
	int ret;
	u32 val;

	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
	nfi_write32(snf, SNF_MAC_OUTL, outlen);
	nfi_write32(snf, SNF_MAC_INL, inlen);

	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);

	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
	if (ret) {
		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
		goto cleanup;
	}

	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
				 0, SNFI_POLL_INTERVAL);
	if (ret)
		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");

cleanup:
	nfi_write32(snf, SNF_MAC_CTL, 0);

	return ret;
}

static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
{
	u32 rx_len = 0;
	u32 reg_offs = 0;
	u32 val = 0;
	const u8 *tx_buf = NULL;
	u8 *rx_buf = NULL;
	int i, ret;
	u8 b;

	if (op->data.dir == SPI_MEM_DATA_IN) {
		rx_len = op->data.nbytes;
		rx_buf = op->data.buf.in;
	} else {
		tx_buf = op->data.buf.out;
	}

	mtk_snand_mac_reset(snf);

	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
		val |= b << (8 * (reg_offs % 4));
		if (reg_offs % 4 == 3) {
			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
			val = 0;
		}
	}

	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
		val |= b << (8 * (reg_offs % 4));
		if (reg_offs % 4 == 3) {
			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
			val = 0;
		}
	}

	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
		if (reg_offs % 4 == 3) {
			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
			val = 0;
		}
	}

	if (op->data.dir == SPI_MEM_DATA_OUT) {
		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
			val |= tx_buf[i] << (8 * (reg_offs % 4));
			if (reg_offs % 4 == 3) {
				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
				val = 0;
			}
		}
	}

	if (reg_offs % 4)
		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);

	for (i = 0; i < reg_offs; i += 4)
		dev_dbg(snf->dev, "%d: %08X", i,
			nfi_read32(snf, SNF_GPRAM + i));

	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);

	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
	if (ret)
		return ret;

	if (!rx_len)
		return 0;

	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
	return 0;
}

static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
				   u32 oob_size)
{
	int spare_idx = -1;
	u32 spare_size, spare_size_shift, pagesize_idx;
	u32 sector_size_512;
	u8 nsectors;
	int i;

	// skip if it's already configured as required.
	if (snf->nfi_cfg.page_size == page_size &&
	    snf->nfi_cfg.oob_size == oob_size)
		return 0;

	nsectors = page_size / snf->caps->sector_size;
	if (nsectors > snf->caps->max_sectors) {
		dev_err(snf->dev, "too many sectors required.\n");
		goto err;
	}

	if (snf->caps->sector_size == 512) {
		sector_size_512 = NFI_SEC_SEL_512;
		spare_size_shift = NFI_SPARE_SIZE_S;
	} else {
		sector_size_512 = 0;
		spare_size_shift = NFI_SPARE_SIZE_LS_S;
	}

	switch (page_size) {
	case SZ_512:
		pagesize_idx = NFI_PAGE_SIZE_512_2K;
		break;
	case SZ_2K:
		if (snf->caps->sector_size == 512)
			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
		else
			pagesize_idx = NFI_PAGE_SIZE_512_2K;
		break;
	case SZ_4K:
		if (snf->caps->sector_size == 512)
			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
		else
			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
		break;
	case SZ_8K:
		if (snf->caps->sector_size == 512)
			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
		else
			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
		break;
	case SZ_16K:
		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
		break;
	default:
		dev_err(snf->dev, "unsupported page size.\n");
		goto err;
	}

	spare_size = oob_size / nsectors;
	// If we're using the 1KB sector size, HW will automatically double the
	// spare size. We should only use half of the value in this case.
	if (snf->caps->sector_size == 1024)
		spare_size /= 2;

	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
		if (snf->caps->spare_sizes[i] <= spare_size) {
			spare_size = snf->caps->spare_sizes[i];
			if (snf->caps->sector_size == 1024)
				spare_size *= 2;
			spare_idx = i;
			break;
		}
	}

	if (spare_idx < 0) {
		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
		goto err;
	}

	nfi_write32(snf, NFI_PAGEFMT,
		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
			    (spare_idx << spare_size_shift) |
			    (pagesize_idx << NFI_PAGE_SIZE_S) |
			    sector_size_512);

	snf->nfi_cfg.page_size = page_size;
	snf->nfi_cfg.oob_size = oob_size;
	snf->nfi_cfg.nsectors = nsectors;
	snf->nfi_cfg.spare_size = spare_size;

	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
		snf->caps->sector_size, spare_size, nsectors);
	return snand_prepare_bouncebuf(snf, page_size + oob_size);
err:
	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
		oob_size);
	return -EOPNOTSUPP;
}

static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
				   struct mtd_oob_region *oobecc)
{
	// ECC area is not accessible
	return -ERANGE;
}

static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
				    struct mtd_oob_region *oobfree)
{
	struct nand_device *nand = mtd_to_nanddev(mtd);
	struct mtk_snand *ms = nand_to_mtk_snand(nand);

	if (section >= ms->nfi_cfg.nsectors)
		return -ERANGE;

	oobfree->length = ms->caps->fdm_size - 1;
	oobfree->offset = section * ms->caps->fdm_size + 1;
	return 0;
}

static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
	.ecc = mtk_snand_ooblayout_ecc,
	.free = mtk_snand_ooblayout_free,
};

static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
{
	struct mtk_snand *snf = nand_to_mtk_snand(nand);
	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
	struct nand_ecc_props *reqs = &nand->ecc.requirements;
	struct nand_ecc_props *user = &nand->ecc.user_conf;
	struct mtd_info *mtd = nanddev_to_mtd(nand);
	int step_size = 0, strength = 0, desired_correction = 0, steps;
	bool ecc_user = false;
	int ret;
	u32 parity_bits, max_ecc_bytes;
	struct mtk_ecc_config *ecc_cfg;

	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
				      nand->memorg.oobsize);
	if (ret)
		return ret;

	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
	if (!ecc_cfg)
		return -ENOMEM;

	nand->ecc.ctx.priv = ecc_cfg;

	if (user->step_size && user->strength) {
		step_size = user->step_size;
		strength = user->strength;
		ecc_user = true;
	} else if (reqs->step_size && reqs->strength) {
		step_size = reqs->step_size;
		strength = reqs->strength;
	}

	if (step_size && strength) {
		steps = mtd->writesize / step_size;
		desired_correction = steps * strength;
		strength = desired_correction / snf->nfi_cfg.nsectors;
	}

	ecc_cfg->mode = ECC_NFI_MODE;
	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;

	// calculate the max possible strength under current page format
	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);

	// if there's a user requested strength, find the minimum strength that
	// meets the requirement. Otherwise use the maximum strength which is
	// expected by BootROM.
	if (ecc_user && strength) {
		u32 s_next = ecc_cfg->strength - 1;

		while (1) {
			mtk_ecc_adjust_strength(snf->ecc, &s_next);
			if (s_next >= ecc_cfg->strength)
				break;
			if (s_next < strength)
				break;
			s_next = ecc_cfg->strength - 1;
		}
	}

	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);

	conf->step_size = snf->caps->sector_size;
	conf->strength = ecc_cfg->strength;

	if (ecc_cfg->strength < strength)
		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
			 strength);
	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
		 ecc_cfg->strength, snf->caps->sector_size);

	return 0;
}

static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
{
	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);

	kfree(ecc_cfg);
}

static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
					struct nand_page_io_req *req)
{
	struct mtk_snand *snf = nand_to_mtk_snand(nand);
	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
	int ret;

	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
				      nand->memorg.oobsize);
	if (ret)
		return ret;
	snf->autofmt = true;
	snf->ecc_cfg = ecc_cfg;
	return 0;
}

static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
				       struct nand_page_io_req *req)
{
	struct mtk_snand *snf = nand_to_mtk_snand(nand);
	struct mtd_info *mtd = nanddev_to_mtd(nand);

	snf->ecc_cfg = NULL;
	snf->autofmt = false;
	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
		return 0;

	if (snf->ecc_stats.failed)
		mtd->ecc_stats.failed += snf->ecc_stats.failed;
	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
}

static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
	.init_ctx = mtk_snand_ecc_init_ctx,
	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
	.finish_io_req = mtk_snand_ecc_finish_io_req,
};

static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
{
	u32 vall, valm;
	u8 *oobptr = buf;
	int i, j;

	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
		vall = nfi_read32(snf, NFI_FDML(i));
		valm = nfi_read32(snf, NFI_FDMM(i));

		for (j = 0; j < snf->caps->fdm_size; j++)
			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);

		oobptr += snf->caps->fdm_size;
	}
}

static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
{
	u32 fdm_size = snf->caps->fdm_size;
	const u8 *oobptr = buf;
	u32 vall, valm;
	int i, j;

	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
		vall = 0;
		valm = 0;

		for (j = 0; j < 8; j++) {
			if (j < 4)
				vall |= (j < fdm_size ? oobptr[j] : 0xff)
					<< (j * 8);
			else
				valm |= (j < fdm_size ? oobptr[j] : 0xff)
					<< ((j - 4) * 8);
		}

		nfi_write32(snf, NFI_FDML(i), vall);
		nfi_write32(snf, NFI_FDMM(i), valm);

		oobptr += fdm_size;
	}
}

static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
{
	u32 buf_bbm_pos, fdm_bbm_pos;

	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
		return;

	// swap [pagesize] byte on nand with the first fdm byte
	// in the last sector.
	buf_bbm_pos = snf->nfi_cfg.page_size -
		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
	fdm_bbm_pos = snf->nfi_cfg.page_size +
		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;

	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
}

static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
{
	u32 fdm_bbm_pos1, fdm_bbm_pos2;

	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
		return;

	// swap the first fdm byte in the first and the last sector.
	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
}

static int mtk_snand_read_page_cache(struct mtk_snand *snf,
				     const struct spi_mem_op *op)
{
	u8 *buf = snf->buf;
	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
	// the address part to be sent by the controller
	u32 op_addr = op->addr.val;
	// where to start copying data from bounce buffer
	u32 rd_offset = 0;
	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
	u32 op_mode = 0;
	u32 dma_len = snf->buf_len;
	int ret = 0;
	u32 rd_mode, rd_bytes, val;
	dma_addr_t buf_dma;

	if (snf->autofmt) {
		u32 last_bit;
		u32 mask;

		dma_len = snf->nfi_cfg.page_size;
		op_mode = CNFG_AUTO_FMT_EN;
		if (op->data.ecc)
			op_mode |= CNFG_HW_ECC_EN;
		// extract the plane bit:
		// Find the highest bit set in (pagesize+oobsize).
		// Bits higher than that in op->addr are kept and sent over SPI
		// Lower bits are used as an offset for copying data from DMA
		// bounce buffer.
		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
		mask = (1 << last_bit) - 1;
		rd_offset = op_addr & mask;
		op_addr &= ~mask;

		// check if we can dma to the caller memory
		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
			buf = op->data.buf.in;
	}
	mtk_snand_mac_reset(snf);
	mtk_nfi_reset(snf);

	// command and dummy cycles
	nfi_write32(snf, SNF_RD_CTL2,
		    (dummy_clk << DATA_READ_DUMMY_S) |
			    (op->cmd.opcode << DATA_READ_CMD_S));

	// read address
	nfi_write32(snf, SNF_RD_CTL3, op_addr);

	// Set read op_mode
	if (op->data.buswidth == 4)
		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
						   DATA_READ_MODE_X4;
	else if (op->data.buswidth == 2)
		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
						   DATA_READ_MODE_X2;
	else
		rd_mode = DATA_READ_MODE_X1;
	rd_mode <<= DATA_READ_MODE_S;
	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
		  rd_mode | DATARD_CUSTOM_EN);

	// Set bytes to read
	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
		   snf->nfi_cfg.nsectors;
	nfi_write32(snf, SNF_MISC_CTL2,
		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);

	// NFI read prepare
	nfi_write16(snf, NFI_CNFG,
		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);

	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));

	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
	ret = dma_mapping_error(snf->dev, buf_dma);
	if (ret) {
		dev_err(snf->dev, "DMA mapping failed.\n");
		goto cleanup;
	}
	nfi_write32(snf, NFI_STRADDR, buf_dma);
	if (op->data.ecc) {
		snf->ecc_cfg->op = ECC_DECODE;
		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
		if (ret)
			goto cleanup_dma;
	}
	// Prepare for custom read interrupt
	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
	reinit_completion(&snf->op_done);

	// Trigger NFI into custom mode
	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);

	// Start DMA read
	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
	nfi_write16(snf, NFI_STRDATA, STR_DATA);

	if (!wait_for_completion_timeout(
		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
		ret = -ETIMEDOUT;
		goto cleanup;
	}

	// Wait for BUS_SEC_CNTR returning expected value
	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
				 SNFI_POLL_INTERVAL);
	if (ret) {
		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
		goto cleanup2;
	}

	// Wait for bus becoming idle
	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
				 !(val & snf->caps->mastersta_mask), 0,
				 SNFI_POLL_INTERVAL);
	if (ret) {
		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
		goto cleanup2;
	}

	if (op->data.ecc) {
		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
		if (ret) {
			dev_err(snf->dev, "wait ecc done timeout\n");
			goto cleanup2;
		}
		// save status before disabling ecc
		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
				  snf->nfi_cfg.nsectors);
	}

	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);

	if (snf->autofmt) {
		mtk_snand_read_fdm(snf, buf_fdm);
		if (snf->caps->bbm_swap) {
			mtk_snand_bm_swap(snf, buf);
			mtk_snand_fdm_bm_swap(snf);
		}
	}

	// copy data back
	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
		memset(op->data.buf.in, 0xff, op->data.nbytes);
		snf->ecc_stats.bitflips = 0;
		snf->ecc_stats.failed = 0;
		snf->ecc_stats.corrected = 0;
	} else {
		if (buf == op->data.buf.in) {
			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;

			if (req_left)
				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
				       buf_fdm,
				       cap_len < req_left ? cap_len : req_left);
		} else if (rd_offset < snf->buf_len) {
			u32 cap_len = snf->buf_len - rd_offset;

			if (op->data.nbytes < cap_len)
				cap_len = op->data.nbytes;
			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
		}
	}
cleanup2:
	if (op->data.ecc)
		mtk_ecc_disable(snf->ecc);
cleanup_dma:
	// unmap dma only if any error happens. (otherwise it's done before
	// data copying)
	if (ret)
		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
cleanup:
	// Stop read
	nfi_write32(snf, NFI_CON, 0);
	nfi_write16(snf, NFI_CNFG, 0);

	// Clear SNF done flag
	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
	nfi_write32(snf, SNF_STA_CTL1, 0);

	// Disable interrupt
	nfi_read32(snf, NFI_INTR_STA);
	nfi_write32(snf, NFI_INTR_EN, 0);

	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
	return ret;
}

static int mtk_snand_write_page_cache(struct mtk_snand *snf,
				      const struct spi_mem_op *op)
{
	// the address part to be sent by the controller
	u32 op_addr = op->addr.val;
	// where to start copying data from bounce buffer
	u32 wr_offset = 0;
	u32 op_mode = 0;
	int ret = 0;
	u32 wr_mode = 0;
	u32 dma_len = snf->buf_len;
	u32 wr_bytes, val;
	size_t cap_len;
	dma_addr_t buf_dma;

	if (snf->autofmt) {
		u32 last_bit;
		u32 mask;

		dma_len = snf->nfi_cfg.page_size;
		op_mode = CNFG_AUTO_FMT_EN;
		if (op->data.ecc)
			op_mode |= CNFG_HW_ECC_EN;

		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
		mask = (1 << last_bit) - 1;
		wr_offset = op_addr & mask;
		op_addr &= ~mask;
	}
	mtk_snand_mac_reset(snf);
	mtk_nfi_reset(snf);

	if (wr_offset)
		memset(snf->buf, 0xff, wr_offset);

	cap_len = snf->buf_len - wr_offset;
	if (op->data.nbytes < cap_len)
		cap_len = op->data.nbytes;
	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
	if (snf->autofmt) {
		if (snf->caps->bbm_swap) {
			mtk_snand_fdm_bm_swap(snf);
			mtk_snand_bm_swap(snf, snf->buf);
		}
		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
	}

	// Command
	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));

	// write address
	nfi_write32(snf, SNF_PG_CTL2, op_addr);

	// Set read op_mode
	if (op->data.buswidth == 4)
		wr_mode = PG_LOAD_X4_EN;

	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
		  wr_mode | PG_LOAD_CUSTOM_EN);

	// Set bytes to write
	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
		   snf->nfi_cfg.nsectors;
	nfi_write32(snf, SNF_MISC_CTL2,
		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);

	// NFI write prepare
	nfi_write16(snf, NFI_CNFG,
		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);

	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(snf->dev, buf_dma);
	if (ret) {
		dev_err(snf->dev, "DMA mapping failed.\n");
		goto cleanup;
	}
	nfi_write32(snf, NFI_STRADDR, buf_dma);
	if (op->data.ecc) {
		snf->ecc_cfg->op = ECC_ENCODE;
		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
		if (ret)
			goto cleanup_dma;
	}
	// Prepare for custom write interrupt
	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
	reinit_completion(&snf->op_done);
	;

	// Trigger NFI into custom mode
	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);

	// Start DMA write
	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
	nfi_write16(snf, NFI_STRDATA, STR_DATA);

	if (!wait_for_completion_timeout(
		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
		dev_err(snf->dev, "DMA timed out for program load.\n");
		ret = -ETIMEDOUT;
		goto cleanup_ecc;
	}

	// Wait for NFI_SEC_CNTR returning expected value
	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
				 SNFI_POLL_INTERVAL);
	if (ret)
		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");

cleanup_ecc:
	if (op->data.ecc)
		mtk_ecc_disable(snf->ecc);
cleanup_dma:
	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
cleanup:
	// Stop write
	nfi_write32(snf, NFI_CON, 0);
	nfi_write16(snf, NFI_CNFG, 0);

	// Clear SNF done flag
	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
	nfi_write32(snf, SNF_STA_CTL1, 0);

	// Disable interrupt
	nfi_read32(snf, NFI_INTR_STA);
	nfi_write32(snf, NFI_INTR_EN, 0);

	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);

	return ret;
}

/**
 * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
 * @op spi-mem op to check
 *
 * Check whether op can be executed with read_from_cache or program_load
 * mode in the controller.
 * This controller can execute typical Read From Cache and Program Load
 * instructions found on SPI-NAND with 2-byte address.
 * DTR and cmd buswidth & nbytes should be checked before calling this.
 *
 * Return: true if the op matches the instruction template
 */
static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
{
	if (op->addr.nbytes != 2)
		return false;

	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
	    op->addr.buswidth != 4)
		return false;

	// match read from page instructions
	if (op->data.dir == SPI_MEM_DATA_IN) {
		// check dummy cycle first
		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
		    DATA_READ_MAX_DUMMY)
			return false;
		// quad io / quad out
		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
		    op->data.buswidth == 4)
			return true;

		// dual io / dual out
		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
		    op->data.buswidth == 2)
			return true;

		// standard spi
		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
			return true;
	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
		// check dummy cycle first
		if (op->dummy.nbytes)
			return false;
		// program load quad out
		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
			return true;
		// standard spi
		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
			return true;
	}
	return false;
}

static bool mtk_snand_supports_op(struct spi_mem *mem,
				  const struct spi_mem_op *op)
{
	if (!spi_mem_default_supports_op(mem, op))
		return false;
	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
		return false;
	if (mtk_snand_is_page_ops(op))
		return true;
	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
		(op->data.nbytes == 0 || op->data.buswidth == 1));
}

static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
	// page ops transfer size must be exactly ((sector_size + spare_size) *
	// nsectors). Limit the op size if the caller requests more than that.
	// exec_op will read more than needed and discard the leftover if the
	// caller requests less data.
	if (mtk_snand_is_page_ops(op)) {
		size_t l;
		// skip adjust_op_size for page ops
		if (ms->autofmt)
			return 0;
		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
		l *= ms->nfi_cfg.nsectors;
		if (op->data.nbytes > l)
			op->data.nbytes = l;
	} else {
		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;

		if (hl >= SNF_GPRAM_SIZE)
			return -EOPNOTSUPP;
		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
			op->data.nbytes = SNF_GPRAM_SIZE - hl;
	}
	return 0;
}

static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);

	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
		op->addr.val, op->addr.buswidth, op->addr.nbytes,
		op->data.buswidth, op->data.nbytes);
	if (mtk_snand_is_page_ops(op)) {
		if (op->data.dir == SPI_MEM_DATA_IN)
			return mtk_snand_read_page_cache(ms, op);
		else
			return mtk_snand_write_page_cache(ms, op);
	} else {
		return mtk_snand_mac_io(ms, op);
	}
}

static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
	.adjust_op_size = mtk_snand_adjust_op_size,
	.supports_op = mtk_snand_supports_op,
	.exec_op = mtk_snand_exec_op,
};

static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
	.ecc = true,
};

static irqreturn_t mtk_snand_irq(int irq, void *id)
{
	struct mtk_snand *snf = id;
	u32 sta, ien;

	sta = nfi_read32(snf, NFI_INTR_STA);
	ien = nfi_read32(snf, NFI_INTR_EN);

	if (!(sta & ien))
		return IRQ_NONE;

	nfi_write32(snf, NFI_INTR_EN, 0);
	complete(&snf->op_done);
	return IRQ_HANDLED;
}

static const struct of_device_id mtk_snand_ids[] = {
	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
	{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
	{},
};

MODULE_DEVICE_TABLE(of, mtk_snand_ids);

static int mtk_snand_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *dev_id;
	struct spi_controller *ctlr;
	struct mtk_snand *ms;
	unsigned long spi_freq;
	u32 val = 0;
	int ret;

	dev_id = of_match_node(mtk_snand_ids, np);
	if (!dev_id)
		return -EINVAL;

	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms));
	if (!ctlr)
		return -ENOMEM;
	platform_set_drvdata(pdev, ctlr);

	ms = spi_controller_get_devdata(ctlr);

	ms->ctlr = ctlr;
	ms->caps = dev_id->data;

	ms->ecc = of_mtk_ecc_get(np);
	if (IS_ERR(ms->ecc))
		return PTR_ERR(ms->ecc);
	else if (!ms->ecc)
		return -ENODEV;

	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ms->nfi_base)) {
		ret = PTR_ERR(ms->nfi_base);
		goto release_ecc;
	}

	ms->dev = &pdev->dev;

	ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk");
	if (IS_ERR(ms->nfi_clk)) {
		ret = PTR_ERR(ms->nfi_clk);
		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
		goto release_ecc;
	}

	ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk");
	if (IS_ERR(ms->pad_clk)) {
		ret = PTR_ERR(ms->pad_clk);
		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
		goto release_ecc;
	}

	ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk");
	if (IS_ERR(ms->nfi_hclk)) {
		ret = PTR_ERR(ms->nfi_hclk);
		dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
		goto release_ecc;
	}

	init_completion(&ms->op_done);

	ms->irq = platform_get_irq(pdev, 0);
	if (ms->irq < 0) {
		ret = ms->irq;
		goto release_ecc;
	}
	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
			       "mtk-snand", ms);
	if (ret) {
		dev_err(ms->dev, "failed to request snfi irq\n");
		goto release_ecc;
	}

	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
	if (ret) {
		dev_err(ms->dev, "failed to set dma mask\n");
		goto release_ecc;
	}

	// switch to SNFI mode
	nfi_write32(ms, SNF_CFG, SPI_MODE);

	ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
	if (!ret)
		nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
			  val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);

	ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
	if (!ret) {
		spi_freq = clk_get_rate(ms->pad_clk);
		val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
		nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
			  val << DATA_READ_LATCH_LAT_S);
	}

	// setup an initial page format for ops matching page_cache_op template
	// before ECC is called.
	ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
	if (ret) {
		dev_err(ms->dev, "failed to set initial page format\n");
		goto release_ecc;
	}

	// setup ECC engine
	ms->ecc_eng.dev = &pdev->dev;
	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
	ms->ecc_eng.priv = ms;

	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
	if (ret) {
		dev_err(&pdev->dev, "failed to register ecc engine.\n");
		goto release_ecc;
	}

	ctlr->num_chipselect = 1;
	ctlr->mem_ops = &mtk_snand_mem_ops;
	ctlr->mem_caps = &mtk_snand_mem_caps;
	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
	ctlr->dev.of_node = pdev->dev.of_node;
	ret = spi_register_controller(ctlr);
	if (ret) {
		dev_err(&pdev->dev, "spi_register_controller failed.\n");
		goto release_ecc;
	}

	return 0;
release_ecc:
	mtk_ecc_release(ms->ecc);
	return ret;
}

static void mtk_snand_remove(struct platform_device *pdev)
{
	struct spi_controller *ctlr = platform_get_drvdata(pdev);
	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);

	spi_unregister_controller(ctlr);
	mtk_ecc_release(ms->ecc);
	kfree(ms->buf);
}

static struct platform_driver mtk_snand_driver = {
	.probe = mtk_snand_probe,
	.remove_new = mtk_snand_remove,
	.driver = {
		.name = "mtk-snand",
		.of_match_table = mtk_snand_ids,
	},
};

module_platform_driver(mtk_snand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");