// SPDX-License-Identifier: GPL-2.0-only
/*
* Special handling for DW DMA core
*
* Copyright (c) 2009, 2014 Intel Corporation.
*/
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "spi-dw.h"
#define WAIT_RETRIES 5
#define RX_BUSY 0
#define RX_BURST_LEVEL 16
#define TX_BUSY 1
#define TX_BURST_LEVEL 16
static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
chan->private = s;
return true;
}
static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
struct dma_slave_caps caps;
u32 max_burst, def_burst;
int ret;
def_burst = dws->fifo_len / 2;
ret = dma_get_slave_caps(dws->rxchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = RX_BURST_LEVEL;
dws->rxburst = min(max_burst, def_burst);
dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
ret = dma_get_slave_caps(dws->txchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = TX_BURST_LEVEL;
/*
* Having a Rx DMA channel serviced with higher priority than a Tx DMA
* channel might not be enough to provide a well balanced DMA-based
* SPI transfer interface. There might still be moments when the Tx DMA
* channel is occasionally handled faster than the Rx DMA channel.
* That in its turn will eventually cause the SPI Rx FIFO overflow if
* SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
* cleared by the Rx DMA channel. In order to fix the problem the Tx
* DMA activity is intentionally slowed down by limiting the SPI Tx
* FIFO depth with a value twice bigger than the Tx burst length.
*/
dws->txburst = min(max_burst, def_burst);
dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
}
static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
struct pci_dev *dma_dev;
dma_cap_mask_t mask;
/*
* Get pci device for DMA controller, currently it could only
* be the DMA controller of Medfield
*/
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
if (!dma_dev)
return -ENODEV;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */
rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
if (!dws->rxchan)
goto err_exit;
/* 2. Init tx channel */
tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
if (!dws->txchan)
goto free_rxchan;
dws->master->dma_rx = dws->rxchan;
dws->master->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
dw_spi_dma_maxburst_init(dws);
return 0;
free_rxchan:
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
err_exit:
return -EBUSY;
}
static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
dws->rxchan = dma_request_slave_channel(dev, "rx");
if (!dws->rxchan)
return -ENODEV;
dws->txchan = dma_request_slave_channel(dev, "tx");
if (!dws->txchan) {
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
return -ENODEV;
}
dws->master->dma_rx = dws->rxchan;
dws->master->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
dw_spi_dma_maxburst_init(dws);
return 0;
}
static void dw_spi_dma_exit(struct dw_spi *dws)
{
if (dws->txchan) {
dmaengine_terminate_sync(dws->txchan);
dma_release_channel(dws->txchan);
}
if (dws->rxchan) {
dmaengine_terminate_sync(dws->rxchan);
dma_release_channel(dws->rxchan);
}
dw_writel(dws, DW_SPI_DMACR, 0);
}
static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
if (!irq_status)
return IRQ_NONE;
dw_readl(dws, DW_SPI_ICR);
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
dws->master->cur_msg->status = -EIO;
complete(&dws->dma_completion);
return IRQ_HANDLED;
}
static bool dw_spi_can_dma(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_controller_get_devdata(master);
return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
if (n_bytes == 1)
return DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (n_bytes == 2)
return DMA_SLAVE_BUSWIDTH_2_BYTES;
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
{
unsigned long long ms;
ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
do_div(ms, xfer->effective_speed_hz);
ms += ms + 200;
if (ms > UINT_MAX)
ms = UINT_MAX;
ms = wait_for_completion_timeout(&dws->dma_completion,
msecs_to_jiffies(ms));
if (ms == 0) {
dev_err(&dws->master->cur_msg->spi->dev,
"DMA transaction timed out\n");
return -ETIMEDOUT;
}
return 0;
}
static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
}
static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
struct spi_transfer *xfer)
{
int retry = WAIT_RETRIES;
struct spi_delay delay;
u32 nents;
nents = dw_readl(dws, DW_SPI_TXFLR);
delay.unit = SPI_DELAY_UNIT_SCK;
delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
while (dw_spi_dma_tx_busy(dws) && retry--)
spi_delay_exec(&delay, xfer);
if (retry < 0) {
dev_err(&dws->master->dev, "Tx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_tx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(TX_BUSY, &dws->dma_chan_busy);
if (test_bit(RX_BUSY, &dws->dma_chan_busy))
return;
dw_writel(dws, DW_SPI_DMACR, 0);
complete(&dws->dma_completion);
}
static struct dma_async_tx_descriptor *
dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_slave_config txconf;
struct dma_async_tx_descriptor *txdesc;
memset(&txconf, 0, sizeof(txconf));
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = dws->txburst;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
txconf.device_fc = false;
dmaengine_slave_config(dws->txchan, &txconf);
txdesc = dmaengine_prep_slave_sg(dws->txchan,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
return NULL;
txdesc->callback = dw_spi_dma_tx_done;
txdesc->callback_param = dws;
return txdesc;
}
static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
}
static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
int retry = WAIT_RETRIES;
struct spi_delay delay;
unsigned long ns, us;
u32 nents;
/*
* It's unlikely that DMA engine is still doing the data fetching, but
* if it's let's give it some reasonable time. The timeout calculation
* is based on the synchronous APB/SSI reference clock rate, on a
* number of data entries left in the Rx FIFO, times a number of clock
* periods normally needed for a single APB read/write transaction
* without PREADY signal utilized (which is true for the DW APB SSI
* controller).
*/
nents = dw_readl(dws, DW_SPI_RXFLR);
ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
if (ns <= NSEC_PER_USEC) {
delay.unit = SPI_DELAY_UNIT_NSECS;
delay.value = ns;
} else {
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
delay.unit = SPI_DELAY_UNIT_USECS;
delay.value = clamp_val(us, 0, USHRT_MAX);
}
while (dw_spi_dma_rx_busy(dws) && retry--)
spi_delay_exec(&delay, NULL);
if (retry < 0) {
dev_err(&dws->master->dev, "Rx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_rx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(RX_BUSY, &dws->dma_chan_busy);
if (test_bit(TX_BUSY, &dws->dma_chan_busy))
return;
dw_writel(dws, DW_SPI_DMACR, 0);
complete(&dws->dma_completion);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config rxconf;
struct dma_async_tx_descriptor *rxdesc;
if (!xfer->rx_buf)
return NULL;
memset(&rxconf, 0, sizeof(rxconf));
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = dws->rxburst;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
rxconf.device_fc = false;
dmaengine_slave_config(dws->rxchan, &rxconf);
rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
return NULL;
rxdesc->callback = dw_spi_dma_rx_done;
rxdesc->callback_param = dws;
return rxdesc;
}
static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
u16 imr, dma_ctrl;
if (!xfer->tx_buf)
return -EINVAL;
/* Set the DMA handshaking interface */
dma_ctrl = SPI_DMA_TDMAE;
if (xfer->rx_buf)
dma_ctrl |= SPI_DMA_RDMAE;
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
imr = SPI_INT_TXOI;
if (xfer->rx_buf)
imr |= SPI_INT_RXUI | SPI_INT_RXOI;
spi_umask_intr(dws, imr);
reinit_completion(&dws->dma_completion);
dws->transfer_handler = dw_spi_dma_transfer_handler;
return 0;
}
static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_async_tx_descriptor *txdesc, *rxdesc;
int ret;
/* Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws, xfer);
if (!txdesc)
return -EINVAL;
/* Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
set_bit(RX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(rxdesc);
dma_async_issue_pending(dws->rxchan);
}
set_bit(TX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(txdesc);
dma_async_issue_pending(dws->txchan);
ret = dw_spi_dma_wait(dws, xfer);
if (ret)
return ret;
if (dws->master->cur_msg->status == -EINPROGRESS) {
ret = dw_spi_dma_wait_tx_done(dws, xfer);
if (ret)
return ret;
}
if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
ret = dw_spi_dma_wait_rx_done(dws);
return ret;
}
static void dw_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
dw_writel(dws, DW_SPI_DMACR, 0);
}
static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
.dma_init = dw_spi_dma_init_mfld,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
.dma_init = dw_spi_dma_init_generic,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);