summaryrefslogblamecommitdiff
path: root/drivers/spi/omap2_mcspi.c
blob: ea61724ae2256fe33035f77e29cce9a0a67eb48a (plain) (tree)
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079































































































































































































































































































































































                                                                             
                               





























                                                                                







                                    
                               





























                                                                                







                                    
                               





























                                                                                

























































































































































































                                                                           
                                                    














































                                                                            











                                                                           



















































































































































































































































































































































































                                                                                
/*
 * OMAP2 McSPI controller driver
 *
 * Copyright (C) 2005, 2006 Nokia Corporation
 * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
 *		Juha Yrjl <juha.yrjola@nokia.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>

#include <linux/spi/spi.h>

#include <asm/arch/dma.h>
#include <asm/arch/clock.h>


#define OMAP2_MCSPI_MAX_FREQ		48000000

#define OMAP2_MCSPI_REVISION		0x00
#define OMAP2_MCSPI_SYSCONFIG		0x10
#define OMAP2_MCSPI_SYSSTATUS		0x14
#define OMAP2_MCSPI_IRQSTATUS		0x18
#define OMAP2_MCSPI_IRQENABLE		0x1c
#define OMAP2_MCSPI_WAKEUPENABLE	0x20
#define OMAP2_MCSPI_SYST		0x24
#define OMAP2_MCSPI_MODULCTRL		0x28

/* per-channel banks, 0x14 bytes each, first is: */
#define OMAP2_MCSPI_CHCONF0		0x2c
#define OMAP2_MCSPI_CHSTAT0		0x30
#define OMAP2_MCSPI_CHCTRL0		0x34
#define OMAP2_MCSPI_TX0			0x38
#define OMAP2_MCSPI_RX0			0x3c

/* per-register bitmasks: */

#define OMAP2_MCSPI_SYSCONFIG_AUTOIDLE	(1 << 0)
#define OMAP2_MCSPI_SYSCONFIG_SOFTRESET	(1 << 1)

#define OMAP2_MCSPI_SYSSTATUS_RESETDONE	(1 << 0)

#define OMAP2_MCSPI_MODULCTRL_SINGLE	(1 << 0)
#define OMAP2_MCSPI_MODULCTRL_MS	(1 << 2)
#define OMAP2_MCSPI_MODULCTRL_STEST	(1 << 3)

#define OMAP2_MCSPI_CHCONF_PHA		(1 << 0)
#define OMAP2_MCSPI_CHCONF_POL		(1 << 1)
#define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
#define OMAP2_MCSPI_CHCONF_EPOL		(1 << 6)
#define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	(0x01 << 12)
#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	(0x02 << 12)
#define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
#define OMAP2_MCSPI_CHCONF_DMAW		(1 << 14)
#define OMAP2_MCSPI_CHCONF_DMAR		(1 << 15)
#define OMAP2_MCSPI_CHCONF_DPE0		(1 << 16)
#define OMAP2_MCSPI_CHCONF_DPE1		(1 << 17)
#define OMAP2_MCSPI_CHCONF_IS		(1 << 18)
#define OMAP2_MCSPI_CHCONF_TURBO	(1 << 19)
#define OMAP2_MCSPI_CHCONF_FORCE	(1 << 20)

#define OMAP2_MCSPI_CHSTAT_RXS		(1 << 0)
#define OMAP2_MCSPI_CHSTAT_TXS		(1 << 1)
#define OMAP2_MCSPI_CHSTAT_EOT		(1 << 2)

#define OMAP2_MCSPI_CHCTRL_EN		(1 << 0)


/* We have 2 DMA channels per CS, one for RX and one for TX */
struct omap2_mcspi_dma {
	int dma_tx_channel;
	int dma_rx_channel;

	int dma_tx_sync_dev;
	int dma_rx_sync_dev;

	struct completion dma_tx_completion;
	struct completion dma_rx_completion;
};

/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 * cache operations; better heuristics consider wordsize and bitrate.
 */
#define DMA_MIN_BYTES			8


struct omap2_mcspi {
	struct work_struct	work;
	/* lock protects queue and registers */
	spinlock_t		lock;
	struct list_head	msg_queue;
	struct spi_master	*master;
	struct clk		*ick;
	struct clk		*fck;
	/* Virtual base address of the controller */
	void __iomem		*base;
	/* SPI1 has 4 channels, while SPI2 has 2 */
	struct omap2_mcspi_dma	*dma_channels;
};

struct omap2_mcspi_cs {
	void __iomem		*base;
	int			word_len;
};

static struct workqueue_struct *omap2_mcspi_wq;

#define MOD_REG_BIT(val, mask, set) do { \
	if (set) \
		val |= mask; \
	else \
		val &= ~mask; \
} while (0)

static inline void mcspi_write_reg(struct spi_master *master,
		int idx, u32 val)
{
	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);

	__raw_writel(val, mcspi->base + idx);
}

static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
{
	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);

	return __raw_readl(mcspi->base + idx);
}

static inline void mcspi_write_cs_reg(const struct spi_device *spi,
		int idx, u32 val)
{
	struct omap2_mcspi_cs	*cs = spi->controller_state;

	__raw_writel(val, cs->base +  idx);
}

static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
{
	struct omap2_mcspi_cs	*cs = spi->controller_state;

	return __raw_readl(cs->base + idx);
}

static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
		int is_read, int enable)
{
	u32 l, rw;

	l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);

	if (is_read) /* 1 is read, 0 write */
		rw = OMAP2_MCSPI_CHCONF_DMAR;
	else
		rw = OMAP2_MCSPI_CHCONF_DMAW;

	MOD_REG_BIT(l, rw, enable);
	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l);
}

static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
{
	u32 l;

	l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0;
	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l);
}

static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
{
	u32 l;

	l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
	MOD_REG_BIT(l, OMAP2_MCSPI_CHCONF_FORCE, cs_active);
	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l);
}

static void omap2_mcspi_set_master_mode(struct spi_master *master)
{
	u32 l;

	/* setup when switching from (reset default) slave mode
	 * to single-channel master mode
	 */
	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
	MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_STEST, 0);
	MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_MS, 0);
	MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_SINGLE, 1);
	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
}

static unsigned
omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
{
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_cs	*cs = spi->controller_state;
	struct omap2_mcspi_dma  *mcspi_dma;
	unsigned int		count, c;
	unsigned long		base, tx_reg, rx_reg;
	int			word_len, data_type, element_count;
	u8			* rx;
	const u8		* tx;

	mcspi = spi_master_get_devdata(spi->master);
	mcspi_dma = &mcspi->dma_channels[spi->chip_select];

	count = xfer->len;
	c = count;
	word_len = cs->word_len;

	base = (unsigned long) io_v2p(cs->base);
	tx_reg = base + OMAP2_MCSPI_TX0;
	rx_reg = base + OMAP2_MCSPI_RX0;
	rx = xfer->rx_buf;
	tx = xfer->tx_buf;

	if (word_len <= 8) {
		data_type = OMAP_DMA_DATA_TYPE_S8;
		element_count = count;
	} else if (word_len <= 16) {
		data_type = OMAP_DMA_DATA_TYPE_S16;
		element_count = count >> 1;
	} else /* word_len <= 32 */ {
		data_type = OMAP_DMA_DATA_TYPE_S32;
		element_count = count >> 2;
	}

	if (tx != NULL) {
		omap_set_dma_transfer_params(mcspi_dma->dma_tx_channel,
				data_type, element_count, 1,
				OMAP_DMA_SYNC_ELEMENT,
				mcspi_dma->dma_tx_sync_dev, 0);

		omap_set_dma_dest_params(mcspi_dma->dma_tx_channel, 0,
				OMAP_DMA_AMODE_CONSTANT,
				tx_reg, 0, 0);

		omap_set_dma_src_params(mcspi_dma->dma_tx_channel, 0,
				OMAP_DMA_AMODE_POST_INC,
				xfer->tx_dma, 0, 0);
	}

	if (rx != NULL) {
		omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel,
				data_type, element_count, 1,
				OMAP_DMA_SYNC_ELEMENT,
				mcspi_dma->dma_rx_sync_dev, 1);

		omap_set_dma_src_params(mcspi_dma->dma_rx_channel, 0,
				OMAP_DMA_AMODE_CONSTANT,
				rx_reg, 0, 0);

		omap_set_dma_dest_params(mcspi_dma->dma_rx_channel, 0,
				OMAP_DMA_AMODE_POST_INC,
				xfer->rx_dma, 0, 0);
	}

	if (tx != NULL) {
		omap_start_dma(mcspi_dma->dma_tx_channel);
		omap2_mcspi_set_dma_req(spi, 0, 1);
	}

	if (rx != NULL) {
		omap_start_dma(mcspi_dma->dma_rx_channel);
		omap2_mcspi_set_dma_req(spi, 1, 1);
	}

	if (tx != NULL) {
		wait_for_completion(&mcspi_dma->dma_tx_completion);
		dma_unmap_single(NULL, xfer->tx_dma, count, DMA_TO_DEVICE);
	}

	if (rx != NULL) {
		wait_for_completion(&mcspi_dma->dma_rx_completion);
		dma_unmap_single(NULL, xfer->rx_dma, count, DMA_FROM_DEVICE);
	}
	return count;
}

static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
{
	unsigned long timeout;

	timeout = jiffies + msecs_to_jiffies(1000);
	while (!(__raw_readl(reg) & bit)) {
		if (time_after(jiffies, timeout))
			return -1;
		cpu_relax();
	}
	return 0;
}

static unsigned
omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
{
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_cs	*cs = spi->controller_state;
	unsigned int		count, c;
	u32			l;
	void __iomem		*base = cs->base;
	void __iomem		*tx_reg;
	void __iomem		*rx_reg;
	void __iomem		*chstat_reg;
	int			word_len;

	mcspi = spi_master_get_devdata(spi->master);
	count = xfer->len;
	c = count;
	word_len = cs->word_len;

	l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
	l &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;

	/* We store the pre-calculated register addresses on stack to speed
	 * up the transfer loop. */
	tx_reg		= base + OMAP2_MCSPI_TX0;
	rx_reg		= base + OMAP2_MCSPI_RX0;
	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;

	if (word_len <= 8) {
		u8		*rx;
		const u8	*tx;

		rx = xfer->rx_buf;
		tx = xfer->tx_buf;

		do {
			c -= 1;
			if (tx != NULL) {
				if (mcspi_wait_for_reg_bit(chstat_reg,
						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
					dev_err(&spi->dev, "TXS timed out\n");
					goto out;
				}
#ifdef VERBOSE
				dev_dbg(&spi->dev, "write-%d %02x\n",
						word_len, *tx);
#endif
				__raw_writel(*tx++, tx_reg);
			}
			if (rx != NULL) {
				if (mcspi_wait_for_reg_bit(chstat_reg,
						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
					dev_err(&spi->dev, "RXS timed out\n");
					goto out;
				}
				/* prevent last RX_ONLY read from triggering
				 * more word i/o: switch to rx+tx
				 */
				if (c == 0 && tx == NULL)
					mcspi_write_cs_reg(spi,
							OMAP2_MCSPI_CHCONF0, l);
				*rx++ = __raw_readl(rx_reg);
#ifdef VERBOSE
				dev_dbg(&spi->dev, "read-%d %02x\n",
						word_len, *(rx - 1));
#endif
			}
		} while (c);
	} else if (word_len <= 16) {
		u16		*rx;
		const u16	*tx;

		rx = xfer->rx_buf;
		tx = xfer->tx_buf;
		do {
			c -= 2;
			if (tx != NULL) {
				if (mcspi_wait_for_reg_bit(chstat_reg,
						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
					dev_err(&spi->dev, "TXS timed out\n");
					goto out;
				}
#ifdef VERBOSE
				dev_dbg(&spi->dev, "write-%d %04x\n",
						word_len, *tx);
#endif
				__raw_writel(*tx++, tx_reg);
			}
			if (rx != NULL) {
				if (mcspi_wait_for_reg_bit(chstat_reg,
						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
					dev_err(&spi->dev, "RXS timed out\n");
					goto out;
				}
				/* prevent last RX_ONLY read from triggering
				 * more word i/o: switch to rx+tx
				 */
				if (c == 0 && tx == NULL)
					mcspi_write_cs_reg(spi,
							OMAP2_MCSPI_CHCONF0, l);
				*rx++ = __raw_readl(rx_reg);
#ifdef VERBOSE
				dev_dbg(&spi->dev, "read-%d %04x\n",
						word_len, *(rx - 1));
#endif
			}
		} while (c);
	} else if (word_len <= 32) {
		u32		*rx;
		const u32	*tx;

		rx = xfer->rx_buf;
		tx = xfer->tx_buf;
		do {
			c -= 4;
			if (tx != NULL) {
				if (mcspi_wait_for_reg_bit(chstat_reg,
						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
					dev_err(&spi->dev, "TXS timed out\n");
					goto out;
				}
#ifdef VERBOSE
				dev_dbg(&spi->dev, "write-%d %04x\n",
						word_len, *tx);
#endif
				__raw_writel(*tx++, tx_reg);
			}
			if (rx != NULL) {
				if (mcspi_wait_for_reg_bit(chstat_reg,
						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
					dev_err(&spi->dev, "RXS timed out\n");
					goto out;
				}
				/* prevent last RX_ONLY read from triggering
				 * more word i/o: switch to rx+tx
				 */
				if (c == 0 && tx == NULL)
					mcspi_write_cs_reg(spi,
							OMAP2_MCSPI_CHCONF0, l);
				*rx++ = __raw_readl(rx_reg);
#ifdef VERBOSE
				dev_dbg(&spi->dev, "read-%d %04x\n",
						word_len, *(rx - 1));
#endif
			}
		} while (c);
	}

	/* for TX_ONLY mode, be sure all words have shifted out */
	if (xfer->rx_buf == NULL) {
		if (mcspi_wait_for_reg_bit(chstat_reg,
				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
			dev_err(&spi->dev, "TXS timed out\n");
		} else if (mcspi_wait_for_reg_bit(chstat_reg,
				OMAP2_MCSPI_CHSTAT_EOT) < 0)
			dev_err(&spi->dev, "EOT timed out\n");
	}
out:
	return count - c;
}

/* called only when no transfer is active to this device */
static int omap2_mcspi_setup_transfer(struct spi_device *spi,
		struct spi_transfer *t)
{
	struct omap2_mcspi_cs *cs = spi->controller_state;
	struct omap2_mcspi *mcspi;
	u32 l = 0, div = 0;
	u8 word_len = spi->bits_per_word;

	mcspi = spi_master_get_devdata(spi->master);

	if (t != NULL && t->bits_per_word)
		word_len = t->bits_per_word;

	cs->word_len = word_len;

	if (spi->max_speed_hz) {
		while (div <= 15 && (OMAP2_MCSPI_MAX_FREQ / (1 << div))
					> spi->max_speed_hz)
			div++;
	} else
		div = 15;

	l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);

	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
	 * REVISIT: this controller could support SPI_3WIRE mode.
	 */
	l &= ~(OMAP2_MCSPI_CHCONF_IS|OMAP2_MCSPI_CHCONF_DPE1);
	l |= OMAP2_MCSPI_CHCONF_DPE0;

	/* wordlength */
	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
	l |= (word_len - 1) << 7;

	/* set chipselect polarity; manage with FORCE */
	if (!(spi->mode & SPI_CS_HIGH))
		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
	else
		l &= ~OMAP2_MCSPI_CHCONF_EPOL;

	/* set clock divisor */
	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
	l |= div << 2;

	/* set SPI mode 0..3 */
	if (spi->mode & SPI_CPOL)
		l |= OMAP2_MCSPI_CHCONF_POL;
	else
		l &= ~OMAP2_MCSPI_CHCONF_POL;
	if (spi->mode & SPI_CPHA)
		l |= OMAP2_MCSPI_CHCONF_PHA;
	else
		l &= ~OMAP2_MCSPI_CHCONF_PHA;

	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l);

	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
			OMAP2_MCSPI_MAX_FREQ / (1 << div),
			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
			(spi->mode & SPI_CPOL) ? "inverted" : "normal");

	return 0;
}

static void omap2_mcspi_dma_rx_callback(int lch, u16 ch_status, void *data)
{
	struct spi_device	*spi = data;
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_dma	*mcspi_dma;

	mcspi = spi_master_get_devdata(spi->master);
	mcspi_dma = &(mcspi->dma_channels[spi->chip_select]);

	complete(&mcspi_dma->dma_rx_completion);

	/* We must disable the DMA RX request */
	omap2_mcspi_set_dma_req(spi, 1, 0);
}

static void omap2_mcspi_dma_tx_callback(int lch, u16 ch_status, void *data)
{
	struct spi_device	*spi = data;
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_dma	*mcspi_dma;

	mcspi = spi_master_get_devdata(spi->master);
	mcspi_dma = &(mcspi->dma_channels[spi->chip_select]);

	complete(&mcspi_dma->dma_tx_completion);

	/* We must disable the DMA TX request */
	omap2_mcspi_set_dma_req(spi, 0, 0);
}

static int omap2_mcspi_request_dma(struct spi_device *spi)
{
	struct spi_master	*master = spi->master;
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_dma	*mcspi_dma;

	mcspi = spi_master_get_devdata(master);
	mcspi_dma = mcspi->dma_channels + spi->chip_select;

	if (omap_request_dma(mcspi_dma->dma_rx_sync_dev, "McSPI RX",
			omap2_mcspi_dma_rx_callback, spi,
			&mcspi_dma->dma_rx_channel)) {
		dev_err(&spi->dev, "no RX DMA channel for McSPI\n");
		return -EAGAIN;
	}

	if (omap_request_dma(mcspi_dma->dma_tx_sync_dev, "McSPI TX",
			omap2_mcspi_dma_tx_callback, spi,
			&mcspi_dma->dma_tx_channel)) {
		omap_free_dma(mcspi_dma->dma_rx_channel);
		mcspi_dma->dma_rx_channel = -1;
		dev_err(&spi->dev, "no TX DMA channel for McSPI\n");
		return -EAGAIN;
	}

	init_completion(&mcspi_dma->dma_rx_completion);
	init_completion(&mcspi_dma->dma_tx_completion);

	return 0;
}

/* the spi->mode bits understood by this driver: */
#define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)

static int omap2_mcspi_setup(struct spi_device *spi)
{
	int			ret;
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_dma	*mcspi_dma;
	struct omap2_mcspi_cs	*cs = spi->controller_state;

	if (spi->mode & ~MODEBITS) {
		dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
			spi->mode & ~MODEBITS);
		return -EINVAL;
	}

	if (spi->bits_per_word == 0)
		spi->bits_per_word = 8;
	else if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
		dev_dbg(&spi->dev, "setup: unsupported %d bit words\n",
			spi->bits_per_word);
		return -EINVAL;
	}

	mcspi = spi_master_get_devdata(spi->master);
	mcspi_dma = &mcspi->dma_channels[spi->chip_select];

	if (!cs) {
		cs = kzalloc(sizeof *cs, GFP_KERNEL);
		if (!cs)
			return -ENOMEM;
		cs->base = mcspi->base + spi->chip_select * 0x14;
		spi->controller_state = cs;
	}

	if (mcspi_dma->dma_rx_channel == -1
			|| mcspi_dma->dma_tx_channel == -1) {
		ret = omap2_mcspi_request_dma(spi);
		if (ret < 0)
			return ret;
	}

	clk_enable(mcspi->ick);
	clk_enable(mcspi->fck);
	ret = omap2_mcspi_setup_transfer(spi, NULL);
	clk_disable(mcspi->fck);
	clk_disable(mcspi->ick);

	return ret;
}

static void omap2_mcspi_cleanup(struct spi_device *spi)
{
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_dma	*mcspi_dma;

	mcspi = spi_master_get_devdata(spi->master);
	mcspi_dma = &mcspi->dma_channels[spi->chip_select];

	kfree(spi->controller_state);

	if (mcspi_dma->dma_rx_channel != -1) {
		omap_free_dma(mcspi_dma->dma_rx_channel);
		mcspi_dma->dma_rx_channel = -1;
	}
	if (mcspi_dma->dma_tx_channel != -1) {
		omap_free_dma(mcspi_dma->dma_tx_channel);
		mcspi_dma->dma_tx_channel = -1;
	}
}

static void omap2_mcspi_work(struct work_struct *work)
{
	struct omap2_mcspi	*mcspi;

	mcspi = container_of(work, struct omap2_mcspi, work);
	spin_lock_irq(&mcspi->lock);

	clk_enable(mcspi->ick);
	clk_enable(mcspi->fck);

	/* We only enable one channel at a time -- the one whose message is
	 * at the head of the queue -- although this controller would gladly
	 * arbitrate among multiple channels.  This corresponds to "single
	 * channel" master mode.  As a side effect, we need to manage the
	 * chipselect with the FORCE bit ... CS != channel enable.
	 */
	while (!list_empty(&mcspi->msg_queue)) {
		struct spi_message		*m;
		struct spi_device		*spi;
		struct spi_transfer		*t = NULL;
		int				cs_active = 0;
		struct omap2_mcspi_cs		*cs;
		int				par_override = 0;
		int				status = 0;
		u32				chconf;

		m = container_of(mcspi->msg_queue.next, struct spi_message,
				 queue);

		list_del_init(&m->queue);
		spin_unlock_irq(&mcspi->lock);

		spi = m->spi;
		cs = spi->controller_state;

		omap2_mcspi_set_enable(spi, 1);
		list_for_each_entry(t, &m->transfers, transfer_list) {
			if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
				status = -EINVAL;
				break;
			}
			if (par_override || t->speed_hz || t->bits_per_word) {
				par_override = 1;
				status = omap2_mcspi_setup_transfer(spi, t);
				if (status < 0)
					break;
				if (!t->speed_hz && !t->bits_per_word)
					par_override = 0;
			}

			if (!cs_active) {
				omap2_mcspi_force_cs(spi, 1);
				cs_active = 1;
			}

			chconf = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
			chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
			if (t->tx_buf == NULL)
				chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
			else if (t->rx_buf == NULL)
				chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
			mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, chconf);

			if (t->len) {
				unsigned	count;

				/* RX_ONLY mode needs dummy data in TX reg */
				if (t->tx_buf == NULL)
					__raw_writel(0, cs->base
							+ OMAP2_MCSPI_TX0);

				if (m->is_dma_mapped || t->len >= DMA_MIN_BYTES)
					count = omap2_mcspi_txrx_dma(spi, t);
				else
					count = omap2_mcspi_txrx_pio(spi, t);
				m->actual_length += count;

				if (count != t->len) {
					status = -EIO;
					break;
				}
			}

			if (t->delay_usecs)
				udelay(t->delay_usecs);

			/* ignore the "leave it on after last xfer" hint */
			if (t->cs_change) {
				omap2_mcspi_force_cs(spi, 0);
				cs_active = 0;
			}
		}

		/* Restore defaults if they were overriden */
		if (par_override) {
			par_override = 0;
			status = omap2_mcspi_setup_transfer(spi, NULL);
		}

		if (cs_active)
			omap2_mcspi_force_cs(spi, 0);

		omap2_mcspi_set_enable(spi, 0);

		m->status = status;
		m->complete(m->context);

		spin_lock_irq(&mcspi->lock);
	}

	clk_disable(mcspi->fck);
	clk_disable(mcspi->ick);

	spin_unlock_irq(&mcspi->lock);
}

static int omap2_mcspi_transfer(struct spi_device *spi, struct spi_message *m)
{
	struct omap2_mcspi	*mcspi;
	unsigned long		flags;
	struct spi_transfer	*t;

	m->actual_length = 0;
	m->status = 0;

	/* reject invalid messages and transfers */
	if (list_empty(&m->transfers) || !m->complete)
		return -EINVAL;
	list_for_each_entry(t, &m->transfers, transfer_list) {
		const void	*tx_buf = t->tx_buf;
		void		*rx_buf = t->rx_buf;
		unsigned	len = t->len;

		if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ
				|| (len && !(rx_buf || tx_buf))
				|| (t->bits_per_word &&
					(  t->bits_per_word < 4
					|| t->bits_per_word > 32))) {
			dev_dbg(&spi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
					t->speed_hz,
					len,
					tx_buf ? "tx" : "",
					rx_buf ? "rx" : "",
					t->bits_per_word);
			return -EINVAL;
		}
		if (t->speed_hz && t->speed_hz < OMAP2_MCSPI_MAX_FREQ/(1<<16)) {
			dev_dbg(&spi->dev, "%d Hz max exceeds %d\n",
					t->speed_hz,
					OMAP2_MCSPI_MAX_FREQ/(1<<16));
			return -EINVAL;
		}

		if (m->is_dma_mapped || len < DMA_MIN_BYTES)
			continue;

		/* Do DMA mapping "early" for better error reporting and
		 * dcache use.  Note that if dma_unmap_single() ever starts
		 * to do real work on ARM, we'd need to clean up mappings
		 * for previous transfers on *ALL* exits of this loop...
		 */
		if (tx_buf != NULL) {
			t->tx_dma = dma_map_single(&spi->dev, (void *) tx_buf,
					len, DMA_TO_DEVICE);
			if (dma_mapping_error(t->tx_dma)) {
				dev_dbg(&spi->dev, "dma %cX %d bytes error\n",
						'T', len);
				return -EINVAL;
			}
		}
		if (rx_buf != NULL) {
			t->rx_dma = dma_map_single(&spi->dev, rx_buf, t->len,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(t->rx_dma)) {
				dev_dbg(&spi->dev, "dma %cX %d bytes error\n",
						'R', len);
				if (tx_buf != NULL)
					dma_unmap_single(NULL, t->tx_dma,
							len, DMA_TO_DEVICE);
				return -EINVAL;
			}
		}
	}

	mcspi = spi_master_get_devdata(spi->master);

	spin_lock_irqsave(&mcspi->lock, flags);
	list_add_tail(&m->queue, &mcspi->msg_queue);
	queue_work(omap2_mcspi_wq, &mcspi->work);
	spin_unlock_irqrestore(&mcspi->lock, flags);

	return 0;
}

static int __init omap2_mcspi_reset(struct omap2_mcspi *mcspi)
{
	struct spi_master	*master = mcspi->master;
	u32			tmp;

	clk_enable(mcspi->ick);
	clk_enable(mcspi->fck);

	mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG,
			OMAP2_MCSPI_SYSCONFIG_SOFTRESET);
	do {
		tmp = mcspi_read_reg(master, OMAP2_MCSPI_SYSSTATUS);
	} while (!(tmp & OMAP2_MCSPI_SYSSTATUS_RESETDONE));

	mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG,
			/* (3 << 8) | (2 << 3) | */
			OMAP2_MCSPI_SYSCONFIG_AUTOIDLE);

	omap2_mcspi_set_master_mode(master);

	clk_disable(mcspi->fck);
	clk_disable(mcspi->ick);
	return 0;
}

static u8 __initdata spi1_rxdma_id [] = {
	OMAP24XX_DMA_SPI1_RX0,
	OMAP24XX_DMA_SPI1_RX1,
	OMAP24XX_DMA_SPI1_RX2,
	OMAP24XX_DMA_SPI1_RX3,
};

static u8 __initdata spi1_txdma_id [] = {
	OMAP24XX_DMA_SPI1_TX0,
	OMAP24XX_DMA_SPI1_TX1,
	OMAP24XX_DMA_SPI1_TX2,
	OMAP24XX_DMA_SPI1_TX3,
};

static u8 __initdata spi2_rxdma_id[] = {
	OMAP24XX_DMA_SPI2_RX0,
	OMAP24XX_DMA_SPI2_RX1,
};

static u8 __initdata spi2_txdma_id[] = {
	OMAP24XX_DMA_SPI2_TX0,
	OMAP24XX_DMA_SPI2_TX1,
};

static int __init omap2_mcspi_probe(struct platform_device *pdev)
{
	struct spi_master	*master;
	struct omap2_mcspi	*mcspi;
	struct resource		*r;
	int			status = 0, i;
	const u8		*rxdma_id, *txdma_id;
	unsigned		num_chipselect;

	switch (pdev->id) {
	case 1:
		rxdma_id = spi1_rxdma_id;
		txdma_id = spi1_txdma_id;
		num_chipselect = 4;
		break;
	case 2:
		rxdma_id = spi2_rxdma_id;
		txdma_id = spi2_txdma_id;
		num_chipselect = 2;
		break;
	/* REVISIT omap2430 has a third McSPI ... */
	default:
		return -EINVAL;
	}

	master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
	if (master == NULL) {
		dev_dbg(&pdev->dev, "master allocation failed\n");
		return -ENOMEM;
	}

	if (pdev->id != -1)
		master->bus_num = pdev->id;

	master->setup = omap2_mcspi_setup;
	master->transfer = omap2_mcspi_transfer;
	master->cleanup = omap2_mcspi_cleanup;
	master->num_chipselect = num_chipselect;

	dev_set_drvdata(&pdev->dev, master);

	mcspi = spi_master_get_devdata(master);
	mcspi->master = master;

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (r == NULL) {
		status = -ENODEV;
		goto err1;
	}
	if (!request_mem_region(r->start, (r->end - r->start) + 1,
			pdev->dev.bus_id)) {
		status = -EBUSY;
		goto err1;
	}

	mcspi->base = (void __iomem *) io_p2v(r->start);

	INIT_WORK(&mcspi->work, omap2_mcspi_work);

	spin_lock_init(&mcspi->lock);
	INIT_LIST_HEAD(&mcspi->msg_queue);

	mcspi->ick = clk_get(&pdev->dev, "mcspi_ick");
	if (IS_ERR(mcspi->ick)) {
		dev_dbg(&pdev->dev, "can't get mcspi_ick\n");
		status = PTR_ERR(mcspi->ick);
		goto err1a;
	}
	mcspi->fck = clk_get(&pdev->dev, "mcspi_fck");
	if (IS_ERR(mcspi->fck)) {
		dev_dbg(&pdev->dev, "can't get mcspi_fck\n");
		status = PTR_ERR(mcspi->fck);
		goto err2;
	}

	mcspi->dma_channels = kcalloc(master->num_chipselect,
			sizeof(struct omap2_mcspi_dma),
			GFP_KERNEL);

	if (mcspi->dma_channels == NULL)
		goto err3;

	for (i = 0; i < num_chipselect; i++) {
		mcspi->dma_channels[i].dma_rx_channel = -1;
		mcspi->dma_channels[i].dma_rx_sync_dev = rxdma_id[i];
		mcspi->dma_channels[i].dma_tx_channel = -1;
		mcspi->dma_channels[i].dma_tx_sync_dev = txdma_id[i];
	}

	if (omap2_mcspi_reset(mcspi) < 0)
		goto err4;

	status = spi_register_master(master);
	if (status < 0)
		goto err4;

	return status;

err4:
	kfree(mcspi->dma_channels);
err3:
	clk_put(mcspi->fck);
err2:
	clk_put(mcspi->ick);
err1a:
	release_mem_region(r->start, (r->end - r->start) + 1);
err1:
	spi_master_put(master);
	return status;
}

static int __exit omap2_mcspi_remove(struct platform_device *pdev)
{
	struct spi_master	*master;
	struct omap2_mcspi	*mcspi;
	struct omap2_mcspi_dma	*dma_channels;
	struct resource		*r;

	master = dev_get_drvdata(&pdev->dev);
	mcspi = spi_master_get_devdata(master);
	dma_channels = mcspi->dma_channels;

	clk_put(mcspi->fck);
	clk_put(mcspi->ick);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	release_mem_region(r->start, (r->end - r->start) + 1);

	spi_unregister_master(master);
	kfree(dma_channels);

	return 0;
}

static struct platform_driver omap2_mcspi_driver = {
	.driver = {
		.name =		"omap2_mcspi",
		.owner =	THIS_MODULE,
	},
	.remove =	__exit_p(omap2_mcspi_remove),
};


static int __init omap2_mcspi_init(void)
{
	omap2_mcspi_wq = create_singlethread_workqueue(
				omap2_mcspi_driver.driver.name);
	if (omap2_mcspi_wq == NULL)
		return -1;
	return platform_driver_probe(&omap2_mcspi_driver, omap2_mcspi_probe);
}
subsys_initcall(omap2_mcspi_init);

static void __exit omap2_mcspi_exit(void)
{
	platform_driver_unregister(&omap2_mcspi_driver);

	destroy_workqueue(omap2_mcspi_wq);
}
module_exit(omap2_mcspi_exit);

MODULE_LICENSE("GPL");