summaryrefslogblamecommitdiff
path: root/drivers/soc/qcom/cpr.c
blob: 144ea68e0920a31da9476293a2075ab30ac75e36 (plain) (tree)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497


























                                                                      











































































































































































































































































































































































































































































































                                                                               
                
















































                                                                            
                
































































































                                                                                








                                     
                                               





























































































































                                                                            









                                                                     
                                                                                        

















                                                                 
                                                                             





















                                                                    
                                       














                                                            
                                                                 











                                                                              
                                  















                                                                              
                                                                                              



































































                                                                                            
                                                                                         








































                                                                           
                                              


























                                                                          

                                                                   






































































































































































































































































































































































































































































                                                                               


                                                               

                            

                               





                                                                       




































                                                                    


                                                               

































































                                                                              
































                                                                          
                                                            

















                                                            
                                                                                  








































                                                                           
                                      




                                        



                                  




































                                                                          
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
 * Copyright (c) 2019, Linaro Limited
 */

#include <linux/module.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/interrupt.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/nvmem-consumer.h>

/* Register Offsets for RB-CPR and Bit Definitions */

/* RBCPR Version Register */
#define REG_RBCPR_VERSION		0
#define RBCPR_VER_2			0x02
#define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)

/* RBCPR Gate Count and Target Registers */
#define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))

#define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
#define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
#define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
#define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)

/* RBCPR Timer Control */
#define REG_RBCPR_TIMER_INTERVAL	0x44
#define REG_RBIF_TIMER_ADJUST		0x4c

#define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
#define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
#define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
#define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8

/* RBCPR Config Register */
#define REG_RBIF_LIMIT			0x48
#define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
#define RBIF_LIMIT_CEILING_SHIFT	6
#define RBIF_LIMIT_FLOOR_BITS		6
#define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)

#define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
#define RBIF_LIMIT_FLOOR_DEFAULT	0

#define REG_RBIF_SW_VLEVEL		0x94
#define RBIF_SW_VLEVEL_DEFAULT		0x20

#define REG_RBCPR_STEP_QUOT		0x80
#define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
#define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8

/* RBCPR Control Register */
#define REG_RBCPR_CTL			0x90

#define RBCPR_CTL_LOOP_EN			BIT(0)
#define RBCPR_CTL_TIMER_EN			BIT(3)
#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
#define RBCPR_CTL_COUNT_MODE			BIT(10)
#define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
#define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
#define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
#define RBCPR_CTL_DN_THRESHOLD_SHIFT	28

/* RBCPR Ack/Nack Response */
#define REG_RBIF_CONT_ACK_CMD		0x98
#define REG_RBIF_CONT_NACK_CMD		0x9c

/* RBCPR Result status Register */
#define REG_RBCPR_RESULT_0		0xa0

#define RBCPR_RESULT0_BUSY_SHIFT	19
#define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
#define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
#define RBCPR_RESULT0_ERROR_SHIFT	6
#define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
#define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
#define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
#define RBCPR_RESULT0_STEP_UP_SHIFT	1

/* RBCPR Interrupt Control Register */
#define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
#define REG_RBIF_IRQ_CLEAR		0x110
#define REG_RBIF_IRQ_STATUS		0x114

#define CPR_INT_DONE		BIT(0)
#define CPR_INT_MIN		BIT(1)
#define CPR_INT_DOWN		BIT(2)
#define CPR_INT_MID		BIT(3)
#define CPR_INT_UP		BIT(4)
#define CPR_INT_MAX		BIT(5)
#define CPR_INT_CLAMP		BIT(6)
#define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
#define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)

#define CPR_NUM_RING_OSC	8

/* CPR eFuse parameters */
#define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)

#define CPR_FUSE_MIN_QUOT_DIFF		50

#define FUSE_REVISION_UNKNOWN		(-1)

enum voltage_change_dir {
	NO_CHANGE,
	DOWN,
	UP,
};

struct cpr_fuse {
	char *ring_osc;
	char *init_voltage;
	char *quotient;
	char *quotient_offset;
};

struct fuse_corner_data {
	int ref_uV;
	int max_uV;
	int min_uV;
	int max_volt_scale;
	int max_quot_scale;
	/* fuse quot */
	int quot_offset;
	int quot_scale;
	int quot_adjust;
	/* fuse quot_offset */
	int quot_offset_scale;
	int quot_offset_adjust;
};

struct cpr_fuses {
	int init_voltage_step;
	int init_voltage_width;
	struct fuse_corner_data *fuse_corner_data;
};

struct corner_data {
	unsigned int fuse_corner;
	unsigned long freq;
};

struct cpr_desc {
	unsigned int num_fuse_corners;
	int min_diff_quot;
	int *step_quot;

	unsigned int		timer_delay_us;
	unsigned int		timer_cons_up;
	unsigned int		timer_cons_down;
	unsigned int		up_threshold;
	unsigned int		down_threshold;
	unsigned int		idle_clocks;
	unsigned int		gcnt_us;
	unsigned int		vdd_apc_step_up_limit;
	unsigned int		vdd_apc_step_down_limit;
	unsigned int		clamp_timer_interval;

	struct cpr_fuses cpr_fuses;
	bool reduce_to_fuse_uV;
	bool reduce_to_corner_uV;
};

struct acc_desc {
	unsigned int	enable_reg;
	u32		enable_mask;

	struct reg_sequence	*config;
	struct reg_sequence	*settings;
	int			num_regs_per_fuse;
};

struct cpr_acc_desc {
	const struct cpr_desc *cpr_desc;
	const struct acc_desc *acc_desc;
};

struct fuse_corner {
	int min_uV;
	int max_uV;
	int uV;
	int quot;
	int step_quot;
	const struct reg_sequence *accs;
	int num_accs;
	unsigned long max_freq;
	u8 ring_osc_idx;
};

struct corner {
	int min_uV;
	int max_uV;
	int uV;
	int last_uV;
	int quot_adjust;
	u32 save_ctl;
	u32 save_irq;
	unsigned long freq;
	struct fuse_corner *fuse_corner;
};

struct cpr_drv {
	unsigned int		num_corners;
	unsigned int		ref_clk_khz;

	struct generic_pm_domain pd;
	struct device		*dev;
	struct device		*attached_cpu_dev;
	struct mutex		lock;
	void __iomem		*base;
	struct corner		*corner;
	struct regulator	*vdd_apc;
	struct clk		*cpu_clk;
	struct regmap		*tcsr;
	bool			loop_disabled;
	u32			gcnt;
	unsigned long		flags;

	struct fuse_corner	*fuse_corners;
	struct corner		*corners;

	const struct cpr_desc *desc;
	const struct acc_desc *acc_desc;
	const struct cpr_fuse *cpr_fuses;

	struct dentry *debugfs;
};

static bool cpr_is_allowed(struct cpr_drv *drv)
{
	return !drv->loop_disabled;
}

static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
{
	writel_relaxed(value, drv->base + offset);
}

static u32 cpr_read(struct cpr_drv *drv, u32 offset)
{
	return readl_relaxed(drv->base + offset);
}

static void
cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
{
	u32 val;

	val = readl_relaxed(drv->base + offset);
	val &= ~mask;
	val |= value & mask;
	writel_relaxed(val, drv->base + offset);
}

static void cpr_irq_clr(struct cpr_drv *drv)
{
	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
}

static void cpr_irq_clr_nack(struct cpr_drv *drv)
{
	cpr_irq_clr(drv);
	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
}

static void cpr_irq_clr_ack(struct cpr_drv *drv)
{
	cpr_irq_clr(drv);
	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
}

static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
{
	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
}

static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
{
	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
}

static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
{
	u32 val, mask;
	const struct cpr_desc *desc = drv->desc;

	/* Program Consecutive Up & Down */
	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
	cpr_masked_write(drv, REG_RBCPR_CTL,
			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
			 corner->save_ctl);
	cpr_irq_set(drv, corner->save_irq);

	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
		val = RBCPR_CTL_LOOP_EN;
	else
		val = 0;
	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
}

static void cpr_ctl_disable(struct cpr_drv *drv)
{
	cpr_irq_set(drv, 0);
	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
			 RBIF_TIMER_ADJ_CONS_UP_MASK |
			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
	cpr_irq_clr(drv);
	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
}

static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
{
	u32 reg_val;

	reg_val = cpr_read(drv, REG_RBCPR_CTL);
	return reg_val & RBCPR_CTL_LOOP_EN;
}

static bool cpr_ctl_is_busy(struct cpr_drv *drv)
{
	u32 reg_val;

	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
	return reg_val & RBCPR_RESULT0_BUSY_MASK;
}

static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
{
	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
}

static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
{
	u32 gcnt, ctl, irq, ro_sel, step_quot;
	struct fuse_corner *fuse = corner->fuse_corner;
	const struct cpr_desc *desc = drv->desc;
	int i;

	ro_sel = fuse->ring_osc_idx;
	gcnt = drv->gcnt;
	gcnt |= fuse->quot - corner->quot_adjust;

	/* Program the step quotient and idle clocks */
	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);

	/* Clear the target quotient value and gate count of all ROs */
	for (i = 0; i < CPR_NUM_RING_OSC; i++)
		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);

	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
	ctl = corner->save_ctl;
	cpr_write(drv, REG_RBCPR_CTL, ctl);
	irq = corner->save_irq;
	cpr_irq_set(drv, irq);
	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
		ctl, irq);
}

static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
			struct fuse_corner *end)
{
	if (f == end)
		return;

	if (f < end) {
		for (f += 1; f <= end; f++)
			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
	} else {
		for (f -= 1; f >= end; f--)
			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
	}
}

static int cpr_pre_voltage(struct cpr_drv *drv,
			   struct fuse_corner *fuse_corner,
			   enum voltage_change_dir dir)
{
	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;

	if (drv->tcsr && dir == DOWN)
		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);

	return 0;
}

static int cpr_post_voltage(struct cpr_drv *drv,
			    struct fuse_corner *fuse_corner,
			    enum voltage_change_dir dir)
{
	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;

	if (drv->tcsr && dir == UP)
		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);

	return 0;
}

static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
			     int new_uV, enum voltage_change_dir dir)
{
	int ret;
	struct fuse_corner *fuse_corner = corner->fuse_corner;

	ret = cpr_pre_voltage(drv, fuse_corner, dir);
	if (ret)
		return ret;

	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
	if (ret) {
		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
				    new_uV);
		return ret;
	}

	ret = cpr_post_voltage(drv, fuse_corner, dir);
	if (ret)
		return ret;

	return 0;
}

static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
{
	return drv->corner ? drv->corner - drv->corners + 1 : 0;
}

static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
{
	u32 val, error_steps, reg_mask;
	int last_uV, new_uV, step_uV, ret;
	struct corner *corner;
	const struct cpr_desc *desc = drv->desc;

	if (dir != UP && dir != DOWN)
		return 0;

	step_uV = regulator_get_linear_step(drv->vdd_apc);
	if (!step_uV)
		return -EINVAL;

	corner = drv->corner;

	val = cpr_read(drv, REG_RBCPR_RESULT_0);

	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
	last_uV = corner->last_uV;

	if (dir == UP) {
		if (desc->clamp_timer_interval &&
		    error_steps < desc->up_threshold) {
			/*
			 * Handle the case where another measurement started
			 * after the interrupt was triggered due to a core
			 * exiting from power collapse.
			 */
			error_steps = max(desc->up_threshold,
					  desc->vdd_apc_step_up_limit);
		}

		if (last_uV >= corner->max_uV) {
			cpr_irq_clr_nack(drv);

			/* Maximize the UP threshold */
			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
			val = reg_mask;
			cpr_ctl_modify(drv, reg_mask, val);

			/* Disable UP interrupt */
			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);

			return 0;
		}

		if (error_steps > desc->vdd_apc_step_up_limit)
			error_steps = desc->vdd_apc_step_up_limit;

		/* Calculate new voltage */
		new_uV = last_uV + error_steps * step_uV;
		new_uV = min(new_uV, corner->max_uV);

		dev_dbg(drv->dev,
			"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
			new_uV, last_uV, cpr_get_cur_perf_state(drv));
	} else {
		if (desc->clamp_timer_interval &&
		    error_steps < desc->down_threshold) {
			/*
			 * Handle the case where another measurement started
			 * after the interrupt was triggered due to a core
			 * exiting from power collapse.
			 */
			error_steps = max(desc->down_threshold,
					  desc->vdd_apc_step_down_limit);
		}

		if (last_uV <= corner->min_uV) {
			cpr_irq_clr_nack(drv);

			/* Enable auto nack down */
			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;

			cpr_ctl_modify(drv, reg_mask, val);

			/* Disable DOWN interrupt */
			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);

			return 0;
		}

		if (error_steps > desc->vdd_apc_step_down_limit)
			error_steps = desc->vdd_apc_step_down_limit;

		/* Calculate new voltage */
		new_uV = last_uV - error_steps * step_uV;
		new_uV = max(new_uV, corner->min_uV);

		dev_dbg(drv->dev,
			"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
			new_uV, last_uV, cpr_get_cur_perf_state(drv));
	}

	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
	if (ret) {
		cpr_irq_clr_nack(drv);
		return ret;
	}
	drv->corner->last_uV = new_uV;

	if (dir == UP) {
		/* Disable auto nack down */
		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
		val = 0;
	} else {
		/* Restore default threshold for UP */
		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
		val = desc->up_threshold;
		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
	}

	cpr_ctl_modify(drv, reg_mask, val);

	/* Re-enable default interrupts */
	cpr_irq_set(drv, CPR_INT_DEFAULT);

	/* Ack */
	cpr_irq_clr_ack(drv);

	return 0;
}

static irqreturn_t cpr_irq_handler(int irq, void *dev)
{
	struct cpr_drv *drv = dev;
	const struct cpr_desc *desc = drv->desc;
	irqreturn_t ret = IRQ_HANDLED;
	u32 val;

	mutex_lock(&drv->lock);

	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);

	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);

	if (!cpr_ctl_is_enabled(drv)) {
		dev_dbg(drv->dev, "CPR is disabled\n");
		ret = IRQ_NONE;
	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
		dev_dbg(drv->dev, "CPR measurement is not ready\n");
	} else if (!cpr_is_allowed(drv)) {
		val = cpr_read(drv, REG_RBCPR_CTL);
		dev_err_ratelimited(drv->dev,
				    "Interrupt broken? RBCPR_CTL = %#02x\n",
				    val);
		ret = IRQ_NONE;
	} else {
		/*
		 * Following sequence of handling is as per each IRQ's
		 * priority
		 */
		if (val & CPR_INT_UP) {
			cpr_scale(drv, UP);
		} else if (val & CPR_INT_DOWN) {
			cpr_scale(drv, DOWN);
		} else if (val & CPR_INT_MIN) {
			cpr_irq_clr_nack(drv);
		} else if (val & CPR_INT_MAX) {
			cpr_irq_clr_nack(drv);
		} else if (val & CPR_INT_MID) {
			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
		} else {
			dev_dbg(drv->dev,
				"IRQ occurred for unknown flag (%#08x)\n", val);
		}

		/* Save register values for the corner */
		cpr_corner_save(drv, drv->corner);
	}

	mutex_unlock(&drv->lock);

	return ret;
}

static int cpr_enable(struct cpr_drv *drv)
{
	int ret;

	ret = regulator_enable(drv->vdd_apc);
	if (ret)
		return ret;

	mutex_lock(&drv->lock);

	if (cpr_is_allowed(drv) && drv->corner) {
		cpr_irq_clr(drv);
		cpr_corner_restore(drv, drv->corner);
		cpr_ctl_enable(drv, drv->corner);
	}

	mutex_unlock(&drv->lock);

	return 0;
}

static int cpr_disable(struct cpr_drv *drv)
{
	mutex_lock(&drv->lock);

	if (cpr_is_allowed(drv)) {
		cpr_ctl_disable(drv);
		cpr_irq_clr(drv);
	}

	mutex_unlock(&drv->lock);

	return regulator_disable(drv->vdd_apc);
}

static int cpr_config(struct cpr_drv *drv)
{
	int i;
	u32 val, gcnt;
	struct corner *corner;
	const struct cpr_desc *desc = drv->desc;

	/* Disable interrupt and CPR */
	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
	cpr_write(drv, REG_RBCPR_CTL, 0);

	/* Program the default HW ceiling, floor and vlevel */
	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
		<< RBIF_LIMIT_CEILING_SHIFT;
	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
	cpr_write(drv, REG_RBIF_LIMIT, val);
	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);

	/*
	 * Clear the target quotient value and gate count of all
	 * ring oscillators
	 */
	for (i = 0; i < CPR_NUM_RING_OSC; i++)
		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);

	/* Init and save gcnt */
	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
	drv->gcnt = gcnt;

	/* Program the delay count for the timer */
	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
		desc->timer_delay_us);

	/* Program Consecutive Up & Down */
	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);

	/* Program the control register */
	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
	cpr_write(drv, REG_RBCPR_CTL, val);

	for (i = 0; i < drv->num_corners; i++) {
		corner = &drv->corners[i];
		corner->save_ctl = val;
		corner->save_irq = CPR_INT_DEFAULT;
	}

	cpr_irq_set(drv, CPR_INT_DEFAULT);

	val = cpr_read(drv, REG_RBCPR_VERSION);
	if (val <= RBCPR_VER_2)
		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;

	return 0;
}

static int cpr_set_performance_state(struct generic_pm_domain *domain,
				     unsigned int state)
{
	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
	struct corner *corner, *end;
	enum voltage_change_dir dir;
	int ret = 0, new_uV;

	mutex_lock(&drv->lock);

	dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
		__func__, state, cpr_get_cur_perf_state(drv));

	/*
	 * Determine new corner we're going to.
	 * Remove one since lowest performance state is 1.
	 */
	corner = drv->corners + state - 1;
	end = &drv->corners[drv->num_corners - 1];
	if (corner > end || corner < drv->corners) {
		ret = -EINVAL;
		goto unlock;
	}

	/* Determine direction */
	if (drv->corner > corner)
		dir = DOWN;
	else if (drv->corner < corner)
		dir = UP;
	else
		dir = NO_CHANGE;

	if (cpr_is_allowed(drv))
		new_uV = corner->last_uV;
	else
		new_uV = corner->uV;

	if (cpr_is_allowed(drv))
		cpr_ctl_disable(drv);

	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
	if (ret)
		goto unlock;

	if (cpr_is_allowed(drv)) {
		cpr_irq_clr(drv);
		if (drv->corner != corner)
			cpr_corner_restore(drv, corner);
		cpr_ctl_enable(drv, corner);
	}

	drv->corner = corner;

unlock:
	mutex_unlock(&drv->lock);

	return ret;
}

static int
cpr_populate_ring_osc_idx(struct cpr_drv *drv)
{
	struct fuse_corner *fuse = drv->fuse_corners;
	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
	const struct cpr_fuse *fuses = drv->cpr_fuses;
	u32 data;
	int ret;

	for (; fuse < end; fuse++, fuses++) {
		ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
		if (ret)
			return ret;
		fuse->ring_osc_idx = data;
	}

	return 0;
}

static int cpr_read_fuse_uV(const struct cpr_desc *desc,
			    const struct fuse_corner_data *fdata,
			    const char *init_v_efuse,
			    int step_volt,
			    struct cpr_drv *drv)
{
	int step_size_uV, steps, uV;
	u32 bits = 0;
	int ret;

	ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
	if (ret)
		return ret;

	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
	/* Not two's complement.. instead highest bit is sign bit */
	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
		steps = -steps;

	step_size_uV = desc->cpr_fuses.init_voltage_step;

	uV = fdata->ref_uV + steps * step_size_uV;
	return DIV_ROUND_UP(uV, step_volt) * step_volt;
}

static int cpr_fuse_corner_init(struct cpr_drv *drv)
{
	const struct cpr_desc *desc = drv->desc;
	const struct cpr_fuse *fuses = drv->cpr_fuses;
	const struct acc_desc *acc_desc = drv->acc_desc;
	int i;
	unsigned int step_volt;
	struct fuse_corner_data *fdata;
	struct fuse_corner *fuse, *end;
	int uV;
	const struct reg_sequence *accs;
	int ret;

	accs = acc_desc->settings;

	step_volt = regulator_get_linear_step(drv->vdd_apc);
	if (!step_volt)
		return -EINVAL;

	/* Populate fuse_corner members */
	fuse = drv->fuse_corners;
	end = &fuse[desc->num_fuse_corners - 1];
	fdata = desc->cpr_fuses.fuse_corner_data;

	for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
		/*
		 * Update SoC voltages: platforms might choose a different
		 * regulators than the one used to characterize the algorithms
		 * (ie, init_voltage_step).
		 */
		fdata->min_uV = roundup(fdata->min_uV, step_volt);
		fdata->max_uV = roundup(fdata->max_uV, step_volt);

		/* Populate uV */
		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
				      step_volt, drv);
		if (uV < 0)
			return uV;

		fuse->min_uV = fdata->min_uV;
		fuse->max_uV = fdata->max_uV;
		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);

		if (fuse == end) {
			/*
			 * Allow the highest fuse corner's PVS voltage to
			 * define the ceiling voltage for that corner in order
			 * to support SoC's in which variable ceiling values
			 * are required.
			 */
			end->max_uV = max(end->max_uV, end->uV);
		}

		/* Populate target quotient by scaling */
		ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
		if (ret)
			return ret;

		fuse->quot *= fdata->quot_scale;
		fuse->quot += fdata->quot_offset;
		fuse->quot += fdata->quot_adjust;
		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];

		/* Populate acc settings */
		fuse->accs = accs;
		fuse->num_accs = acc_desc->num_regs_per_fuse;
		accs += acc_desc->num_regs_per_fuse;
	}

	/*
	 * Restrict all fuse corner PVS voltages based upon per corner
	 * ceiling and floor voltages.
	 */
	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
		if (fuse->uV > fuse->max_uV)
			fuse->uV = fuse->max_uV;
		else if (fuse->uV < fuse->min_uV)
			fuse->uV = fuse->min_uV;

		ret = regulator_is_supported_voltage(drv->vdd_apc,
						     fuse->min_uV,
						     fuse->min_uV);
		if (!ret) {
			dev_err(drv->dev,
				"min uV: %d (fuse corner: %d) not supported by regulator\n",
				fuse->min_uV, i);
			return -EINVAL;
		}

		ret = regulator_is_supported_voltage(drv->vdd_apc,
						     fuse->max_uV,
						     fuse->max_uV);
		if (!ret) {
			dev_err(drv->dev,
				"max uV: %d (fuse corner: %d) not supported by regulator\n",
				fuse->max_uV, i);
			return -EINVAL;
		}

		dev_dbg(drv->dev,
			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
			i, fuse->min_uV, fuse->uV, fuse->max_uV,
			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
	}

	return 0;
}

static int cpr_calculate_scaling(const char *quot_offset,
				 struct cpr_drv *drv,
				 const struct fuse_corner_data *fdata,
				 const struct corner *corner)
{
	u32 quot_diff = 0;
	unsigned long freq_diff;
	int scaling;
	const struct fuse_corner *fuse, *prev_fuse;
	int ret;

	fuse = corner->fuse_corner;
	prev_fuse = fuse - 1;

	if (quot_offset) {
		ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, &quot_diff);
		if (ret)
			return ret;

		quot_diff *= fdata->quot_offset_scale;
		quot_diff += fdata->quot_offset_adjust;
	} else {
		quot_diff = fuse->quot - prev_fuse->quot;
	}

	freq_diff = fuse->max_freq - prev_fuse->max_freq;
	freq_diff /= 1000000; /* Convert to MHz */
	scaling = 1000 * quot_diff / freq_diff;
	return min(scaling, fdata->max_quot_scale);
}

static int cpr_interpolate(const struct corner *corner, int step_volt,
			   const struct fuse_corner_data *fdata)
{
	unsigned long f_high, f_low, f_diff;
	int uV_high, uV_low, uV;
	u64 temp, temp_limit;
	const struct fuse_corner *fuse, *prev_fuse;

	fuse = corner->fuse_corner;
	prev_fuse = fuse - 1;

	f_high = fuse->max_freq;
	f_low = prev_fuse->max_freq;
	uV_high = fuse->uV;
	uV_low = prev_fuse->uV;
	f_diff = fuse->max_freq - corner->freq;

	/*
	 * Don't interpolate in the wrong direction. This could happen
	 * if the adjusted fuse voltage overlaps with the previous fuse's
	 * adjusted voltage.
	 */
	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
		return corner->uV;

	temp = f_diff * (uV_high - uV_low);
	temp = div64_ul(temp, f_high - f_low);

	/*
	 * max_volt_scale has units of uV/MHz while freq values
	 * have units of Hz.  Divide by 1000000 to convert to.
	 */
	temp_limit = f_diff * fdata->max_volt_scale;
	do_div(temp_limit, 1000000);

	uV = uV_high - min(temp, temp_limit);
	return roundup(uV, step_volt);
}

static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
{
	struct device_node *np;
	unsigned int fuse_corner = 0;

	np = dev_pm_opp_get_of_node(opp);
	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
		       __func__);

	of_node_put(np);

	return fuse_corner;
}

static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
					    struct device *cpu_dev)
{
	u64 rate = 0;
	struct device_node *ref_np;
	struct device_node *desc_np;
	struct device_node *child_np = NULL;
	struct device_node *child_req_np = NULL;

	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
	if (!desc_np)
		return 0;

	ref_np = dev_pm_opp_get_of_node(ref);
	if (!ref_np)
		goto out_ref;

	do {
		of_node_put(child_req_np);
		child_np = of_get_next_available_child(desc_np, child_np);
		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
	} while (child_np && child_req_np != ref_np);

	if (child_np && child_req_np == ref_np)
		of_property_read_u64(child_np, "opp-hz", &rate);

	of_node_put(child_req_np);
	of_node_put(child_np);
	of_node_put(ref_np);
out_ref:
	of_node_put(desc_np);

	return (unsigned long) rate;
}

static int cpr_corner_init(struct cpr_drv *drv)
{
	const struct cpr_desc *desc = drv->desc;
	const struct cpr_fuse *fuses = drv->cpr_fuses;
	int i, level, scaling = 0;
	unsigned int fnum, fc;
	const char *quot_offset;
	struct fuse_corner *fuse, *prev_fuse;
	struct corner *corner, *end;
	struct corner_data *cdata;
	const struct fuse_corner_data *fdata;
	bool apply_scaling;
	unsigned long freq_diff, freq_diff_mhz;
	unsigned long freq;
	int step_volt = regulator_get_linear_step(drv->vdd_apc);
	struct dev_pm_opp *opp;

	if (!step_volt)
		return -EINVAL;

	corner = drv->corners;
	end = &corner[drv->num_corners - 1];

	cdata = devm_kcalloc(drv->dev, drv->num_corners,
			     sizeof(struct corner_data),
			     GFP_KERNEL);
	if (!cdata)
		return -ENOMEM;

	/*
	 * Store maximum frequency for each fuse corner based on the frequency
	 * plan
	 */
	for (level = 1; level <= drv->num_corners; level++) {
		opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
		if (IS_ERR(opp))
			return -EINVAL;
		fc = cpr_get_fuse_corner(opp);
		if (!fc) {
			dev_pm_opp_put(opp);
			return -EINVAL;
		}
		fnum = fc - 1;
		freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
		if (!freq) {
			dev_pm_opp_put(opp);
			return -EINVAL;
		}
		cdata[level - 1].fuse_corner = fnum;
		cdata[level - 1].freq = freq;

		fuse = &drv->fuse_corners[fnum];
		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
			freq, dev_pm_opp_get_level(opp) - 1, fnum);
		if (freq > fuse->max_freq)
			fuse->max_freq = freq;
		dev_pm_opp_put(opp);
	}

	/*
	 * Get the quotient adjustment scaling factor, according to:
	 *
	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
	 *
	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
	 *			 (N - 1)
	 *
	 * Then walk through the corners mapped to each fuse corner
	 * and calculate the quotient adjustment for each one using the
	 * following formula:
	 *
	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
	 *
	 * freq_max: max frequency in MHz supported by the fuse corner
	 * freq_corner: frequency in MHz corresponding to the corner
	 * scaling: calculated from above equation
	 *
	 *
	 *     +                           +
	 *     |                         v |
	 *   q |           f c           o |           f c
	 *   u |         c               l |         c
	 *   o |       f                 t |       f
	 *   t |     c                   a |     c
	 *     | c f                     g | c f
	 *     |                         e |
	 *     +---------------            +----------------
	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
	 *          corner                      corner
	 *
	 *    c = corner
	 *    f = fuse corner
	 *
	 */
	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
		fnum = cdata[i].fuse_corner;
		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
		quot_offset = fuses[fnum].quotient_offset;
		fuse = &drv->fuse_corners[fnum];
		if (fnum)
			prev_fuse = &drv->fuse_corners[fnum - 1];
		else
			prev_fuse = NULL;

		corner->fuse_corner = fuse;
		corner->freq = cdata[i].freq;
		corner->uV = fuse->uV;

		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
			scaling = cpr_calculate_scaling(quot_offset, drv,
							fdata, corner);
			if (scaling < 0)
				return scaling;

			apply_scaling = true;
		} else if (corner->freq == fuse->max_freq) {
			/* This is a fuse corner; don't scale anything */
			apply_scaling = false;
		}

		if (apply_scaling) {
			freq_diff = fuse->max_freq - corner->freq;
			freq_diff_mhz = freq_diff / 1000000;
			corner->quot_adjust = scaling * freq_diff_mhz / 1000;

			corner->uV = cpr_interpolate(corner, step_volt, fdata);
		}

		corner->max_uV = fuse->max_uV;
		corner->min_uV = fuse->min_uV;
		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
		corner->last_uV = corner->uV;

		/* Reduce the ceiling voltage if needed */
		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
			corner->max_uV = corner->uV;
		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
			corner->max_uV = max(corner->min_uV, fuse->uV);

		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
			corner->min_uV, corner->uV, corner->max_uV,
			fuse->quot - corner->quot_adjust);
	}

	return 0;
}

static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
{
	const struct cpr_desc *desc = drv->desc;
	struct cpr_fuse *fuses;
	int i;

	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
			     sizeof(struct cpr_fuse),
			     GFP_KERNEL);
	if (!fuses)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < desc->num_fuse_corners; i++) {
		char tbuf[32];

		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
		if (!fuses[i].ring_osc)
			return ERR_PTR(-ENOMEM);

		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
						     GFP_KERNEL);
		if (!fuses[i].init_voltage)
			return ERR_PTR(-ENOMEM);

		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
		if (!fuses[i].quotient)
			return ERR_PTR(-ENOMEM);

		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
							GFP_KERNEL);
		if (!fuses[i].quotient_offset)
			return ERR_PTR(-ENOMEM);
	}

	return fuses;
}

static void cpr_set_loop_allowed(struct cpr_drv *drv)
{
	drv->loop_disabled = false;
}

static int cpr_init_parameters(struct cpr_drv *drv)
{
	const struct cpr_desc *desc = drv->desc;
	struct clk *clk;

	clk = clk_get(drv->dev, "ref");
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
	clk_put(clk);

	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
		return -EINVAL;

	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
		desc->up_threshold, desc->down_threshold);

	return 0;
}

static int cpr_find_initial_corner(struct cpr_drv *drv)
{
	unsigned long rate;
	const struct corner *end;
	struct corner *iter;
	unsigned int i = 0;

	if (!drv->cpu_clk) {
		dev_err(drv->dev, "cannot get rate from NULL clk\n");
		return -EINVAL;
	}

	end = &drv->corners[drv->num_corners - 1];
	rate = clk_get_rate(drv->cpu_clk);

	/*
	 * Some bootloaders set a CPU clock frequency that is not defined
	 * in the OPP table. When running at an unlisted frequency,
	 * cpufreq_online() will change to the OPP which has the lowest
	 * frequency, at or above the unlisted frequency.
	 * Since cpufreq_online() always "rounds up" in the case of an
	 * unlisted frequency, this function always "rounds down" in case
	 * of an unlisted frequency. That way, when cpufreq_online()
	 * triggers the first ever call to cpr_set_performance_state(),
	 * it will correctly determine the direction as UP.
	 */
	for (iter = drv->corners; iter <= end; iter++) {
		if (iter->freq > rate)
			break;
		i++;
		if (iter->freq == rate) {
			drv->corner = iter;
			break;
		}
		if (iter->freq < rate)
			drv->corner = iter;
	}

	if (!drv->corner) {
		dev_err(drv->dev, "boot up corner not found\n");
		return -EINVAL;
	}

	dev_dbg(drv->dev, "boot up perf state: %u\n", i);

	return 0;
}

static const struct cpr_desc qcs404_cpr_desc = {
	.num_fuse_corners = 3,
	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
	.step_quot = (int []){ 25, 25, 25, },
	.timer_delay_us = 5000,
	.timer_cons_up = 0,
	.timer_cons_down = 2,
	.up_threshold = 1,
	.down_threshold = 3,
	.idle_clocks = 15,
	.gcnt_us = 1,
	.vdd_apc_step_up_limit = 1,
	.vdd_apc_step_down_limit = 1,
	.cpr_fuses = {
		.init_voltage_step = 8000,
		.init_voltage_width = 6,
		.fuse_corner_data = (struct fuse_corner_data[]){
			/* fuse corner 0 */
			{
				.ref_uV = 1224000,
				.max_uV = 1224000,
				.min_uV = 1048000,
				.max_volt_scale = 0,
				.max_quot_scale = 0,
				.quot_offset = 0,
				.quot_scale = 1,
				.quot_adjust = 0,
				.quot_offset_scale = 5,
				.quot_offset_adjust = 0,
			},
			/* fuse corner 1 */
			{
				.ref_uV = 1288000,
				.max_uV = 1288000,
				.min_uV = 1048000,
				.max_volt_scale = 2000,
				.max_quot_scale = 1400,
				.quot_offset = 0,
				.quot_scale = 1,
				.quot_adjust = -20,
				.quot_offset_scale = 5,
				.quot_offset_adjust = 0,
			},
			/* fuse corner 2 */
			{
				.ref_uV = 1352000,
				.max_uV = 1384000,
				.min_uV = 1088000,
				.max_volt_scale = 2000,
				.max_quot_scale = 1400,
				.quot_offset = 0,
				.quot_scale = 1,
				.quot_adjust = 0,
				.quot_offset_scale = 5,
				.quot_offset_adjust = 0,
			},
		},
	},
};

static const struct acc_desc qcs404_acc_desc = {
	.settings = (struct reg_sequence[]){
		{ 0xb120, 0x1041040 },
		{ 0xb124, 0x41 },
		{ 0xb120, 0x0 },
		{ 0xb124, 0x0 },
		{ 0xb120, 0x0 },
		{ 0xb124, 0x0 },
	},
	.config = (struct reg_sequence[]){
		{ 0xb138, 0xff },
		{ 0xb130, 0x5555 },
	},
	.num_regs_per_fuse = 2,
};

static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
	.cpr_desc = &qcs404_cpr_desc,
	.acc_desc = &qcs404_acc_desc,
};

static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
					      struct dev_pm_opp *opp)
{
	return dev_pm_opp_get_level(opp);
}

static int cpr_power_off(struct generic_pm_domain *domain)
{
	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);

	return cpr_disable(drv);
}

static int cpr_power_on(struct generic_pm_domain *domain)
{
	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);

	return cpr_enable(drv);
}

static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
			     struct device *dev)
{
	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
	const struct acc_desc *acc_desc = drv->acc_desc;
	int ret = 0;

	mutex_lock(&drv->lock);

	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));

	/*
	 * This driver only supports scaling voltage for a CPU cluster
	 * where all CPUs in the cluster share a single regulator.
	 * Therefore, save the struct device pointer only for the first
	 * CPU device that gets attached. There is no need to do any
	 * additional initialization when further CPUs get attached.
	 */
	if (drv->attached_cpu_dev)
		goto unlock;

	/*
	 * cpr_scale_voltage() requires the direction (if we are changing
	 * to a higher or lower OPP). The first time
	 * cpr_set_performance_state() is called, there is no previous
	 * performance state defined. Therefore, we call
	 * cpr_find_initial_corner() that gets the CPU clock frequency
	 * set by the bootloader, so that we can determine the direction
	 * the first time cpr_set_performance_state() is called.
	 */
	drv->cpu_clk = devm_clk_get(dev, NULL);
	if (IS_ERR(drv->cpu_clk)) {
		ret = PTR_ERR(drv->cpu_clk);
		if (ret != -EPROBE_DEFER)
			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
		goto unlock;
	}
	drv->attached_cpu_dev = dev;

	dev_dbg(drv->dev, "using cpu clk from: %s\n",
		dev_name(drv->attached_cpu_dev));

	/*
	 * Everything related to (virtual) corners has to be initialized
	 * here, when attaching to the power domain, since we need to know
	 * the maximum frequency for each fuse corner, and this is only
	 * available after the cpufreq driver has attached to us.
	 * The reason for this is that we need to know the highest
	 * frequency associated with each fuse corner.
	 */
	ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
	if (ret < 0) {
		dev_err(drv->dev, "could not get OPP count\n");
		goto unlock;
	}
	drv->num_corners = ret;

	if (drv->num_corners < 2) {
		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
		ret = -EINVAL;
		goto unlock;
	}

	drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
				    sizeof(*drv->corners),
				    GFP_KERNEL);
	if (!drv->corners) {
		ret = -ENOMEM;
		goto unlock;
	}

	ret = cpr_corner_init(drv);
	if (ret)
		goto unlock;

	cpr_set_loop_allowed(drv);

	ret = cpr_init_parameters(drv);
	if (ret)
		goto unlock;

	/* Configure CPR HW but keep it disabled */
	ret = cpr_config(drv);
	if (ret)
		goto unlock;

	ret = cpr_find_initial_corner(drv);
	if (ret)
		goto unlock;

	if (acc_desc->config)
		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
				       acc_desc->num_regs_per_fuse);

	/* Enable ACC if required */
	if (acc_desc->enable_mask)
		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
				   acc_desc->enable_mask,
				   acc_desc->enable_mask);

	dev_info(drv->dev, "driver initialized with %u OPPs\n",
		 drv->num_corners);

unlock:
	mutex_unlock(&drv->lock);

	return ret;
}

static int cpr_debug_info_show(struct seq_file *s, void *unused)
{
	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
	u32 step_dn, step_up, error, error_lt0, busy;
	struct cpr_drv *drv = s->private;
	struct fuse_corner *fuse_corner;
	struct corner *corner;

	corner = drv->corner;
	fuse_corner = corner->fuse_corner;

	seq_printf(s, "corner, current_volt = %d uV\n",
		       corner->last_uV);

	ro_sel = fuse_corner->ring_osc_idx;
	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);

	ctl = cpr_read(drv, REG_RBCPR_CTL);
	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);

	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);

	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);

	step_dn = reg & 0x01;
	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
	seq_printf(s, "  [step_dn = %u", step_dn);

	seq_printf(s, ", step_up = %u", step_up);

	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
				& RBCPR_RESULT0_ERROR_STEPS_MASK;
	seq_printf(s, ", error_steps = %u", error_steps);

	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
	seq_printf(s, ", error = %u", error);

	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
	seq_printf(s, ", error_lt_0 = %u", error_lt0);

	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
	seq_printf(s, ", busy = %u]\n", busy);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);

static void cpr_debugfs_init(struct cpr_drv *drv)
{
	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);

	debugfs_create_file("debug_info", 0444, drv->debugfs,
			    drv, &cpr_debug_info_fops);
}

static int cpr_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct cpr_drv *drv;
	int irq, ret;
	const struct cpr_acc_desc *data;
	struct device_node *np;
	u32 cpr_rev = FUSE_REVISION_UNKNOWN;

	data = of_device_get_match_data(dev);
	if (!data || !data->cpr_desc || !data->acc_desc)
		return -EINVAL;

	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
	if (!drv)
		return -ENOMEM;
	drv->dev = dev;
	drv->desc = data->cpr_desc;
	drv->acc_desc = data->acc_desc;

	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
					 sizeof(*drv->fuse_corners),
					 GFP_KERNEL);
	if (!drv->fuse_corners)
		return -ENOMEM;

	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
	if (!np)
		return -ENODEV;

	drv->tcsr = syscon_node_to_regmap(np);
	of_node_put(np);
	if (IS_ERR(drv->tcsr))
		return PTR_ERR(drv->tcsr);

	drv->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(drv->base))
		return PTR_ERR(drv->base);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return -EINVAL;

	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
	if (IS_ERR(drv->vdd_apc))
		return PTR_ERR(drv->vdd_apc);

	/*
	 * Initialize fuse corners, since it simply depends
	 * on data in efuses.
	 * Everything related to (virtual) corners has to be
	 * initialized after attaching to the power domain,
	 * since it depends on the CPU's OPP table.
	 */
	ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
	if (ret)
		return ret;

	drv->cpr_fuses = cpr_get_fuses(drv);
	if (IS_ERR(drv->cpr_fuses))
		return PTR_ERR(drv->cpr_fuses);

	ret = cpr_populate_ring_osc_idx(drv);
	if (ret)
		return ret;

	ret = cpr_fuse_corner_init(drv);
	if (ret)
		return ret;

	mutex_init(&drv->lock);

	ret = devm_request_threaded_irq(dev, irq, NULL,
					cpr_irq_handler,
					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
					"cpr", drv);
	if (ret)
		return ret;

	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
					  GFP_KERNEL);
	if (!drv->pd.name)
		return -EINVAL;

	drv->pd.power_off = cpr_power_off;
	drv->pd.power_on = cpr_power_on;
	drv->pd.set_performance_state = cpr_set_performance_state;
	drv->pd.opp_to_performance_state = cpr_get_performance_state;
	drv->pd.attach_dev = cpr_pd_attach_dev;

	ret = pm_genpd_init(&drv->pd, NULL, true);
	if (ret)
		return ret;

	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
	if (ret)
		goto err_remove_genpd;

	platform_set_drvdata(pdev, drv);
	cpr_debugfs_init(drv);

	return 0;

err_remove_genpd:
	pm_genpd_remove(&drv->pd);
	return ret;
}

static int cpr_remove(struct platform_device *pdev)
{
	struct cpr_drv *drv = platform_get_drvdata(pdev);

	if (cpr_is_allowed(drv)) {
		cpr_ctl_disable(drv);
		cpr_irq_set(drv, 0);
	}

	of_genpd_del_provider(pdev->dev.of_node);
	pm_genpd_remove(&drv->pd);

	debugfs_remove_recursive(drv->debugfs);

	return 0;
}

static const struct of_device_id cpr_match_table[] = {
	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
	{ }
};
MODULE_DEVICE_TABLE(of, cpr_match_table);

static struct platform_driver cpr_driver = {
	.probe		= cpr_probe,
	.remove		= cpr_remove,
	.driver		= {
		.name	= "qcom-cpr",
		.of_match_table = cpr_match_table,
	},
};
module_platform_driver(cpr_driver);

MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
MODULE_LICENSE("GPL v2");