summaryrefslogblamecommitdiff
path: root/drivers/scsi/sym53c8xx_2/sym_hipd.h
blob: c55c7a57afa08fb8997de135979b8d8f52cd279d (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446





























































































































































































































































































































































































































































                                                                                  
                                    




















































































































































































































































































































                                                                              
                                                                               
 


















































                                                                          
                                                                              







































































































































































































































































































































                                                                                         
                               





                                  
                               
      
                           



                                                           
                                             





                                                         
                             



                                                           
                      



















                                                        
                                     



















































































































                                                                              
/*
 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
 * of PCI-SCSI IO processors.
 *
 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
 *
 * This driver is derived from the Linux sym53c8xx driver.
 * Copyright (C) 1998-2000  Gerard Roudier
 *
 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
 * a port of the FreeBSD ncr driver to Linux-1.2.13.
 *
 * The original ncr driver has been written for 386bsd and FreeBSD by
 *         Wolfgang Stanglmeier        <wolf@cologne.de>
 *         Stefan Esser                <se@mi.Uni-Koeln.de>
 * Copyright (C) 1994  Wolfgang Stanglmeier
 *
 * Other major contributions:
 *
 * NVRAM detection and reading.
 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
 *
 *-----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#ifndef SYM_HIPD_H
#define SYM_HIPD_H

/*
 *  Generic driver options.
 *
 *  They may be defined in platform specific headers, if they 
 *  are useful.
 *
 *    SYM_OPT_HANDLE_DIR_UNKNOWN
 *        When this option is set, the SCRIPTS used by the driver 
 *        are able to handle SCSI transfers with direction not 
 *        supplied by user.
 *        (set for Linux-2.0.X)
 *
 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
 *        When this option is set, the driver will use a queue per 
 *        device and handle QUEUE FULL status requeuing internally.
 *
 *    SYM_OPT_LIMIT_COMMAND_REORDERING
 *        When this option is set, the driver tries to limit tagged 
 *        command reordering to some reasonnable value.
 *        (set for Linux)
 */
#if 0
#define SYM_OPT_HANDLE_DIR_UNKNOWN
#define SYM_OPT_HANDLE_DEVICE_QUEUEING
#define SYM_OPT_LIMIT_COMMAND_REORDERING
#endif

/*
 *  Active debugging tags and verbosity.
 *  Both DEBUG_FLAGS and sym_verbose can be redefined 
 *  by the platform specific code to something else.
 */
#define DEBUG_ALLOC	(0x0001)
#define DEBUG_PHASE	(0x0002)
#define DEBUG_POLL	(0x0004)
#define DEBUG_QUEUE	(0x0008)
#define DEBUG_RESULT	(0x0010)
#define DEBUG_SCATTER	(0x0020)
#define DEBUG_SCRIPT	(0x0040)
#define DEBUG_TINY	(0x0080)
#define DEBUG_TIMING	(0x0100)
#define DEBUG_NEGO	(0x0200)
#define DEBUG_TAGS	(0x0400)
#define DEBUG_POINTER	(0x0800)

#ifndef DEBUG_FLAGS
#define DEBUG_FLAGS	(0x0000)
#endif

#ifndef sym_verbose
#define sym_verbose	(np->verbose)
#endif

/*
 *  These ones should have been already defined.
 */
#ifndef assert
#define	assert(expression) { \
	if (!(expression)) { \
		(void)panic( \
			"assertion \"%s\" failed: file \"%s\", line %d\n", \
			#expression, \
			__FILE__, __LINE__); \
	} \
}
#endif

/*
 *  Number of tasks per device we want to handle.
 */
#if	SYM_CONF_MAX_TAG_ORDER > 8
#error	"more than 256 tags per logical unit not allowed."
#endif
#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)

/*
 *  Donnot use more tasks that we can handle.
 */
#ifndef	SYM_CONF_MAX_TAG
#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
#endif
#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
#undef	SYM_CONF_MAX_TAG
#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
#endif

/*
 *    This one means 'NO TAG for this job'
 */
#define NO_TAG	(256)

/*
 *  Number of SCSI targets.
 */
#if	SYM_CONF_MAX_TARGET > 16
#error	"more than 16 targets not allowed."
#endif

/*
 *  Number of logical units per target.
 */
#if	SYM_CONF_MAX_LUN > 64
#error	"more than 64 logical units per target not allowed."
#endif

/*
 *    Asynchronous pre-scaler (ns). Shall be 40 for 
 *    the SCSI timings to be compliant.
 */
#define	SYM_CONF_MIN_ASYNC (40)

/*
 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
 *  (1 PAGE at a time is just fine).
 */
#define SYM_MEM_SHIFT	4
#define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
#define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)

/*
 *  Number of entries in the START and DONE queues.
 *
 *  We limit to 1 PAGE in order to succeed allocation of 
 *  these queues. Each entry is 8 bytes long (2 DWORDS).
 */
#ifdef	SYM_CONF_MAX_START
#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
#else
#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif

#if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
#undef	SYM_CONF_MAX_QUEUE
#define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
#undef	SYM_CONF_MAX_START
#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif

/*
 *  For this one, we want a short name :-)
 */
#define MAX_QUEUE	SYM_CONF_MAX_QUEUE

/*
 *  Common definitions for both bus space based and legacy IO methods.
 */

#define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
#define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
#define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))

#define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
#define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
#define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))

#define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
#define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
#define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))

#define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
#define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
#define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))

#define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
#define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
#define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
#define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
#define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
#define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))

/*
 *  We normally want the chip to have a consistent view
 *  of driver internal data structures when we restart it.
 *  Thus these macros.
 */
#define OUTL_DSP(np, v)				\
	do {					\
		MEMORY_WRITE_BARRIER();		\
		OUTL(np, nc_dsp, (v));		\
	} while (0)

#define OUTONB_STD()				\
	do {					\
		MEMORY_WRITE_BARRIER();		\
		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
	} while (0)

/*
 *  Command control block states.
 */
#define HS_IDLE		(0)
#define HS_BUSY		(1)
#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
#define HS_DISCONNECT	(3)	/* Disconnected by target */
#define HS_WAIT		(4)	/* waiting for resource	  */

#define HS_DONEMASK	(0x80)
#define HS_COMPLETE	(4|HS_DONEMASK)
#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */

/*
 *  Software Interrupt Codes
 */
#define	SIR_BAD_SCSI_STATUS	(1)
#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
#define	SIR_MSG_RECEIVED	(3)
#define	SIR_MSG_WEIRD		(4)
#define	SIR_NEGO_FAILED		(5)
#define	SIR_NEGO_PROTO		(6)
#define	SIR_SCRIPT_STOPPED	(7)
#define	SIR_REJECT_TO_SEND	(8)
#define	SIR_SWIDE_OVERRUN	(9)
#define	SIR_SODL_UNDERRUN	(10)
#define	SIR_RESEL_NO_MSG_IN	(11)
#define	SIR_RESEL_NO_IDENTIFY	(12)
#define	SIR_RESEL_BAD_LUN	(13)
#define	SIR_TARGET_SELECTED	(14)
#define	SIR_RESEL_BAD_I_T_L	(15)
#define	SIR_RESEL_BAD_I_T_L_Q	(16)
#define	SIR_ABORT_SENT		(17)
#define	SIR_RESEL_ABORTED	(18)
#define	SIR_MSG_OUT_DONE	(19)
#define	SIR_COMPLETE_ERROR	(20)
#define	SIR_DATA_OVERRUN	(21)
#define	SIR_BAD_PHASE		(22)
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
#define	SIR_DMAP_DIRTY		(23)
#define	SIR_MAX			(23)
#else
#define	SIR_MAX			(22)
#endif

/*
 *  Extended error bit codes.
 *  xerr_status field of struct sym_ccb.
 */
#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */

/*
 *  Negotiation status.
 *  nego_status field of struct sym_ccb.
 */
#define NS_SYNC		(1)
#define NS_WIDE		(2)
#define NS_PPR		(3)

/*
 *  A CCB hashed table is used to retrieve CCB address 
 *  from DSA value.
 */
#define CCB_HASH_SHIFT		8
#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
#if 1
#define CCB_HASH_CODE(dsa)	\
	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
#else
#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
#endif

#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
/*
 *  We may want to use segment registers for 64 bit DMA.
 *  16 segments registers -> up to 64 GB addressable.
 */
#define SYM_DMAP_SHIFT	(4)
#define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
#define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
#endif

/*
 *  Device flags.
 */
#define SYM_DISC_ENABLED	(1)
#define SYM_TAGS_ENABLED	(1<<1)
#define SYM_SCAN_BOOT_DISABLED	(1<<2)
#define SYM_SCAN_LUNS_DISABLED	(1<<3)

/*
 *  Host adapter miscellaneous flags.
 */
#define SYM_AVOID_BUS_RESET	(1)

/*
 *  Misc.
 */
#define SYM_SNOOP_TIMEOUT (10000000)
#define BUS_8_BIT	0
#define BUS_16_BIT	1

/*
 *  Gather negotiable parameters value
 */
struct sym_trans {
	u8 period;
	u8 offset;
	unsigned int width:1;
	unsigned int iu:1;
	unsigned int dt:1;
	unsigned int qas:1;
	unsigned int check_nego:1;
};

/*
 *  Global TCB HEADER.
 *
 *  Due to lack of indirect addressing on earlier NCR chips,
 *  this substructure is copied from the TCB to a global 
 *  address after selection.
 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 *  not needed and thus not performed.
 */
struct sym_tcbh {
	/*
	 *  Scripts bus addresses of LUN table accessed from scripts.
	 *  LUN #0 is a special case, since multi-lun devices are rare, 
	 *  and we we want to speed-up the general case and not waste 
	 *  resources.
	 */
	u32	luntbl_sa;	/* bus address of this table	*/
	u32	lun0_sa;	/* bus address of LCB #0	*/
	/*
	 *  Actual SYNC/WIDE IO registers value for this target.
	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and 
	 *  so have alignment constraints.
	 */
/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
/*1*/	u_char	sval;		/* -> SXFER  io register	*/
/*2*/	u_char	filler1;
/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
};

/*
 *  Target Control Block
 */
struct sym_tcb {
	/*
	 *  TCB header.
	 *  Assumed at offset 0.
	 */
/*0*/	struct sym_tcbh head;

	/*
	 *  LUN table used by the SCRIPTS processor.
	 *  An array of bus addresses is used on reselection.
	 */
	u32	*luntbl;	/* LCBs bus address table	*/

	/*
	 *  LUN table used by the C code.
	 */
	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
#if SYM_CONF_MAX_LUN > 1
	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
#endif

	/*
	 *  Bitmap that tells about LUNs that succeeded at least 
	 *  1 IO and therefore assumed to be a real device.
	 *  Avoid useless allocation of the LCB structure.
	 */
	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];

	/*
	 *  Bitmap that tells about LUNs that haven't yet an LCB 
	 *  allocated (not discovered or LCB allocation failed).
	 */
	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];

#ifdef	SYM_HAVE_STCB
	/*
	 *  O/S specific data structure.
	 */
	struct sym_stcb s;
#endif

	/* Transfer goal */
	struct sym_trans tgoal;

	/*
	 * Keep track of the CCB used for the negotiation in order
	 * to ensure that only 1 negotiation is queued at a time.
	 */
	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/

	/*
	 *  Set when we want to reset the device.
	 */
	u_char	to_reset;

	/*
	 *  Other user settable limits and options.
	 *  These limits are read from the NVRAM if present.
	 */
	u_char	usrflags;
	u_short	usrtags;
	struct scsi_target *starget;
};

/*
 *  Global LCB HEADER.
 *
 *  Due to lack of indirect addressing on earlier NCR chips,
 *  this substructure is copied from the LCB to a global 
 *  address after selection.
 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 *  not needed and thus not performed.
 */
struct sym_lcbh {
	/*
	 *  SCRIPTS address jumped by SCRIPTS on reselection.
	 *  For not probed logical units, this address points to 
	 *  SCRIPTS that deal with bad LU handling (must be at 
	 *  offset zero of the LCB for that reason).
	 */
/*0*/	u32	resel_sa;

	/*
	 *  Task (bus address of a CCB) read from SCRIPTS that points 
	 *  to the unique ITL nexus allowed to be disconnected.
	 */
	u32	itl_task_sa;

	/*
	 *  Task table bus address (read from SCRIPTS).
	 */
	u32	itlq_tbl_sa;
};

/*
 *  Logical Unit Control Block
 */
struct sym_lcb {
	/*
	 *  TCB header.
	 *  Assumed at offset 0.
	 */
/*0*/	struct sym_lcbh head;

	/*
	 *  Task table read from SCRIPTS that contains pointers to 
	 *  ITLQ nexuses. The bus address read from SCRIPTS is 
	 *  inside the header.
	 */
	u32	*itlq_tbl;	/* Kernel virtual address	*/

	/*
	 *  Busy CCBs management.
	 */
	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
	u_short	busy_itl;	/* Number of busy untagged CCBs	*/

	/*
	 *  Circular tag allocation buffer.
	 */
	u_short	ia_tag;		/* Tag allocation index		*/
	u_short	if_tag;		/* Tag release index		*/
	u_char	*cb_tags;	/* Circular tags buffer		*/

	/*
	 *  O/S specific data structure.
	 */
#ifdef	SYM_HAVE_SLCB
	struct sym_slcb s;
#endif

#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
	/*
	 *  Optionnaly the driver can handle device queueing, 
	 *  and requeues internally command to redo.
	 */
	SYM_QUEHEAD waiting_ccbq;
	SYM_QUEHEAD started_ccbq;
	int	num_sgood;
	u_short	started_tags;
	u_short	started_no_tag;
	u_short	started_max;
	u_short	started_limit;
#endif

#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
	/*
	 *  Optionally the driver can try to prevent SCSI 
	 *  IOs from being reordered too much.
	 */
	u_char		tags_si;	/* Current index to tags sum	*/
	u_short		tags_sum[2];	/* Tags sum counters		*/
	u_short		tags_since;	/* # of tags since last switch	*/
#endif

	/*
	 *  Set when we want to clear all tasks.
	 */
	u_char to_clear;

	/*
	 *  Capabilities.
	 */
	u_char	user_flags;
	u_char	curr_flags;
};

/*
 *  Action from SCRIPTS on a task.
 *  Is part of the CCB, but is also used separately to plug 
 *  error handling action to perform from SCRIPTS.
 */
struct sym_actscr {
	u32	start;		/* Jumped by SCRIPTS after selection	*/
	u32	restart;	/* Jumped by SCRIPTS on relection	*/
};

/*
 *  Phase mismatch context.
 *
 *  It is part of the CCB and is used as parameters for the 
 *  DATA pointer. We need two contexts to handle correctly the 
 *  SAVED DATA POINTER.
 */
struct sym_pmc {
	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
	u32	ret;		/* SCRIPT return address	*/
};

/*
 *  LUN control block lookup.
 *  We use a direct pointer for LUN #0, and a table of 
 *  pointers which is only allocated for devices that support 
 *  LUN(s) > 0.
 */
#if SYM_CONF_MAX_LUN <= 1
#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
#else
#define sym_lp(tp, lun) \
	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
#endif

/*
 *  Status are used by the host and the script processor.
 *
 *  The last four bytes (status[4]) are copied to the 
 *  scratchb register (declared as scr0..scr3) just after the 
 *  select/reselect, and copied back just after disconnecting.
 *  Inside the script the XX_REG are used.
 */

/*
 *  Last four bytes (script)
 */
#define  HX_REG	scr0
#define  HX_PRT	nc_scr0
#define  HS_REG	scr1
#define  HS_PRT	nc_scr1
#define  SS_REG	scr2
#define  SS_PRT	nc_scr2
#define  HF_REG	scr3
#define  HF_PRT	nc_scr3

/*
 *  Last four bytes (host)
 */
#define  host_xflags   phys.head.status[0]
#define  host_status   phys.head.status[1]
#define  ssss_status   phys.head.status[2]
#define  host_flags    phys.head.status[3]

/*
 *  Host flags
 */
#define HF_IN_PM0	1u
#define HF_IN_PM1	(1u<<1)
#define HF_ACT_PM	(1u<<2)
#define HF_DP_SAVED	(1u<<3)
#define HF_SENSE	(1u<<4)
#define HF_EXT_ERR	(1u<<5)
#define HF_DATA_IN	(1u<<6)
#ifdef SYM_CONF_IARB_SUPPORT
#define HF_HINT_IARB	(1u<<7)
#endif

/*
 *  More host flags
 */
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
#define	HX_DMAP_DIRTY	(1u<<7)
#endif

/*
 *  Global CCB HEADER.
 *
 *  Due to lack of indirect addressing on earlier NCR chips,
 *  this substructure is copied from the ccb to a global 
 *  address after selection (or reselection) and copied back 
 *  before disconnect.
 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 *  not needed and thus not performed.
 */

struct sym_ccbh {
	/*
	 *  Start and restart SCRIPTS addresses (must be at 0).
	 */
/*0*/	struct sym_actscr go;

	/*
	 *  SCRIPTS jump address that deal with data pointers.
	 *  'savep' points to the position in the script responsible 
	 *  for the actual transfer of data.
	 *  It's written on reception of a SAVE_DATA_POINTER message.
	 */
	u32	savep;		/* Jump address to saved data pointer	*/
	u32	lastp;		/* SCRIPTS address at end of data	*/
#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
	u32	wlastp;
#endif

	/*
	 *  Status fields.
	 */
	u8	status[4];
};

/*
 *  GET/SET the value of the data pointer used by SCRIPTS.
 *
 *  We must distinguish between the LOAD/STORE-based SCRIPTS 
 *  that use directly the header in the CCB, and the NCR-GENERIC 
 *  SCRIPTS that use the copy of the header in the HCB.
 */
#if	SYM_CONF_GENERIC_SUPPORT
#define sym_set_script_dp(np, cp, dp)				\
	do {							\
		if (np->features & FE_LDSTR)			\
			cp->phys.head.lastp = cpu_to_scr(dp);	\
		else						\
			np->ccb_head.lastp = cpu_to_scr(dp);	\
	} while (0)
#define sym_get_script_dp(np, cp) 				\
	scr_to_cpu((np->features & FE_LDSTR) ?			\
		cp->phys.head.lastp : np->ccb_head.lastp)
#else
#define sym_set_script_dp(np, cp, dp)				\
	do {							\
		cp->phys.head.lastp = cpu_to_scr(dp);		\
	} while (0)

#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
#endif

/*
 *  Data Structure Block
 *
 *  During execution of a ccb by the script processor, the 
 *  DSA (data structure address) register points to this 
 *  substructure of the ccb.
 */
struct sym_dsb {
	/*
	 *  CCB header.
	 *  Also assumed at offset 0 of the sym_ccb structure.
	 */
/*0*/	struct sym_ccbh head;

	/*
	 *  Phase mismatch contexts.
	 *  We need two to handle correctly the SAVED DATA POINTER.
	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 
	 *  for address calculation from SCRIPTS.
	 */
	struct sym_pmc pm0;
	struct sym_pmc pm1;

	/*
	 *  Table data for Script
	 */
	struct sym_tblsel  select;
	struct sym_tblmove smsg;
	struct sym_tblmove smsg_ext;
	struct sym_tblmove cmd;
	struct sym_tblmove sense;
	struct sym_tblmove wresid;
	struct sym_tblmove data [SYM_CONF_MAX_SG];
};

/*
 *  Our Command Control Block
 */
struct sym_ccb {
	/*
	 *  This is the data structure which is pointed by the DSA 
	 *  register when it is executed by the script processor.
	 *  It must be the first entry.
	 */
	struct sym_dsb phys;

	/*
	 *  Pointer to CAM ccb and related stuff.
	 */
	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
	u8	cdb_buf[16];	/* Copy of CDB			*/
#define	SYM_SNS_BBUF_LEN 32
	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
	int	data_len;	/* Total data length		*/
	int	segments;	/* Number of SG segments	*/

	u8	order;		/* Tag type (if tagged command)	*/
	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */

	u_char	nego_status;	/* Negotiation status		*/
	u_char	xerr_status;	/* Extended error flags		*/
	u32	extra_bytes;	/* Extraneous bytes transferred	*/

	/*
	 *  Message areas.
	 *  We prepare a message to be sent after selection.
	 *  We may use a second one if the command is rescheduled 
	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
	 *  Contents are IDENTIFY and SIMPLE_TAG.
	 *  While negotiating sync or wide transfer,
	 *  a SDTR or WDTR message is appended.
	 */
	u_char	scsi_smsg [12];
	u_char	scsi_smsg2[12];

	/*
	 *  Auto request sense related fields.
	 */
	u_char	sensecmd[6];	/* Request Sense command	*/
	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
	u_char	sv_xerr_status;	/* Saved extended status	*/
	int	sv_resid;	/* Saved residual		*/

	/*
	 *  Other fields.
	 */
	u32	ccb_ba;		/* BUS address of this CCB	*/
	u_short	tag;		/* Tag for this transfer	*/
				/*  NO_TAG means no tag		*/
	u_char	target;
	u_char	lun;
	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
	u32	startp;		/* Initial data pointer		*/
	u32	goalp;		/* Expected last data pointer	*/
#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
	u32	wgoalp;
#endif
	int	ext_sg;		/* Extreme data pointer, used	*/
	int	ext_ofs;	/*  to calculate the residual.	*/
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
	u_char	started;	/* CCB queued to the squeue	*/
#endif
	u_char	to_abort;	/* Want this IO to be aborted	*/
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
#endif
};

#define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))

#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
#define	sym_goalp(cp) ((cp->host_flags & HF_DATA_IN) ? cp->goalp : cp->wgoalp)
#else
#define	sym_goalp(cp) (cp->goalp)
#endif

typedef struct device *m_pool_ident_t;

/*
 *  Host Control Block
 */
struct sym_hcb {
	/*
	 *  Global headers.
	 *  Due to poorness of addressing capabilities, earlier 
	 *  chips (810, 815, 825) copy part of the data structures 
	 *  (CCB, TCB and LCB) in fixed areas.
	 */
#if	SYM_CONF_GENERIC_SUPPORT
	struct sym_ccbh	ccb_head;
	struct sym_tcbh	tcb_head;
	struct sym_lcbh	lcb_head;
#endif
	/*
	 *  Idle task and invalid task actions and 
	 *  their bus addresses.
	 */
	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;

	/*
	 *  Dummy lun table to protect us against target 
	 *  returning bad lun number on reselection.
	 */
	u32	*badluntbl;	/* Table physical address	*/
	u32	badlun_sa;	/* SCRIPT handler BUS address	*/

	/*
	 *  Bus address of this host control block.
	 */
	u32	hcb_ba;

	/*
	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
	 *  The START_RAM64 script loads the MMRS and MMWS from this 
	 *  field.
	 */
	u32	scr_ram_seg;

	/*
	 *  Initial value of some IO register bits.
	 *  These values are assumed to have been set by BIOS, and may 
	 *  be used to probe adapter implementation differences.
	 */
	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
		sv_stest1;

	/*
	 *  Actual initial value of IO register bits used by the 
	 *  driver. They are loaded at initialisation according to  
	 *  features that are to be enabled/disabled.
	 */
	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 
		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;

	/*
	 *  Target data.
	 */
	struct sym_tcb	target[SYM_CONF_MAX_TARGET];

	/*
	 *  Target control block bus address array used by the SCRIPT 
	 *  on reselection.
	 */
	u32		*targtbl;
	u32		targtbl_ba;

	/*
	 *  DMA pool handle for this HBA.
	 */
	m_pool_ident_t	bus_dmat;

	/*
	 *  O/S specific data structure
	 */
	struct sym_shcb s;

	/*
	 *  Physical bus addresses of the chip.
	 */
	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
	int		mmio_ws;	/* MMIO Window size		*/

	u32		ram_ba;		/* RAM 32 bit BUS address	*/
	int		ram_ws;		/* RAM window size		*/

	/*
	 *  SCRIPTS virtual and physical bus addresses.
	 *  'script'  is loaded in the on-chip RAM if present.
	 *  'scripth' stays in main memory for all chips except the 
	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
	 */
	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
	u_char		*scriptb0;
	u_char		*scriptz0;
	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
	u32		scriptz_ba;
	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
	u_short		scriptb_sz;
	u_short		scriptz_sz;

	/*
	 *  Bus addresses, setup and patch methods for 
	 *  the selected firmware.
	 */
	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
	void		(*fw_patch)(struct sym_hcb *np);
	char		*fw_name;

	/*
	 *  General controller parameters and configuration.
	 */
	u_short	device_id;	/* PCI device id		*/
	u_char	revision_id;	/* PCI device revision id	*/
	u_int	features;	/* Chip features map		*/
	u_char	myaddr;		/* SCSI id of the adapter	*/
	u_char	maxburst;	/* log base 2 of dwords burst	*/
	u_char	maxwide;	/* Maximum transfer width	*/
	u_char	minsync;	/* Min sync period factor (ST)	*/
	u_char	maxsync;	/* Max sync period factor (ST)	*/
	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
	u_char	clock_divn;	/* Number of clock divisors	*/
	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
	/*
	 *  Start queue management.
	 *  It is filled up by the host processor and accessed by the 
	 *  SCRIPTS processor in order to start SCSI commands.
	 */
	volatile		/* Prevent code optimizations	*/
	u32	*squeue;	/* Start queue virtual address	*/
	u32	squeue_ba;	/* Start queue BUS address	*/
	u_short	squeueput;	/* Next free slot of the queue	*/
	u_short	actccbs;	/* Number of allocated CCBs	*/

	/*
	 *  Command completion queue.
	 *  It is the same size as the start queue to avoid overflow.
	 */
	u_short	dqueueget;	/* Next position to scan	*/
	volatile		/* Prevent code optimizations	*/
	u32	*dqueue;	/* Completion (done) queue	*/
	u32	dqueue_ba;	/* Done queue BUS address	*/

	/*
	 *  Miscellaneous buffers accessed by the scripts-processor.
	 *  They shall be DWORD aligned, because they may be read or 
	 *  written with a script command.
	 */
	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
	u32		lastmsg;	/* Last SCSI message sent	*/
	u32		scratch;	/* Scratch for SCSI receive	*/
					/* Also used for cache test 	*/
	/*
	 *  Miscellaneous configuration and status parameters.
	 */
	u_char		usrflags;	/* Miscellaneous user flags	*/
	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
	u_char		verbose;	/* Verbosity for this controller*/

	/*
	 *  CCB lists and queue.
	 */
	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
					/* CCB_HASH_SIZE lists of CCBs	*/
	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/

	/*
	 *  During error handling and/or recovery,
	 *  active CCBs that are to be completed with 
	 *  error or requeued are moved from the busy_ccbq
	 *  to the comp_ccbq prior to completion.
	 */
	SYM_QUEHEAD	comp_ccbq;

#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
	SYM_QUEHEAD	dummy_ccbq;
#endif

	/*
	 *  IMMEDIATE ARBITRATION (IARB) control.
	 *
	 *  We keep track in 'last_cp' of the last CCB that has been 
	 *  queued to the SCRIPTS processor and clear 'last_cp' when 
	 *  this CCB completes. If last_cp is not zero at the moment 
	 *  we queue a new CCB, we set a flag in 'last_cp' that is 
	 *  used by the SCRIPTS as a hint for setting IARB.
	 *  We donnot set more than 'iarb_max' consecutive hints for 
	 *  IARB in order to leave devices a chance to reselect.
	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
	 */
#ifdef SYM_CONF_IARB_SUPPORT
	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
	u_short		iarb_count;	/* Actual # of these hints	*/
	struct sym_ccb *	last_cp;
#endif

	/*
	 *  Command abort handling.
	 *  We need to synchronize tightly with the SCRIPTS 
	 *  processor in order to handle things correctly.
	 */
	u_char		abrt_msg[4];	/* Message to send buffer	*/
	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/

	/*
	 *  64 bit DMA handling.
	 */
#if	SYM_CONF_DMA_ADDRESSING_MODE != 0
	u_char	use_dac;		/* Use PCI DAC cycles		*/
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
#endif
#endif
};

#define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))


/*
 *  FIRMWARES (sym_fw.c)
 */
struct sym_fw * sym_find_firmware(struct sym_chip *chip);
void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);

/*
 *  Driver methods called from O/S specific code.
 */
char *sym_driver_name(void);
void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
#endif
void sym_start_up(struct sym_hcb *np, int reason);
void sym_interrupt(struct sym_hcb *np);
int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
int sym_reset_scsi_target(struct sym_hcb *np, int target);
void sym_hcb_free(struct sym_hcb *np);
int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);

/*
 *  Build a scatter/gather entry.
 *
 *  For 64 bit systems, we use the 8 upper bits of the size field 
 *  to provide bus address bits 32-39 to the SCRIPTS processor.
 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
 */

#if   SYM_CONF_DMA_ADDRESSING_MODE == 0
#define sym_build_sge(np, data, badd, len)	\
do {						\
	(data)->addr = cpu_to_scr(badd);	\
	(data)->size = cpu_to_scr(len);		\
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
#define sym_build_sge(np, data, badd, len)				\
do {									\
	(data)->addr = cpu_to_scr(badd);				\
	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
static __inline void 
sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
{
	u32 h = (badd>>32);
	int s = (h&SYM_DMAP_MASK);

	if (h != np->dmap_bah[s])
		goto bad;
good:
	(data)->addr = cpu_to_scr(badd);
	(data)->size = cpu_to_scr((s<<24) + len);
	return;
bad:
	s = sym_lookup_dmap(np, h, s);
	goto good;
}
#else
#error "Unsupported DMA addressing mode"
#endif

/*
 *  Set up data pointers used by SCRIPTS.
 *  Called from O/S specific code.
 */
static inline void sym_setup_data_pointers(struct sym_hcb *np,
		struct sym_ccb *cp, int dir)
{
	u32 lastp, goalp;

	/*
	 *  No segments means no data.
	 */
	if (!cp->segments)
		dir = DMA_NONE;

	/*
	 *  Set the data pointer.
	 */
	switch(dir) {
#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
	case DMA_BIDIRECTIONAL:
#endif
	case DMA_TO_DEVICE:
		goalp = SCRIPTA_BA(np, data_out2) + 8;
		lastp = goalp - 8 - (cp->segments * (2*4));
#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
		cp->wgoalp = cpu_to_scr(goalp);
		if (dir != DMA_BIDIRECTIONAL)
			break;
		cp->phys.head.wlastp = cpu_to_scr(lastp);
		/* fall through */
#else
		break;
#endif
	case DMA_FROM_DEVICE:
		cp->host_flags |= HF_DATA_IN;
		goalp = SCRIPTA_BA(np, data_in2) + 8;
		lastp = goalp - 8 - (cp->segments * (2*4));
		break;
	case DMA_NONE:
	default:
#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
		cp->host_flags |= HF_DATA_IN;
#endif
		lastp = goalp = SCRIPTB_BA(np, no_data);
		break;
	}

	/*
	 *  Set all pointers values needed by SCRIPTS.
	 */
	cp->phys.head.lastp = cpu_to_scr(lastp);
	cp->phys.head.savep = cpu_to_scr(lastp);
	cp->startp	    = cp->phys.head.savep;
	cp->goalp	    = cpu_to_scr(goalp);

#ifdef	SYM_OPT_HANDLE_DIR_UNKNOWN
	/*
	 *  If direction is unknown, start at data_io.
	 */
	if (dir == DMA_BIDIRECTIONAL)
		cp->phys.head.savep = cpu_to_scr(SCRIPTB_BA(np, data_io));
#endif
}

/*
 *  MEMORY ALLOCATOR.
 */

#define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
#define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
#define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */

#define SYM_MEM_WARN	1	/* Warn on failed operations */

#define sym_get_mem_cluster()	\
	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
#define sym_free_mem_cluster(p)	\
	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)

/*
 *  Link between free memory chunks of a given size.
 */
typedef struct sym_m_link {
	struct sym_m_link *next;
} *m_link_p;

/*
 *  Virtual to bus physical translation for a given cluster.
 *  Such a structure is only useful with DMA abstraction.
 */
typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
	struct sym_m_vtob *next;
	void *vaddr;		/* Virtual address */
	dma_addr_t baddr;	/* Bus physical address */
} *m_vtob_p;

/* Hash this stuff a bit to speed up translations */
#define VTOB_HASH_SHIFT		5
#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m)	\
	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)

/*
 *  Memory pool of a given kind.
 *  Ideally, we want to use:
 *  1) 1 pool for memory we donnot need to involve in DMA.
 *  2) The same pool for controllers that require same DMA 
 *     constraints and features.
 *     The OS specific m_pool_id_t thing and the sym_m_pool_match() 
 *     method are expected to tell the driver about.
 */
typedef struct sym_m_pool {
	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
	void * (*get_mem_cluster)(struct sym_m_pool *);
#ifdef	SYM_MEM_FREE_UNUSED
	void (*free_mem_cluster)(struct sym_m_pool *, void *);
#endif
#define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
#define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
	int nump;
	m_vtob_p vtob[VTOB_HASH_SIZE];
	struct sym_m_pool *next;
	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
} *m_pool_p;

/*
 *  Alloc, free and translate addresses to bus physical 
 *  for DMAable memory.
 */
void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);

/*
 * Verbs used by the driver code for DMAable memory handling.
 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 
 * being discarded.
 */
#define _uvptv_(p) ((void *)((u_long)(p)))

#define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
#define _sym_mfree_dma(np, p, l, n)	\
			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
#define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
#define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
#define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))

/*
 *  We have to provide the driver memory allocator with methods for 
 *  it to maintain virtual to bus physical address translations.
 */

#define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)

static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
{
	void *vaddr = NULL;
	dma_addr_t baddr = 0;

	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
			GFP_ATOMIC);
	if (vaddr) {
		vbp->vaddr = vaddr;
		vbp->baddr = baddr;
	}
	return vaddr;
}

static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
{
	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
			vbp->baddr);
}

#endif /* SYM_HIPD_H */