/*
* libata-core.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/suspend.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/scatterlist.h>
#include <scsi/scsi.h>
#include "scsi_priv.h"
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/byteorder.h>
#include "libata.h"
static unsigned int ata_dev_init_params(struct ata_port *ap,
struct ata_device *dev,
u16 heads,
u16 sectors);
static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
int force_pio0);
static int ata_down_sata_spd_limit(struct ata_port *ap);
static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
struct ata_device *dev);
static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
static unsigned int ata_unique_id = 1;
static struct workqueue_struct *ata_wq;
int atapi_enabled = 1;
module_param(atapi_enabled, int, 0444);
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
int libata_fua = 0;
module_param_named(fua, libata_fua, int, 0444);
MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Library module for ATA devices");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @fis: Buffer into which data will output
* @pmp: Port multiplier port
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = 0;
fis[17] = 0;
fis[18] = 0;
fis[19] = 0;
}
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
static const u8 ata_rw_cmds[] = {
/* pio multi */
ATA_CMD_READ_MULTI,
ATA_CMD_WRITE_MULTI,
ATA_CMD_READ_MULTI_EXT,
ATA_CMD_WRITE_MULTI_EXT,
0,
0,
0,
ATA_CMD_WRITE_MULTI_FUA_EXT,
/* pio */
ATA_CMD_PIO_READ,
ATA_CMD_PIO_WRITE,
ATA_CMD_PIO_READ_EXT,
ATA_CMD_PIO_WRITE_EXT,
0,
0,
0,
0,
/* dma */
ATA_CMD_READ,
ATA_CMD_WRITE,
ATA_CMD_READ_EXT,
ATA_CMD_WRITE_EXT,
0,
0,
0,
ATA_CMD_WRITE_FUA_EXT
};
/**
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
* @qc: command to examine and configure
*
* Examine the device configuration and tf->flags to calculate
* the proper read/write commands and protocol to use.
*
* LOCKING:
* caller.
*/
int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
{
struct ata_taskfile *tf = &qc->tf;
struct ata_device *dev = qc->dev;
u8 cmd;
int index, fua, lba48, write;
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
if (dev->flags & ATA_DFLAG_PIO) {
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
/* Unable to use DMA due to host limitation */
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else {
tf->protocol = ATA_PROT_DMA;
index = 16;
}
cmd = ata_rw_cmds[index + fua + lba48 + write];
if (cmd) {
tf->command = cmd;
return 0;
}
return -1;
}
/**
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
* @pio_mask: pio_mask
* @mwdma_mask: mwdma_mask
* @udma_mask: udma_mask
*
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
* unsigned int xfer_mask.
*
* LOCKING:
* None.
*
* RETURNS:
* Packed xfer_mask.
*/
static unsigned int ata_pack_xfermask(unsigned int pio_mask,
unsigned int mwdma_mask,
unsigned int udma_mask)
{
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
}
/**
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
* @xfer_mask: xfer_mask to unpack
* @pio_mask: resulting pio_mask
* @mwdma_mask: resulting mwdma_mask
* @udma_mask: resulting udma_mask
*
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
* Any NULL distination masks will be ignored.
*/
static void ata_unpack_xfermask(unsigned int xfer_mask,
unsigned int *pio_mask,
unsigned int *mwdma_mask,
unsigned int *udma_mask)
{
if (pio_mask)
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
if (mwdma_mask)
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
if (udma_mask)
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
}
static const struct ata_xfer_ent {
int shift, bits;
u8 base;
} ata_xfer_tbl[] = {
{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
{ -1, },
};
/**
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
* @xfer_mask: xfer_mask of interest
*
* Return matching XFER_* value for @xfer_mask. Only the highest
* bit of @xfer_mask is considered.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching XFER_* value, 0 if no match found.
*/
static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
{
int highbit = fls(xfer_mask) - 1;
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
return ent->base + highbit - ent->shift;
return 0;
}
/**
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_mask for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_mask, 0 if no match found.
*/
static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return 1 << (ent->shift + xfer_mode - ent->base);
return 0;
}
/**
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_shift for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_shift, -1 if no match found.
*/
static int ata_xfer_mode2shift(unsigned int xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return ent->shift;
return -1;
}
/**
* ata_mode_string - convert xfer_mask to string
* @xfer_mask: mask of bits supported; only highest bit counts.
*
* Determine string which represents the highest speed
* (highest bit in @modemask).
*
* LOCKING:
* None.
*
* RETURNS:
* Constant C string representing highest speed listed in
* @mode_mask, or the constant C string "<n/a>".
*/
static const char *ata_mode_string(unsigned int xfer_mask)
{
static const char * const xfer_mode_str[] = {
"PIO0",
"PIO1",
"PIO2",
"PIO3",
"PIO4",
"MWDMA0",
"MWDMA1",
"MWDMA2",
"UDMA/16",
"UDMA/25",
"UDMA/33",
"UDMA/44",
"UDMA/66",
"UDMA/100",
"UDMA/133",
"UDMA7",
};
int highbit;
highbit = fls(xfer_mask) - 1;
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
return xfer_mode_str[highbit];
return "<n/a>";
}
static const char *sata_spd_string(unsigned int spd)
{
static const char * const spd_str[] = {
"1.5 Gbps",
"3.0 Gbps",
};
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
return "<unknown>";
return spd_str[spd - 1];
}
static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
{
if (ata_dev_enabled(dev)) {
printk(KERN_WARNING "ata%u: dev %u disabled\n",
ap->id, dev->devno);
dev->class++;
}
}
/**
* ata_pio_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_pio_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
outb(0x55, ioaddr->nsect_addr);
outb(0xaa, ioaddr->lbal_addr);
outb(0xaa, ioaddr->nsect_addr);
outb(0x55, ioaddr->lbal_addr);
outb(0x55, ioaddr->nsect_addr);
outb(0xaa, ioaddr->lbal_addr);
nsect = inb(ioaddr->nsect_addr);
lbal = inb(ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_mmio_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_mmio_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
nsect = readb((void __iomem *) ioaddr->nsect_addr);
lbal = readb((void __iomem *) ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* Dispatch ATA device presence detection, depending
* on whether we are using PIO or MMIO to talk to the
* ATA shadow registers.
*
* LOCKING:
* caller.
*/
static unsigned int ata_devchk(struct ata_port *ap,
unsigned int device)
{
if (ap->flags & ATA_FLAG_MMIO)
return ata_mmio_devchk(ap, device);
return ata_pio_devchk(ap, device);
}
/**
* ata_dev_classify - determine device type based on ATA-spec signature
* @tf: ATA taskfile register set for device to be identified
*
* Determine from taskfile register contents whether a device is
* ATA or ATAPI, as per "Signature and persistence" section
* of ATA/PI spec (volume 1, sect 5.14).
*
* LOCKING:
* None.
*
* RETURNS:
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
* the event of failure.
*/
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
{
/* Apple's open source Darwin code hints that some devices only
* put a proper signature into the LBA mid/high registers,
* So, we only check those. It's sufficient for uniqueness.
*/
if (((tf->lbam == 0) && (tf->lbah == 0)) ||
((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
DPRINTK("found ATA device by sig\n");
return ATA_DEV_ATA;
}
if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
DPRINTK("found ATAPI device by sig\n");
return ATA_DEV_ATAPI;
}
DPRINTK("unknown device\n");
return ATA_DEV_UNKNOWN;
}
/**
* ata_dev_try_classify - Parse returned ATA device signature
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
* @r_err: Value of error register on completion
*
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
* an ATA/ATAPI-defined set of values is placed in the ATA
* shadow registers, indicating the results of device detection
* and diagnostics.
*
* Select the ATA device, and read the values from the ATA shadow
* registers. Then parse according to the Error register value,
* and the spec-defined values examined by ata_dev_classify().
*
* LOCKING:
* caller.
*
* RETURNS:
* Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
*/
static unsigned int
ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
{
struct ata_taskfile tf;
unsigned int class;
u8 err;
ap->ops->dev_select(ap, device);
memset(&tf, 0, sizeof(tf));
ap->ops->tf_read(ap, &tf);
err = tf.feature;
if (r_err)
*r_err = err;
/* see if device passed diags */
if (err == 1)
/* do nothing */ ;
else if ((device == 0) && (err == 0x81))
/* do nothing */ ;
else
return ATA_DEV_NONE;
/* determine if device is ATA or ATAPI */
class = ata_dev_classify(&tf);
if (class == ATA_DEV_UNKNOWN)
return ATA_DEV_NONE;
if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
return ATA_DEV_NONE;
return class;
}
/**
* ata_id_string - Convert IDENTIFY DEVICE page into string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an even number.
*
* The strings in the IDENTIFY DEVICE page are broken up into
* 16-bit chunks. Run through the string, and output each
* 8-bit chunk linearly, regardless of platform.
*
* LOCKING:
* caller.
*/
void ata_id_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned int c;
while (len > 0) {
c = id[ofs] >> 8;
*s = c;
s++;
c = id[ofs] & 0xff;
*s = c;
s++;
ofs++;
len -= 2;
}
}
/**
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an odd number.
*
* This function is identical to ata_id_string except that it
* trims trailing spaces and terminates the resulting string with
* null. @len must be actual maximum length (even number) + 1.
*
* LOCKING:
* caller.
*/
void ata_id_c_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned char *p;
WARN_ON(!(len & 1));
ata_id_string(id, s, ofs, len - 1);
p = s + strnlen(s, len - 1);
while (p > s && p[-1] == ' ')
p--;
*p = '\0';
}
static u64 ata_id_n_sectors(const u16 *id)
{
if (ata_id_has_lba(id)) {
if (ata_id_has_lba48(id))
return ata_id_u64(id, 100);
else
return ata_id_u32(id, 60);
} else {
if (ata_id_current_chs_valid(id))
return ata_id_u32(id, 57);
else
return id[1] * id[3] * id[6];
}
}
/**
* ata_noop_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* This function performs no actual function.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
{
}
/**
* ata_std_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel. Works with both PIO and MMIO.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_std_dev_select (struct ata_port *ap, unsigned int device)
{
u8 tmp;
if (device == 0)
tmp = ATA_DEVICE_OBS;
else
tmp = ATA_DEVICE_OBS | ATA_DEV1;
if (ap->flags & ATA_FLAG_MMIO) {
writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
} else {
outb(tmp, ap->ioaddr.device_addr);
}
ata_pause(ap); /* needed; also flushes, for mmio */
}
/**
* ata_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
* @wait: non-zero to wait for Status register BSY bit to clear
* @can_sleep: non-zero if context allows sleeping
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel.
*
* This is a high-level version of ata_std_dev_select(),
* which additionally provides the services of inserting
* the proper pauses and status polling, where needed.
*
* LOCKING:
* caller.
*/
void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep)
{
VPRINTK("ENTER, ata%u: device %u, wait %u\n",
ap->id, device, wait);
if (wait)
ata_wait_idle(ap);
ap->ops->dev_select(ap, device);
if (wait) {
if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
msleep(150);
ata_wait_idle(ap);
}
}
/**
* ata_dump_id - IDENTIFY DEVICE info debugging output
* @id: IDENTIFY DEVICE page to dump
*
* Dump selected 16-bit words from the given IDENTIFY DEVICE
* page.
*
* LOCKING:
* caller.
*/
static inline void ata_dump_id(const u16 *id)
{
DPRINTK("49==0x%04x "
"53==0x%04x "
"63==0x%04x "
"64==0x%04x "
"75==0x%04x \n",
id[49],
id[53],
id[63],
id[64],
id[75]);
DPRINTK("80==0x%04x "
"81==0x%04x "
"82==0x%04x "
"83==0x%04x "
"84==0x%04x \n",
id[80],
id[81],
id[82],
id[83],
id[84]);
DPRINTK("88==0x%04x "
"93==0x%04x\n",
id[88],
id[93]);
}
/**
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
* @id: IDENTIFY data to compute xfer mask from
*
* Compute the xfermask for this device. This is not as trivial
* as it seems if we must consider early devices correctly.
*
* FIXME: pre IDE drive timing (do we care ?).
*
* LOCKING:
* None.
*
* RETURNS:
* Computed xfermask
*/
static unsigned int ata_id_xfermask(const u16 *id)
{
unsigned int pio_mask, mwdma_mask, udma_mask;
/* Usual case. Word 53 indicates word 64 is valid */
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
pio_mask <<= 3;
pio_mask |= 0x7;
} else {
/* If word 64 isn't valid then Word 51 high byte holds
* the PIO timing number for the maximum. Turn it into
* a mask.
*/
pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
/* But wait.. there's more. Design your standards by
* committee and you too can get a free iordy field to
* process. However its the speeds not the modes that
* are supported... Note drivers using the timing API
* will get this right anyway
*/
}
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
udma_mask = 0;
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
}
/**
* ata_port_queue_task - Queue port_task
* @ap: The ata_port to queue port_task for
*
* Schedule @fn(@data) for execution after @delay jiffies using
* port_task. There is one port_task per port and it's the
* user(low level driver)'s responsibility to make sure that only
* one task is active at any given time.
*
* libata core layer takes care of synchronization between
* port_task and EH. ata_port_queue_task() may be ignored for EH
* synchronization.
*
* LOCKING:
* Inherited from caller.
*/
void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
unsigned long delay)
{
int rc;
if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
return;
PREPARE_WORK(&ap->port_task, fn, data);
if (!delay)
rc = queue_work(ata_wq, &ap->port_task);
else
rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
/* rc == 0 means that another user is using port task */
WARN_ON(rc == 0);
}
/**
* ata_port_flush_task - Flush port_task
* @ap: The ata_port to flush port_task for
*
* After this function completes, port_task is guranteed not to
* be running or scheduled.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_port_flush_task(struct ata_port *ap)
{
unsigned long flags;
DPRINTK("ENTER\n");
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
DPRINTK("flush #1\n");
flush_workqueue(ata_wq);
/*
* At this point, if a task is running, it's guaranteed to see
* the FLUSH flag; thus, it will never queue pio tasks again.
* Cancel and flush.
*/
if (!cancel_delayed_work(&ap->port_task)) {
DPRINTK("flush #2\n");
flush_workqueue(ata_wq);
}
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
DPRINTK("EXIT\n");
}
void ata_qc_complete_internal(struct ata_queued_cmd *qc)
{
struct completion *waiting = qc->private_data;
qc->ap->ops->tf_read(qc->ap, &qc->tf);
complete(waiting);
}
/**
* ata_exec_internal - execute libata internal command
* @ap: Port to which the command is sent
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @dma_dir: Data tranfer direction of the command
* @buf: Data buffer of the command
* @buflen: Length of data buffer
*
* Executes libata internal command with timeout. @tf contains
* command on entry and result on return. Timeout and error
* conditions are reported via return value. No recovery action
* is taken after a command times out. It's caller's duty to
* clean up after timeout.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*/
static unsigned
ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
struct ata_taskfile *tf,
int dma_dir, void *buf, unsigned int buflen)
{
u8 command = tf->command;
struct ata_queued_cmd *qc;
DECLARE_COMPLETION(wait);
unsigned long flags;
unsigned int err_mask;
spin_lock_irqsave(&ap->host_set->lock, flags);
qc = ata_qc_new_init(ap, dev);
BUG_ON(qc == NULL);
qc->tf = *tf;
qc->dma_dir = dma_dir;
if (dma_dir != DMA_NONE) {
ata_sg_init_one(qc, buf, buflen);
qc->nsect = buflen / ATA_SECT_SIZE;
}
qc->private_data = &wait;
qc->complete_fn = ata_qc_complete_internal;
ata_qc_issue(qc);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
ata_port_flush_task(ap);
spin_lock_irqsave(&ap->host_set->lock, flags);
/* We're racing with irq here. If we lose, the
* following test prevents us from completing the qc
* again. If completion irq occurs after here but
* before the caller cleans up, it will result in a
* spurious interrupt. We can live with that.
*/
if (qc->flags & ATA_QCFLAG_ACTIVE) {
qc->err_mask = AC_ERR_TIMEOUT;
ata_qc_complete(qc);
printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
ap->id, command);
}
spin_unlock_irqrestore(&ap->host_set->lock, flags);
}
*tf = qc->tf;
err_mask = qc->err_mask;
ata_qc_free(qc);
/* XXX - Some LLDDs (sata_mv) disable port on command failure.
* Until those drivers are fixed, we detect the condition
* here, fail the command with AC_ERR_SYSTEM and reenable the
* port.
*
* Note that this doesn't change any behavior as internal
* command failure results in disabling the device in the
* higher layer for LLDDs without new reset/EH callbacks.
*
* Kill the following code as soon as those drivers are fixed.
*/
if (ap->flags & ATA_FLAG_DISABLED) {
err_mask |= AC_ERR_SYSTEM;
ata_port_probe(ap);
}
return err_mask;
}
/**
* ata_pio_need_iordy - check if iordy needed
* @adev: ATA device
*
* Check if the current speed of the device requires IORDY. Used
* by various controllers for chip configuration.
*/
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
{
int pio;
int speed = adev->pio_mode - XFER_PIO_0;
if (speed < 2)
return 0;
if (speed > 2)
return 1;
/* If we have no drive specific rule, then PIO 2 is non IORDY */
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
pio = adev->id[ATA_ID_EIDE_PIO];
/* Is the speed faster than the drive allows non IORDY ? */
if (pio) {
/* This is cycle times not frequency - watch the logic! */
if (pio > 240) /* PIO2 is 240nS per cycle */
return 1;
return 0;
}
}
return 0;
}
/**
* ata_dev_read_id - Read ID data from the specified device
* @ap: port on which target device resides
* @dev: target device
* @p_class: pointer to class of the target device (may be changed)
* @post_reset: is this read ID post-reset?
* @p_id: read IDENTIFY page (newly allocated)
*
* Read ID data from the specified device. ATA_CMD_ID_ATA is
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
* for pre-ATA4 drives.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
unsigned int *p_class, int post_reset, u16 **p_id)
{
unsigned int class = *p_class;
struct ata_taskfile tf;
unsigned int err_mask = 0;
u16 *id;
const char *reason;
int rc;
DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
if (id == NULL) {
rc = -ENOMEM;
reason = "out of memory";
goto err_out;
}
retry:
ata_tf_init(ap, &tf, dev->devno);
switch (class) {
case ATA_DEV_ATA:
tf.command = ATA_CMD_ID_ATA;
break;
case ATA_DEV_ATAPI:
tf.command = ATA_CMD_ID_ATAPI;
break;
default:
rc = -ENODEV;
reason = "unsupported class";
goto err_out;
}
tf.protocol = ATA_PROT_PIO;
err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
id, sizeof(id[0]) * ATA_ID_WORDS);
if (err_mask) {
rc = -EIO;
reason = "I/O error";
goto err_out;
}
swap_buf_le16(id, ATA_ID_WORDS);
/* sanity check */
if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
rc = -EINVAL;
reason = "device reports illegal type";
goto err_out;
}
if (post_reset && class == ATA_DEV_ATA) {
/*
* The exact sequence expected by certain pre-ATA4 drives is:
* SRST RESET
* IDENTIFY
* INITIALIZE DEVICE PARAMETERS
* anything else..
* Some drives were very specific about that exact sequence.
*/
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
if (err_mask) {
rc = -EIO;
reason = "INIT_DEV_PARAMS failed";
goto err_out;
}
/* current CHS translation info (id[53-58]) might be
* changed. reread the identify device info.
*/
post_reset = 0;
goto retry;
}
}
*p_class = class;
*p_id = id;
return 0;
err_out:
printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
ap->id, dev->devno, reason);
kfree(id);
return rc;
}
static inline u8 ata_dev_knobble(const struct ata_port *ap,
struct ata_device *dev)
{
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
}
/**
* ata_dev_configure - Configure the specified ATA/ATAPI device
* @ap: Port on which target device resides
* @dev: Target device to configure
* @print_info: Enable device info printout
*
* Configure @dev according to @dev->id. Generic and low-level
* driver specific fixups are also applied.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise
*/
static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
int print_info)
{
const u16 *id = dev->id;
unsigned int xfer_mask;
int i, rc;
if (!ata_dev_enabled(dev)) {
DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ap->id, dev->devno);
return 0;
}
DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
/* print device capabilities */
if (print_info)
printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
"84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
ap->id, dev->devno, id[49], id[82], id[83],
id[84], id[85], id[86], id[87], id[88]);
/* initialize to-be-configured parameters */
dev->flags &= ~ATA_DFLAG_CFG_MASK;
dev->max_sectors = 0;
dev->cdb_len = 0;
dev->n_sectors = 0;
dev->cylinders = 0;
dev->heads = 0;
dev->sectors = 0;
/*
* common ATA, ATAPI feature tests
*/
/* find max transfer mode; for printk only */
xfer_mask = ata_id_xfermask(id);
ata_dump_id(id);
/* ATA-specific feature tests */
if (dev->class == ATA_DEV_ATA) {
dev->n_sectors = ata_id_n_sectors(id);
if (ata_id_has_lba(id)) {
const char *lba_desc;
lba_desc = "LBA";
dev->flags |= ATA_DFLAG_LBA;
if (ata_id_has_lba48(id)) {
dev->flags |= ATA_DFLAG_LBA48;
lba_desc = "LBA48";
}
/* print device info to dmesg */
if (print_info)
printk(KERN_INFO "ata%u: dev %u ATA-%d, "
"max %s, %Lu sectors: %s\n",
ap->id, dev->devno,
ata_id_major_version(id),
ata_mode_string(xfer_mask),
(unsigned long long)dev->n_sectors,
lba_desc);
} else {
/* CHS */
/* Default translation */
dev->cylinders = id[1];
dev->heads = id[3];
dev->sectors = id[6];
if (ata_id_current_chs_valid(id)) {
/* Current CHS translation is valid. */
dev->cylinders = id[54];
dev->heads = id[55];
dev->sectors = id[56];
}
/* print device info to dmesg */
if (print_info)
printk(KERN_INFO "ata%u: dev %u ATA-%d, "
"max %s, %Lu sectors: CHS %u/%u/%u\n",
ap->id, dev->devno,
ata_id_major_version(id),
ata_mode_string(xfer_mask),
(unsigned long long)dev->n_sectors,
dev->cylinders, dev->heads, dev->sectors);
}
dev->cdb_len = 16;
}
/* ATAPI-specific feature tests */
else if (dev->class == ATA_DEV_ATAPI) {
rc = atapi_cdb_len(id);
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
rc = -EINVAL;
goto err_out_nosup;
}
dev->cdb_len = (unsigned int) rc;
/* print device info to dmesg */
if (print_info)
printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ap->id, dev->devno, ata_mode_string(xfer_mask));
}
ap->host->max_cmd_len = 0;
for (i = 0; i < ATA_MAX_DEVICES; i++)
ap->host->max_cmd_len = max_t(unsigned int,
ap->host->max_cmd_len,
ap->device[i].cdb_len);
/* limit bridge transfers to udma5, 200 sectors */
if (ata_dev_knobble(ap, dev)) {
if (print_info)
printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
ap->id, dev->devno);
dev->udma_mask &= ATA_UDMA5;
dev->max_sectors = ATA_MAX_SECTORS;
}
if (ap->ops->dev_config)
ap->ops->dev_config(ap, dev);
DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
return 0;
err_out_nosup:
DPRINTK("EXIT, err\n");
return rc;
}
/**
* ata_bus_probe - Reset and probe ATA bus
* @ap: Bus to probe
*
* Master ATA bus probing function. Initiates a hardware-dependent
* bus reset, then attempts to identify any devices found on
* the bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, negative errno otherwise.
*/
static int ata_bus_probe(struct ata_port *ap)
{
unsigned int classes[ATA_MAX_DEVICES];
int tries[ATA_MAX_DEVICES];
int i, rc, down_xfermask;
struct ata_device *dev;
ata_port_probe(ap);
for (i = 0; i < ATA_MAX_DEVICES; i++)
tries[i] = ATA_PROBE_MAX_TRIES;
retry:
down_xfermask = 0;
/* reset and determine device classes */
for (i = 0; i < ATA_MAX_DEVICES; i++)
classes[i] = ATA_DEV_UNKNOWN;
if (ap->ops->probe_reset) {
rc = ap->ops->probe_reset(ap, classes);
if (rc) {
printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
return rc;
}
} else {
ap->ops->phy_reset(ap);
if (!(ap->flags & ATA_FLAG_DISABLED))
for (i = 0; i < ATA_MAX_DEVICES; i++)
classes[i] = ap->device[i].class;
ata_port_probe(ap);
}
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (classes[i] == ATA_DEV_UNKNOWN)
classes[i] = ATA_DEV_NONE;
/* read IDENTIFY page and configure devices */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
dev->class = classes[i];
if (!tries[i]) {
ata_down_xfermask_limit(ap, dev, 1);
ata_dev_disable(ap, dev);
}
if (!ata_dev_enabled(dev))
continue;
kfree(dev->id);
dev->id = NULL;
rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
if (rc)
goto fail;
rc = ata_dev_configure(ap, dev, 1);
if (rc)
goto fail;
}
/* configure transfer mode */
if (ap->ops->set_mode) {
/* FIXME: make ->set_mode handle no device case and
* return error code and failing device on failure as
* ata_set_mode() does.
*/
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (ata_dev_enabled(&ap->device[i])) {
ap->ops->set_mode(ap);
break;
}
rc = 0;
} else {
rc = ata_set_mode(ap, &dev);
if (rc) {
down_xfermask = 1;
goto fail;
}
}
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (ata_dev_enabled(&ap->device[i]))
return 0;
/* no device present, disable port */
ata_port_disable(ap);
ap->ops->port_disable(ap);
return -ENODEV;
fail:
switch (rc) {
case -EINVAL:
case -ENODEV:
tries[dev->devno] = 0;
break;
case -EIO:
ata_down_sata_spd_limit(ap);
/* fall through */
default:
tries[dev->devno]--;
if (down_xfermask &&
ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
tries[dev->devno] = 0;
}
goto retry;
}
/**
* ata_port_probe - Mark port as enabled
* @ap: Port for which we indicate enablement
*
* Modify @ap data structure such that the system
* thinks that the entire port is enabled.
*
* LOCKING: host_set lock, or some other form of
* serialization.
*/
void ata_port_probe(struct ata_port *ap)
{
ap->flags &= ~ATA_FLAG_DISABLED;
}
/**
* sata_print_link_status - Print SATA link status
* @ap: SATA port to printk link status about
*
* This function prints link speed and status of a SATA link.
*
* LOCKING:
* None.
*/
static void sata_print_link_status(struct ata_port *ap)
{
u32 sstatus, tmp;
if (!ap->ops->scr_read)
return;
sstatus = scr_read(ap, SCR_STATUS);
if (sata_dev_present(ap)) {
tmp = (sstatus >> 4) & 0xf;
printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
ap->id, sata_spd_string(tmp), sstatus);
} else {
printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
ap->id, sstatus);
}
}
/**
* __sata_phy_reset - Wake/reset a low-level SATA PHY
* @ap: SATA port associated with target SATA PHY.
*
* This function issues commands to standard SATA Sxxx
* PHY registers, to wake up the phy (and device), and
* clear any reset condition.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void __sata_phy_reset(struct ata_port *ap)
{
u32 sstatus;
unsigned long timeout = jiffies + (HZ * 5);
if (ap->flags & ATA_FLAG_SATA_RESET) {
/* issue phy wake/reset */
scr_write_flush(ap, SCR_CONTROL, 0x301);
/* Couldn't find anything in SATA I/II specs, but
* AHCI-1.1 10.4.2 says at least 1 ms. */
mdelay(1);
}
scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
/* wait for phy to become ready, if necessary */
do {
msleep(200);
sstatus = scr_read(ap, SCR_STATUS);
if ((sstatus & 0xf) != 1)
break;
} while (time_before(jiffies, timeout));
/* print link status */
sata_print_link_status(ap);
/* TODO: phy layer with polling, timeouts, etc. */
if (sata_dev_present(ap))
ata_port_probe(ap);
else
ata_port_disable(ap);
if (ap->flags & ATA_FLAG_DISABLED)
return;
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
ata_port_disable(ap);
return;
}
ap->cbl = ATA_CBL_SATA;
}
/**
* sata_phy_reset - Reset SATA bus.
* @ap: SATA port associated with target SATA PHY.
*
* This function resets the SATA bus, and then probes
* the bus for devices.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void sata_phy_reset(struct ata_port *ap)
{
__sata_phy_reset(ap);
if (ap->flags & ATA_FLAG_DISABLED)
return;
ata_bus_reset(ap);
}
/**
* ata_dev_pair - return other device on cable
* @ap: port
* @adev: device
*
* Obtain the other device on the same cable, or if none is
* present NULL is returned
*/
struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
{
struct ata_device *pair = &ap->device[1 - adev->devno];
if (!ata_dev_enabled(pair))
return NULL;
return pair;
}
/**
* ata_port_disable - Disable port.
* @ap: Port to be disabled.
*
* Modify @ap data structure such that the system
* thinks that the entire port is disabled, and should
* never attempt to probe or communicate with devices
* on this port.
*
* LOCKING: host_set lock, or some other form of
* serialization.
*/
void ata_port_disable(struct ata_port *ap)
{
ap->device[0].class = ATA_DEV_NONE;
ap->device[1].class = ATA_DEV_NONE;
ap->flags |= ATA_FLAG_DISABLED;
}
/**
* ata_down_sata_spd_limit - adjust SATA spd limit downward
* @ap: Port to adjust SATA spd limit for
*
* Adjust SATA spd limit of @ap downward. Note that this
* function only adjusts the limit. The change must be applied
* using ata_set_sata_spd().
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
static int ata_down_sata_spd_limit(struct ata_port *ap)
{
u32 spd, mask;
int highbit;
if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
return -EOPNOTSUPP;
mask = ap->sata_spd_limit;
if (mask <= 1)
return -EINVAL;
highbit = fls(mask) - 1;
mask &= ~(1 << highbit);
spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
if (spd <= 1)
return -EINVAL;
spd--;
mask &= (1 << spd) - 1;
if (!mask)
return -EINVAL;
ap->sata_spd_limit = mask;
printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
ap->id, sata_spd_string(fls(mask)));
return 0;
}
static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
{
u32 spd, limit;
if (ap->sata_spd_limit == UINT_MAX)
limit = 0;
else
limit = fls(ap->sata_spd_limit);
spd = (*scontrol >> 4) & 0xf;
*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
return spd != limit;
}
/**
* ata_set_sata_spd_needed - is SATA spd configuration needed
* @ap: Port in question
*
* Test whether the spd limit in SControl matches
* @ap->sata_spd_limit. This function is used to determine
* whether hardreset is necessary to apply SATA spd
* configuration.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 1 if SATA spd configuration is needed, 0 otherwise.
*/
static int ata_set_sata_spd_needed(struct ata_port *ap)
{
u32 scontrol;
if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
return 0;
scontrol = scr_read(ap, SCR_CONTROL);
return __ata_set_sata_spd_needed(ap, &scontrol);
}
/**
* ata_set_sata_spd - set SATA spd according to spd limit
* @ap: Port to set SATA spd for
*
* Set SATA spd of @ap according to sata_spd_limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 if spd doesn't need to be changed, 1 if spd has been
* changed. -EOPNOTSUPP if SCR registers are inaccessible.
*/
static int ata_set_sata_spd(struct ata_port *ap)
{
u32 scontrol;
if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
return -EOPNOTSUPP;
scontrol = scr_read(ap, SCR_CONTROL);
if (!__ata_set_sata_spd_needed(ap, &scontrol))
return 0;
scr_write(ap, SCR_CONTROL, scontrol);
return 1;
}
/*
* This mode timing computation functionality is ported over from
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
*/
/*
* PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
* for PIO 5, which is a nonstandard extension and UDMA6, which
* is currently supported only by Maxtor drives.
*/
static const struct ata_timing ata_timing[] = {
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
{ 0xFF }
};
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
{
q->setup = EZ(t->setup * 1000, T);
q->act8b = EZ(t->act8b * 1000, T);
q->rec8b = EZ(t->rec8b * 1000, T);
q->cyc8b = EZ(t->cyc8b * 1000, T);
q->active = EZ(t->active * 1000, T);
q->recover = EZ(t->recover * 1000, T);
q->cycle = EZ(t->cycle * 1000, T);
q->udma = EZ(t->udma * 1000, UT);
}
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
struct ata_timing *m, unsigned int what)
{
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
}
static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
{
const struct ata_timing *t;
for (t = ata_timing; t->mode != speed; t++)
if (t->mode == 0xFF)
return NULL;
return t;
}
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
struct ata_timing *t, int T, int UT)
{
const struct ata_timing *s;
struct ata_timing p;
/*
* Find the mode.
*/
if (!(s = ata_timing_find_mode(speed)))
return -EINVAL;
memcpy(t, s, sizeof(*s));
/*
* If the drive is an EIDE drive, it can tell us it needs extended
* PIO/MW_DMA cycle timing.
*/
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
memset(&p, 0, sizeof(p));
if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
}
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
}
/*
* Convert the timing to bus clock counts.
*/
ata_timing_quantize(t, t, T, UT);
/*
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
* S.M.A.R.T * and some other commands. We have to ensure that the
* DMA cycle timing is slower/equal than the fastest PIO timing.
*/
if (speed > XFER_PIO_4) {
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
}
/*
* Lengthen active & recovery time so that cycle time is correct.
*/
if (t->act8b + t->rec8b < t->cyc8b) {
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
t->rec8b = t->cyc8b - t->act8b;
}
if (t->active + t->recover < t->cycle) {
t->active += (t->cycle - (t->active + t->recover)) / 2;
t->recover = t->cycle - t->active;
}
return 0;
}
/**
* ata_down_xfermask_limit - adjust dev xfer masks downward
* @ap: Port associated with device @dev
* @dev: Device to adjust xfer masks
* @force_pio0: Force PIO0
*
* Adjust xfer masks of @dev downward. Note that this function
* does not apply the change. Invoking ata_set_mode() afterwards
* will apply the limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
int force_pio0)
{
unsigned long xfer_mask;
int highbit;
xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
dev->udma_mask);
if (!xfer_mask)
goto fail;
/* don't gear down to MWDMA from UDMA, go directly to PIO */
if (xfer_mask & ATA_MASK_UDMA)
xfer_mask &= ~ATA_MASK_MWDMA;
highbit = fls(xfer_mask) - 1;
xfer_mask &= ~(1 << highbit);
if (force_pio0)
xfer_mask &= 1 << ATA_SHIFT_PIO;
if (!xfer_mask)
goto fail;
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
&dev->udma_mask);
printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
ap->id, dev->devno, ata_mode_string(xfer_mask));
return 0;
fail:
return -EINVAL;
}
static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
{
unsigned int err_mask;
int rc;
dev->flags &= ~ATA_DFLAG_PIO;
if (dev->xfer_shift == ATA_SHIFT_PIO)
dev->flags |= ATA_DFLAG_PIO;
err_mask = ata_dev_set_xfermode(ap, dev);
if (err_mask) {
printk(KERN_ERR
"ata%u: failed to set xfermode (err_mask=0x%x)\n",
ap->id, err_mask);
return -EIO;
}
rc = ata_dev_revalidate(ap, dev, 0);
if (rc)
return rc;
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
dev->xfer_shift, (int)dev->xfer_mode);
printk(KERN_INFO "ata%u: dev %u configured for %s\n",
ap->id, dev->devno,
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
return 0;
}
/**
* ata_set_mode - Program timings and issue SET FEATURES - XFER
* @ap: port on which timings will be programmed
* @r_failed_dev: out paramter for failed device
*
* Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
* ata_set_mode() fails, pointer to the failing device is
* returned in @r_failed_dev.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
{
struct ata_device *dev;
int i, rc = 0, used_dma = 0, found = 0;
/* step 1: calculate xfer_mask */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
unsigned int pio_mask, dma_mask;
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
ata_dev_xfermask(ap, dev);
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
found = 1;
if (dev->dma_mode)
used_dma = 1;
}
if (!found)
goto out;
/* step 2: always set host PIO timings */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
if (!dev->pio_mode) {
printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
ap->id, dev->devno);
rc = -EINVAL;
goto out;
}
dev->xfer_mode = dev->pio_mode;
dev->xfer_shift = ATA_SHIFT_PIO;
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
/* step 3: set host DMA timings */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev) || !dev->dma_mode)
continue;
dev->xfer_mode = dev->dma_mode;
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
if (ap->ops->set_dmamode)
ap->ops->set_dmamode(ap, dev);
}
/* step 4: update devices' xfer mode */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
rc = ata_dev_set_mode(ap, dev);
if (rc)
goto out;
}
/* Record simplex status. If we selected DMA then the other
* host channels are not permitted to do so.
*/
if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
ap->host_set->simplex_claimed = 1;
/* step5: chip specific finalisation */
if (ap->ops->post_set_mode)
ap->ops->post_set_mode(ap);
out:
if (rc)
*r_failed_dev = dev;
return rc;
}
/**
* ata_tf_to_host - issue ATA taskfile to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues ATA taskfile register set to ATA host controller,
* with proper synchronization with interrupt handler and
* other threads.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static inline void ata_tf_to_host(struct ata_port *ap,
const struct ata_taskfile *tf)
{
ap->ops->tf_load(ap, tf);
ap->ops->exec_command(ap, tf);
}
/**
* ata_busy_sleep - sleep until BSY clears, or timeout
* @ap: port containing status register to be polled
* @tmout_pat: impatience timeout
* @tmout: overall timeout
*
* Sleep until ATA Status register bit BSY clears,
* or a timeout occurs.
*
* LOCKING: None.
*/
unsigned int ata_busy_sleep (struct ata_port *ap,
unsigned long tmout_pat, unsigned long tmout)
{
unsigned long timer_start, timeout;
u8 status;
status = ata_busy_wait(ap, ATA_BUSY, 300);
timer_start = jiffies;
timeout = timer_start + tmout_pat;
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
msleep(50);
status = ata_busy_wait(ap, ATA_BUSY, 3);
}
if (status & ATA_BUSY)
printk(KERN_WARNING "ata%u is slow to respond, "
"please be patient\n", ap->id);
timeout = timer_start + tmout;
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
msleep(50);
status = ata_chk_status(ap);
}
if (status & ATA_BUSY) {
printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
ap->id, tmout / HZ);
return 1;
}
return 0;
}
static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int dev0 = devmask & (1 << 0);
unsigned int dev1 = devmask & (1 << 1);
unsigned long timeout;
/* if device 0 was found in ata_devchk, wait for its
* BSY bit to clear
*/
if (dev0)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* if device 1 was found in ata_devchk, wait for
* register access, then wait for BSY to clear
*/
timeout = jiffies + ATA_TMOUT_BOOT;
while (dev1) {
u8 nsect, lbal;
ap->ops->dev_select(ap, 1);
if (ap->flags & ATA_FLAG_MMIO) {
nsect = readb((void __iomem *) ioaddr->nsect_addr);
lbal = readb((void __iomem *) ioaddr->lbal_addr);
} else {
nsect = inb(ioaddr->nsect_addr);
lbal = inb(ioaddr->lbal_addr);
}
if ((nsect == 1) && (lbal == 1))
break;
if (time_after(jiffies, timeout)) {
dev1 = 0;
break;
}
msleep(50); /* give drive a breather */
}
if (dev1)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* is all this really necessary? */
ap->ops->dev_select(ap, 0);
if (dev1)
ap->ops->dev_select(ap, 1);
if (dev0)
ap->ops->dev_select(ap, 0);
}
static unsigned int ata_bus_softreset(struct ata_port *ap,
unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
DPRINTK("ata%u: bus reset via SRST\n", ap->id);
/* software reset. causes dev0 to be selected */
if (ap->flags & ATA_FLAG_MMIO) {
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
} else {
outb(ap->ctl, ioaddr->ctl_addr);
udelay(10);
outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(10);
outb(ap->ctl, ioaddr->ctl_addr);
}
/* spec mandates ">= 2ms" before checking status.
* We wait 150ms, because that was the magic delay used for
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
* between when the ATA command register is written, and then
* status is checked. Because waiting for "a while" before
* checking status is fine, post SRST, we perform this magic
* delay here as well.
*
* Old drivers/ide uses the 2mS rule and then waits for ready
*/
msleep(150);
/* Before we perform post reset processing we want to see if
* the bus shows 0xFF because the odd clown forgets the D7
* pulldown resistor.
*/
if (ata_check_status(ap) == 0xFF)
return AC_ERR_OTHER;
ata_bus_post_reset(ap, devmask);
return 0;
}
/**
* ata_bus_reset - reset host port and associated ATA channel
* @ap: port to reset
*
* This is typically the first time we actually start issuing
* commands to the ATA channel. We wait for BSY to clear, then
* issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
* result. Determine what devices, if any, are on the channel
* by looking at the device 0/1 error register. Look at the signature
* stored in each device's taskfile registers, to determine if
* the device is ATA or ATAPI.
*
* LOCKING:
* PCI/etc. bus probe sem.
* Obtains host_set lock.
*
* SIDE EFFECTS:
* Sets ATA_FLAG_DISABLED if bus reset fails.
*/
void ata_bus_reset(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
u8 err;
unsigned int dev0, dev1 = 0, devmask = 0;
DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
/* determine if device 0/1 are present */
if (ap->flags & ATA_FLAG_SATA_RESET)
dev0 = 1;
else {
dev0 = ata_devchk(ap, 0);
if (slave_possible)
dev1 = ata_devchk(ap, 1);
}
if (dev0)
devmask |= (1 << 0);
if (dev1)
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
if (ap->flags & ATA_FLAG_SRST)
if (ata_bus_softreset(ap, devmask))
goto err_out;
/*
* determine by signature whether we have ATA or ATAPI devices
*/
ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
if ((slave_possible) && (err != 0x81))
ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
/* re-enable interrupts */
if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
ata_irq_on(ap);
/* is double-select really necessary? */
if (ap->device[1].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (ap->device[0].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* if no devices were detected, disable this port */
if ((ap->device[0].class == ATA_DEV_NONE) &&
(ap->device[1].class == ATA_DEV_NONE))
goto err_out;
if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
/* set up device control for ATA_FLAG_SATA_RESET */
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
else
outb(ap->ctl, ioaddr->ctl_addr);
}
DPRINTK("EXIT\n");
return;
err_out:
printk(KERN_ERR "ata%u: disabling port\n", ap->id);
ap->ops->port_disable(ap);
DPRINTK("EXIT\n");
}
static int sata_phy_resume(struct ata_port *ap)
{
unsigned long timeout = jiffies + (HZ * 5);
u32 scontrol, sstatus;
scontrol = scr_read(ap, SCR_CONTROL);
scontrol = (scontrol & 0x0f0) | 0x300;
scr_write_flush(ap, SCR_CONTROL, scontrol);
/* Wait for phy to become ready, if necessary. */
do {
msleep(200);
sstatus = scr_read(ap, SCR_STATUS);
if ((sstatus & 0xf) != 1)
return 0;
} while (time_before(jiffies, timeout));
return -1;
}
/**
* ata_std_probeinit - initialize probing
* @ap: port to be probed
*
* @ap is about to be probed. Initialize it. This function is
* to be used as standard callback for ata_drive_probe_reset().
*
* NOTE!!! Do not use this function as probeinit if a low level
* driver implements only hardreset. Just pass NULL as probeinit
* in that case. Using this function is probably okay but doing
* so makes reset sequence different from the original
* ->phy_reset implementation and Jeff nervous. :-P
*/
void ata_std_probeinit(struct ata_port *ap)
{
if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
u32 spd;
sata_phy_resume(ap);
spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
if (spd)
ap->sata_spd_limit &= (1 << spd) - 1;
if (sata_dev_present(ap))
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
}
}
/**
* ata_std_softreset - reset host port via ATA SRST
* @ap: port to reset
* @verbose: fail verbosely
* @classes: resulting classes of attached devices
*
* Reset host port using ATA SRST. This function is to be used
* as standard callback for ata_drive_*_reset() functions.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
{
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
unsigned int devmask = 0, err_mask;
u8 err;
DPRINTK("ENTER\n");
if (ap->ops->scr_read && !sata_dev_present(ap)) {
classes[0] = ATA_DEV_NONE;
goto out;
}
/* determine if device 0/1 are present */
if (ata_devchk(ap, 0))
devmask |= (1 << 0);
if (slave_possible && ata_devchk(ap, 1))
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
DPRINTK("about to softreset, devmask=%x\n", devmask);
err_mask = ata_bus_softreset(ap, devmask);
if (err_mask) {
if (verbose)
printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
ap->id, err_mask);
else
DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
err_mask);
return -EIO;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_dev_try_classify(ap, 0, &err);
if (slave_possible && err != 0x81)
classes[1] = ata_dev_try_classify(ap, 1, &err);
out:
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
return 0;
}
/**
* sata_std_hardreset - reset host port via SATA phy reset
* @ap: port to reset
* @verbose: fail verbosely
* @class: resulting class of attached device
*
* SATA phy-reset host port using DET bits of SControl register.
* This function is to be used as standard callback for
* ata_drive_*_reset().
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
{
u32 scontrol;
DPRINTK("ENTER\n");
if (ata_set_sata_spd_needed(ap)) {
/* SATA spec says nothing about how to reconfigure
* spd. To be on the safe side, turn off phy during
* reconfiguration. This works for at least ICH7 AHCI
* and Sil3124.
*/
scontrol = scr_read(ap, SCR_CONTROL);
scontrol = (scontrol & 0x0f0) | 0x302;
scr_write_flush(ap, SCR_CONTROL, scontrol);
ata_set_sata_spd(ap);
}
/* issue phy wake/reset */
scontrol = scr_read(ap, SCR_CONTROL);
scontrol = (scontrol & 0x0f0) | 0x301;
scr_write_flush(ap, SCR_CONTROL, scontrol);
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
* 10.4.2 says at least 1 ms.
*/
msleep(1);
/* bring phy back */
sata_phy_resume(ap);
/* TODO: phy layer with polling, timeouts, etc. */
if (!sata_dev_present(ap)) {
*class = ATA_DEV_NONE;
DPRINTK("EXIT, link offline\n");
return 0;
}
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
if (verbose)
printk(KERN_ERR "ata%u: COMRESET failed "
"(device not ready)\n", ap->id);
else
DPRINTK("EXIT, device not ready\n");
return -EIO;
}
ap->ops->dev_select(ap, 0); /* probably unnecessary */
*class = ata_dev_try_classify(ap, 0, NULL);
DPRINTK("EXIT, class=%u\n", *class);
return 0;
}
/**
* ata_std_postreset - standard postreset callback
* @ap: the target ata_port
* @classes: classes of attached devices
*
* This function is invoked after a successful reset. Note that
* the device might have been reset more than once using
* different reset methods before postreset is invoked.
*
* This function is to be used as standard callback for
* ata_drive_*_reset().
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
{
DPRINTK("ENTER\n");
/* set cable type if it isn't already set */
if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
ap->cbl = ATA_CBL_SATA;
/* print link status */
if (ap->cbl == ATA_CBL_SATA)
sata_print_link_status(ap);
/* re-enable interrupts */
if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
ata_irq_on(ap);
/* is double-select really necessary? */
if (classes[0] != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (classes[1] != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* bail out if no device is present */
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
DPRINTK("EXIT, no device\n");
return;
}
/* set up device control */
if (ap->ioaddr.ctl_addr) {
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
else
outb(ap->ctl, ap->ioaddr.ctl_addr);
}
DPRINTK("EXIT\n");
}
/**
* ata_std_probe_reset - standard probe reset method
* @ap: prot to perform probe-reset
* @classes: resulting classes of attached devices
*
* The stock off-the-shelf ->probe_reset method.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
{
ata_reset_fn_t hardreset;
hardreset = NULL;
if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
hardreset = sata_std_hardreset;
return ata_drive_probe_reset(ap, ata_std_probeinit,
ata_std_softreset, hardreset,
ata_std_postreset, classes);
}
static int ata_do_reset(struct ata_port *ap,
ata_reset_fn_t reset, ata_postreset_fn_t postreset,
int verbose, unsigned int *classes)
{
int i, rc;
for (i = 0; i < ATA_MAX_DEVICES; i++)
classes[i] = ATA_DEV_UNKNOWN;
rc = reset(ap, verbose, classes);
if (rc)
return rc;
/* If any class isn't ATA_DEV_UNKNOWN, consider classification
* is complete and convert all ATA_DEV_UNKNOWN to
* ATA_DEV_NONE.
*/
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (classes[i] != ATA_DEV_UNKNOWN)
break;
if (i < ATA_MAX_DEVICES)
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (classes[i] == ATA_DEV_UNKNOWN)
classes[i] = ATA_DEV_NONE;
if (postreset)
postreset(ap, classes);
return 0;
}
/**
* ata_drive_probe_reset - Perform probe reset with given methods
* @ap: port to reset
* @probeinit: probeinit method (can be NULL)
* @softreset: softreset method (can be NULL)
* @hardreset: hardreset method (can be NULL)
* @postreset: postreset method (can be NULL)
* @classes: resulting classes of attached devices
*
* Reset the specified port and classify attached devices using
* given methods. This function prefers softreset but tries all
* possible reset sequences to reset and classify devices. This
* function is intended to be used for constructing ->probe_reset
* callback by low level drivers.
*
* Reset methods should follow the following rules.
*
* - Return 0 on sucess, -errno on failure.
* - If classification is supported, fill classes[] with
* recognized class codes.
* - If classification is not supported, leave classes[] alone.
* - If verbose is non-zero, print error message on failure;
* otherwise, shut up.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
* if classification fails, and any error code from reset
* methods.
*/
int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
ata_postreset_fn_t postreset, unsigned int *classes)
{
int rc = -EINVAL;
if (probeinit)
probeinit(ap);
if (softreset && !ata_set_sata_spd_needed(ap)) {
rc = ata_do_reset(ap, softreset, postreset, 0, classes);
if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
goto done;
printk(KERN_INFO "ata%u: softreset failed, will try "
"hardreset in 5 secs\n", ap->id);
ssleep(5);
}
if (!hardreset)
goto done;
while (1) {
rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
if (rc == 0) {
if (classes[0] != ATA_DEV_UNKNOWN)
goto done;
break;
}
if (ata_down_sata_spd_limit(ap))
goto done;
printk(KERN_INFO "ata%u: hardreset failed, will retry "
"in 5 secs\n", ap->id);
ssleep(5);
}
if (softreset) {
printk(KERN_INFO "ata%u: hardreset succeeded without "
"classification, will retry softreset in 5 secs\n",
ap->id);
ssleep(5);
rc = ata_do_reset(ap, softreset, postreset, 0, classes);
}
done:
if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
rc = -ENODEV;
return rc;
}
/**
* ata_dev_same_device - Determine whether new ID matches configured device
* @ap: port on which the device to compare against resides
* @dev: device to compare against
* @new_class: class of the new device
* @new_id: IDENTIFY page of the new device
*
* Compare @new_class and @new_id against @dev and determine
* whether @dev is the device indicated by @new_class and
* @new_id.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
*/
static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
unsigned int new_class, const u16 *new_id)
{
const u16 *old_id = dev->id;
unsigned char model[2][41], serial[2][21];
u64 new_n_sectors;
if (dev->class != new_class) {
printk(KERN_INFO
"ata%u: dev %u class mismatch %d != %d\n",
ap->id, dev->devno, dev->class, new_class);
return 0;
}
ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
new_n_sectors = ata_id_n_sectors(new_id);
if (strcmp(model[0], model[1])) {
printk(KERN_INFO
"ata%u: dev %u model number mismatch '%s' != '%s'\n",
ap->id, dev->devno, model[0], model[1]);
return 0;
}
if (strcmp(serial[0], serial[1])) {
printk(KERN_INFO
"ata%u: dev %u serial number mismatch '%s' != '%s'\n",
ap->id, dev->devno, serial[0], serial[1]);
return 0;
}
if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
printk(KERN_INFO
"ata%u: dev %u n_sectors mismatch %llu != %llu\n",
ap->id, dev->devno, (unsigned long long)dev->n_sectors,
(unsigned long long)new_n_sectors);
return 0;
}
return 1;
}
/**
* ata_dev_revalidate - Revalidate ATA device
* @ap: port on which the device to revalidate resides
* @dev: device to revalidate
* @post_reset: is this revalidation after reset?
*
* Re-read IDENTIFY page and make sure @dev is still attached to
* the port.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
int post_reset)
{
unsigned int class = dev->class;
u16 *id = NULL;
int rc;
if (!ata_dev_enabled(dev)) {
rc = -ENODEV;
goto fail;
}
/* allocate & read ID data */
rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
if (rc)
goto fail;
/* is the device still there? */
if (!ata_dev_same_device(ap, dev, class, id)) {
rc = -ENODEV;
goto fail;
}
kfree(dev->id);
dev->id = id;
/* configure device according to the new ID */
rc = ata_dev_configure(ap, dev, 0);
if (rc == 0)
return 0;
fail:
printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
ap->id, dev->devno, rc);
kfree(id);
return rc;
}
static const char * const ata_dma_blacklist [] = {
"WDC AC11000H", NULL,
"WDC AC22100H", NULL,
"WDC AC32500H", NULL,
"WDC AC33100H", NULL,
"WDC AC31600H", NULL,
"WDC AC32100H", "24.09P07",
"WDC AC23200L", "21.10N21",
"Compaq CRD-8241B", NULL,
"CRD-8400B", NULL,
"CRD-8480B", NULL,
"CRD-8482B", NULL,
"CRD-84", NULL,
"SanDisk SDP3B", NULL,
"SanDisk SDP3B-64", NULL,
"SANYO CD-ROM CRD", NULL,
"HITACHI CDR-8", NULL,
"HITACHI CDR-8335", NULL,
"HITACHI CDR-8435", NULL,
"Toshiba CD-ROM XM-6202B", NULL,
"TOSHIBA CD-ROM XM-1702BC", NULL,
"CD-532E-A", NULL,
"E-IDE CD-ROM CR-840", NULL,
"CD-ROM Drive/F5A", NULL,
"WPI CDD-820", NULL,
"SAMSUNG CD-ROM SC-148C", NULL,
"SAMSUNG CD-ROM SC", NULL,
"SanDisk SDP3B-64", NULL,
"ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
"_NEC DV5800A", NULL,
"SAMSUNG CD-ROM SN-124", "N001"
};
static int ata_strim(char *s, size_t len)
{
len = strnlen(s, len);
/* ATAPI specifies that empty space is blank-filled; remove blanks */
while ((len > 0) && (s[len - 1] == ' ')) {
len--;
s[len] = 0;
}
return len;
}
static int ata_dma_blacklisted(const struct ata_device *dev)
{
unsigned char model_num[40];
unsigned char model_rev[16];
unsigned int nlen, rlen;
int i;
ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
sizeof(model_num));
ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
sizeof(model_rev));
nlen = ata_strim(model_num, sizeof(model_num));
rlen = ata_strim(model_rev, sizeof(model_rev));
for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
if (ata_dma_blacklist[i+1] == NULL)
return 1;
if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
return 1;
}
}
return 0;
}
/**
* ata_dev_xfermask - Compute supported xfermask of the given device
* @ap: Port on which the device to compute xfermask for resides
* @dev: Device to compute xfermask for
*
* Compute supported xfermask of @dev and store it in
* dev->*_mask. This function is responsible for applying all
* known limits including host controller limits, device
* blacklist, etc...
*
* FIXME: The current implementation limits all transfer modes to
* the fastest of the lowested device on the port. This is not
* required on most controllers.
*
* LOCKING:
* None.
*/
static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
{
struct ata_host_set *hs = ap->host_set;
unsigned long xfer_mask;
int i;
xfer_mask = ata_pack_xfermask(ap->pio_mask,
ap->mwdma_mask, ap->udma_mask);
/* Apply cable rule here. Don't apply it early because when
* we handle hot plug the cable type can itself change.
*/
if (ap->cbl == ATA_CBL_PATA40)
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
/* FIXME: Use port-wide xfermask for now */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *d = &ap->device[i];
if (ata_dev_absent(d))
continue;
if (ata_dev_disabled(d)) {
/* to avoid violating device selection timing */
xfer_mask &= ata_pack_xfermask(d->pio_mask,
UINT_MAX, UINT_MAX);
continue;
}
xfer_mask &= ata_pack_xfermask(d->pio_mask,
d->mwdma_mask, d->udma_mask);
xfer_mask &= ata_id_xfermask(d->id);
if (ata_dma_blacklisted(d))
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
}
if (ata_dma_blacklisted(dev))
printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
"disabling DMA\n", ap->id, dev->devno);
if (hs->flags & ATA_HOST_SIMPLEX) {
if (hs->simplex_claimed)
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
}
if (ap->ops->mode_filter)
xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
&dev->mwdma_mask, &dev->udma_mask);
}
/**
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
* @ap: Port associated with device @dev
* @dev: Device to which command will be sent
*
* Issue SET FEATURES - XFER MODE command to device @dev
* on port @ap.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
struct ata_device *dev)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* set up set-features taskfile */
DPRINTK("set features - xfer mode\n");
ata_tf_init(ap, &tf, dev->devno);
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = SETFEATURES_XFER;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = dev->xfer_mode;
err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_dev_init_params - Issue INIT DEV PARAMS command
* @ap: Port associated with device @dev
* @dev: Device to which command will be sent
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_init_params(struct ata_port *ap,
struct ata_device *dev,
u16 heads,
u16 sectors)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* Number of sectors per track 1-255. Number of heads 1-16 */
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
return AC_ERR_INVALID;
/* set up init dev params taskfile */
DPRINTK("init dev params \n");
ata_tf_init(ap, &tf, dev->devno);
tf.command = ATA_CMD_INIT_DEV_PARAMS;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = sectors;
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_sg_clean - Unmap DMA memory associated with command
* @qc: Command containing DMA memory to be released
*
* Unmap all mapped DMA memory associated with this command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_sg_clean(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
int dir = qc->dma_dir;
void *pad_buf = NULL;
WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
WARN_ON(sg == NULL);
if (qc->flags & ATA_QCFLAG_SINGLE)
WARN_ON(qc->n_elem > 1);
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
/* if we padded the buffer out to 32-bit bound, and data
* xfer direction is from-device, we must copy from the
* pad buffer back into the supplied buffer
*/
if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
if (qc->flags & ATA_QCFLAG_SG) {
if (qc->n_elem)
dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
/* restore last sg */
sg[qc->orig_n_elem - 1].length += qc->pad_len;
if (pad_buf) {
struct scatterlist *psg = &qc->pad_sgent;
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(addr + psg->offset, pad_buf, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
} else {
if (qc->n_elem)
dma_unmap_single(ap->dev,
sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
dir);
/* restore sg */
sg->length += qc->pad_len;
if (pad_buf)
memcpy(qc->buf_virt + sg->length - qc->pad_len,
pad_buf, qc->pad_len);
}
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->__sg = NULL;
}
/**
* ata_fill_sg - Fill PCI IDE PRD table
* @qc: Metadata associated with taskfile to be transferred
*
* Fill PCI IDE PRD (scatter-gather) table with segments
* associated with the current disk command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
*/
static void ata_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg;
unsigned int idx;
WARN_ON(qc->__sg == NULL);
WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
idx = 0;
ata_for_each_sg(sg, qc) {
u32 addr, offset;
u32 sg_len, len;
/* determine if physical DMA addr spans 64K boundary.
* Note h/w doesn't support 64-bit, so we unconditionally
* truncate dma_addr_t to u32.
*/
addr = (u32) sg_dma_address(sg);
sg_len = sg_dma_len(sg);
while (sg_len) {
offset = addr & 0xffff;
len = sg_len;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
ap->prd[idx].addr = cpu_to_le32(addr);
ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
idx++;
sg_len -= len;
addr += len;
}
}
if (idx)
ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
}
/**
* ata_check_atapi_dma - Check whether ATAPI DMA can be supported
* @qc: Metadata associated with taskfile to check
*
* Allow low-level driver to filter ATA PACKET commands, returning
* a status indicating whether or not it is OK to use DMA for the
* supplied PACKET command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS: 0 when ATAPI DMA can be used
* nonzero otherwise
*/
int ata_check_atapi_dma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int rc = 0; /* Assume ATAPI DMA is OK by default */
if (ap->ops->check_atapi_dma)
rc = ap->ops->check_atapi_dma(qc);
return rc;
}
/**
* ata_qc_prep - Prepare taskfile for submission
* @qc: Metadata associated with taskfile to be prepared
*
* Prepare ATA taskfile for submission.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_prep(struct ata_queued_cmd *qc)
{
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
ata_fill_sg(qc);
}
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
/**
* ata_sg_init_one - Associate command with memory buffer
* @qc: Command to be associated
* @buf: Memory buffer
* @buflen: Length of memory buffer, in bytes.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a single memory buffer, @buf of byte length @buflen.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
{
struct scatterlist *sg;
qc->flags |= ATA_QCFLAG_SINGLE;
memset(&qc->sgent, 0, sizeof(qc->sgent));
qc->__sg = &qc->sgent;
qc->n_elem = 1;
qc->orig_n_elem = 1;
qc->buf_virt = buf;
sg = qc->__sg;
sg_init_one(sg, buf, buflen);
}
/**
* ata_sg_init - Associate command with scatter-gather table.
* @qc: Command to be associated
* @sg: Scatter-gather table.
* @n_elem: Number of elements in s/g table.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a scatter-gather table @sg, containing @n_elem
* elements.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
unsigned int n_elem)
{
qc->flags |= ATA_QCFLAG_SG;
qc->__sg = sg;
qc->n_elem = n_elem;
qc->orig_n_elem = n_elem;
}
/**
* ata_sg_setup_one - DMA-map the memory buffer associated with a command.
* @qc: Command with memory buffer to be mapped.
*
* DMA-map the memory buffer associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*/
static int ata_sg_setup_one(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int dir = qc->dma_dir;
struct scatterlist *sg = qc->__sg;
dma_addr_t dma_address;
int trim_sg = 0;
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = sg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
if (qc->tf.flags & ATA_TFLAG_WRITE)
memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
qc->pad_len);
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim sg */
sg->length -= qc->pad_len;
if (sg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg->length=%u pad_len=%u\n",
sg->length, qc->pad_len);
}
if (trim_sg) {
qc->n_elem--;
goto skip_map;
}
dma_address = dma_map_single(ap->dev, qc->buf_virt,
sg->length, dir);
if (dma_mapping_error(dma_address)) {
/* restore sg */
sg->length += qc->pad_len;
return -1;
}
sg_dma_address(sg) = dma_address;
sg_dma_len(sg) = sg->length;
skip_map:
DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
return 0;
}
/**
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
* @qc: Command with scatter-gather table to be mapped.
*
* DMA-map the scatter-gather table associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*
*/
static int ata_sg_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
struct scatterlist *lsg = &sg[qc->n_elem - 1];
int n_elem, pre_n_elem, dir, trim_sg = 0;
VPRINTK("ENTER, ata%u\n", ap->id);
WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = lsg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
unsigned int offset;
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
/*
* psg->page/offset are used to copy to-be-written
* data in this function or read data in ata_sg_clean.
*/
offset = lsg->offset + lsg->length - qc->pad_len;
psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
psg->offset = offset_in_page(offset);
if (qc->tf.flags & ATA_TFLAG_WRITE) {
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(pad_buf, addr + psg->offset, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim last sg */
lsg->length -= qc->pad_len;
if (lsg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
qc->n_elem - 1, lsg->length, qc->pad_len);
}
pre_n_elem = qc->n_elem;
if (trim_sg && pre_n_elem)
pre_n_elem--;
if (!pre_n_elem) {
n_elem = 0;
goto skip_map;
}
dir = qc->dma_dir;
n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
if (n_elem < 1) {
/* restore last sg */
lsg->length += qc->pad_len;
return -1;
}
DPRINTK("%d sg elements mapped\n", n_elem);
skip_map:
qc->n_elem = n_elem;
return 0;
}
/**
* ata_poll_qc_complete - turn irq back on and finish qc
* @qc: Command to complete
* @err_mask: ATA status register content
*
* LOCKING:
* None. (grabs host lock)
*/
void ata_poll_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned long flags;
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags &= ~ATA_FLAG_NOINTR;
ata_irq_on(ap);
ata_qc_complete(qc);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
}
/**
* ata_pio_poll - poll using PIO, depending on current state
* @ap: the target ata_port
*
* LOCKING:
* None. (executing in kernel thread context)
*
* RETURNS:
* timeout value to use
*/
static unsigned long ata_pio_poll(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 status;
unsigned int poll_state = HSM_ST_UNKNOWN;
unsigned int reg_state = HSM_ST_UNKNOWN;
qc = ata_qc_from_tag(ap, ap->active_tag);
WARN_ON(qc == NULL);
switch (ap->hsm_task_state) {
case HSM_ST:
case HSM_ST_POLL:
poll_state = HSM_ST_POLL;
reg_state = HSM_ST;
break;
case HSM_ST_LAST:
case HSM_ST_LAST_POLL:
poll_state = HSM_ST_LAST_POLL;
reg_state = HSM_ST_LAST;
break;
default:
BUG();
break;
}
status = ata_chk_status(ap);
if (status & ATA_BUSY) {
if (time_after(jiffies, ap->pio_task_timeout)) {
qc->err_mask |= AC_ERR_TIMEOUT;
ap->hsm_task_state = HSM_ST_TMOUT;
return 0;
}
ap->hsm_task_state = poll_state;
return ATA_SHORT_PAUSE;
}
ap->hsm_task_state = reg_state;
return 0;
}
/**
* ata_pio_complete - check if drive is busy or idle
* @ap: the target ata_port
*
* LOCKING:
* None. (executing in kernel thread context)
*
* RETURNS:
* Non-zero if qc completed, zero otherwise.
*/
static int ata_pio_complete (struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 drv_stat;
/*
* This is purely heuristic. This is a fast path. Sometimes when
* we enter, BSY will be cleared in a chk-status or two. If not,
* the drive is probably seeking or something. Snooze for a couple
* msecs, then chk-status again. If still busy, fall back to
* HSM_ST_POLL state.
*/
drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
if (drv_stat & ATA_BUSY) {
msleep(2);
drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
if (drv_stat & ATA_BUSY) {
ap->hsm_task_state = HSM_ST_LAST_POLL;
ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
return 0;
}
}
qc = ata_qc_from_tag(ap, ap->active_tag);
WARN_ON(qc == NULL);
drv_stat = ata_wait_idle(ap);
if (!ata_ok(drv_stat)) {
qc->err_mask |= __ac_err_mask(drv_stat);
ap->hsm_task_state = HSM_ST_ERR;
return 0;
}
ap->hsm_task_state = HSM_ST_IDLE;
WARN_ON(qc->err_mask);
ata_poll_qc_complete(qc);
/* another command may start at this point */
return 1;
}
/**
* swap_buf_le16 - swap halves of 16-bit words in place
* @buf: Buffer to swap
* @buf_words: Number of 16-bit words in buffer.
*
* Swap halves of 16-bit words if needed to convert from
* little-endian byte order to native cpu byte order, or
* vice-versa.
*
* LOCKING:
* Inherited from caller.
*/
void swap_buf_le16(u16 *buf, unsigned int buf_words)
{
#ifdef __BIG_ENDIAN
unsigned int i;
for (i = 0; i < buf_words; i++)
buf[i] = le16_to_cpu(buf[i]);
#endif /* __BIG_ENDIAN */
}
/**
* ata_mmio_data_xfer - Transfer data by MMIO
* @ap: port to read/write
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by MMIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
unsigned int buflen, int write_data)
{
unsigned int i;
unsigned int words = buflen >> 1;
u16 *buf16 = (u16 *) buf;
void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
/* Transfer multiple of 2 bytes */
if (write_data) {
for (i = 0; i < words; i++)
writew(le16_to_cpu(buf16[i]), mmio);
} else {
for (i = 0; i < words; i++)
buf16[i] = cpu_to_le16(readw(mmio));
}
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
writew(le16_to_cpu(align_buf[0]), mmio);
} else {
align_buf[0] = cpu_to_le16(readw(mmio));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_pio_data_xfer - Transfer data by PIO
* @ap: port to read/write
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by PIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
unsigned int buflen, int write_data)
{
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
if (write_data)
outsw(ap->ioaddr.data_addr, buf, words);
else
insw(ap->ioaddr.data_addr, buf, words);
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
} else {
align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_data_xfer - Transfer data from/to the data register.
* @ap: port to read/write
* @buf: data buffer
* @buflen: buffer length
* @do_write: read/write
*
* Transfer data from/to the device data register.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
unsigned int buflen, int do_write)
{
/* Make the crap hardware pay the costs not the good stuff */
if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
unsigned long flags;
local_irq_save(flags);
if (ap->flags & ATA_FLAG_MMIO)
ata_mmio_data_xfer(ap, buf, buflen, do_write);
else
ata_pio_data_xfer(ap, buf, buflen, do_write);
local_irq_restore(flags);
} else {
if (ap->flags & ATA_FLAG_MMIO)
ata_mmio_data_xfer(ap, buf, buflen, do_write);
else
ata_pio_data_xfer(ap, buf, buflen, do_write);
}
}
/**
* ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
* @qc: Command on going
*
* Transfer ATA_SECT_SIZE of data from/to the ATA device.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_sector(struct ata_queued_cmd *qc)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned int offset;
unsigned char *buf;
if (qc->cursect == (qc->nsect - 1))
ap->hsm_task_state = HSM_ST_LAST;
page = sg[qc->cursg].page;
offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
buf = kmap(page) + offset;
qc->cursect++;
qc->cursg_ofs++;
if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
/* do the actual data transfer */
do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
kunmap(page);
}
/**
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
* @bytes: number of bytes
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*
*/
static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned char *buf;
unsigned int offset, count;
if (qc->curbytes + bytes >= qc->nbytes)
ap->hsm_task_state = HSM_ST_LAST;
next_sg:
if (unlikely(qc->cursg >= qc->n_elem)) {
/*
* The end of qc->sg is reached and the device expects
* more data to transfer. In order not to overrun qc->sg
* and fulfill length specified in the byte count register,
* - for read case, discard trailing data from the device
* - for write case, padding zero data to the device
*/
u16 pad_buf[1] = { 0 };
unsigned int words = bytes >> 1;
unsigned int i;
if (words) /* warning if bytes > 1 */
printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
ap->id, bytes);
for (i = 0; i < words; i++)
ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
ap->hsm_task_state = HSM_ST_LAST;
return;
}
sg = &qc->__sg[qc->cursg];
page = sg->page;
offset = sg->offset + qc->cursg_ofs;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
/* don't overrun current sg */
count = min(sg->length - qc->cursg_ofs, bytes);
/* don't cross page boundaries */
count = min(count, (unsigned int)PAGE_SIZE - offset);
buf = kmap(page) + offset;
bytes -= count;
qc->curbytes += count;
qc->cursg_ofs += count;
if (qc->cursg_ofs == sg->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
/* do the actual data transfer */
ata_data_xfer(ap, buf, count, do_write);
kunmap(page);
if (bytes)
goto next_sg;
}
/**
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*/
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *dev = qc->dev;
unsigned int ireason, bc_lo, bc_hi, bytes;
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
ap->ops->tf_read(ap, &qc->tf);
ireason = qc->tf.nsect;
bc_lo = qc->tf.lbam;
bc_hi = qc->tf.lbah;
bytes = (bc_hi << 8) | bc_lo;
/* shall be cleared to zero, indicating xfer of data */
if (ireason & (1 << 0))
goto err_out;
/* make sure transfer direction matches expected */
i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
if (do_write != i_write)
goto err_out;
__atapi_pio_bytes(qc, bytes);
return;
err_out:
printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
ap->id, dev->devno);
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
}
/**
* ata_pio_block - start PIO on a block
* @ap: the target ata_port
*
* LOCKING:
* None. (executing in kernel thread context)
*/
static void ata_pio_block(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 status;
/*
* This is purely heuristic. This is a fast path.
* Sometimes when we enter, BSY will be cleared in
* a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then
* chk-status again. If still busy, fall back to
* HSM_ST_POLL state.
*/
status = ata_busy_wait(ap, ATA_BUSY, 5);
if (status & ATA_BUSY) {
msleep(2);
status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) {
ap->hsm_task_state = HSM_ST_POLL;
ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
return;
}
}
qc = ata_qc_from_tag(ap, ap->active_tag);
WARN_ON(qc == NULL);
/* check error */
if (status & (ATA_ERR | ATA_DF)) {
qc->err_mask |= AC_ERR_DEV;
ap->hsm_task_state = HSM_ST_ERR;
return;
}
/* transfer data if any */
if (is_atapi_taskfile(&qc->tf)) {
/* DRQ=0 means no more data to transfer */
if ((status & ATA_DRQ) == 0) {
ap->hsm_task_state = HSM_ST_LAST;
return;
}
atapi_pio_bytes(qc);
} else {
/* handle BSY=0, DRQ=0 as error */
if ((status & ATA_DRQ) == 0) {
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
return;
}
ata_pio_sector(qc);
}
}
static void ata_pio_error(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
WARN_ON(qc == NULL);
if (qc->tf.command != ATA_CMD_PACKET)
printk(KERN_WARNING "ata%u: dev %u PIO error\n",
ap->id, qc->dev->devno);
/* make sure qc->err_mask is available to
* know what's wrong and recover
*/
WARN_ON(qc->err_mask == 0);
ap->hsm_task_state = HSM_ST_IDLE;
ata_poll_qc_complete(qc);
}
static void ata_pio_task(void *_data)
{
struct ata_port *ap = _data;
unsigned long timeout;
int qc_completed;
fsm_start:
timeout = 0;
qc_completed = 0;
switch (ap->hsm_task_state) {
case HSM_ST_IDLE:
return;
case HSM_ST:
ata_pio_block(ap);
break;
case HSM_ST_LAST:
qc_completed = ata_pio_complete(ap);
break;
case HSM_ST_POLL:
case HSM_ST_LAST_POLL:
timeout = ata_pio_poll(ap);
break;
case HSM_ST_TMOUT:
case HSM_ST_ERR:
ata_pio_error(ap);
return;
}
if (timeout)
ata_port_queue_task(ap, ata_pio_task, ap, timeout);
else if (!qc_completed)
goto fsm_start;
}
/**
* atapi_packet_task - Write CDB bytes to hardware
* @_data: Port to which ATAPI device is attached.
*
* When device has indicated its readiness to accept
* a CDB, this function is called. Send the CDB.
* If DMA is to be performed, exit immediately.
* Otherwise, we are in polling mode, so poll
* status under operation succeeds or fails.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
static void atapi_packet_task(void *_data)
{
struct ata_port *ap = _data;
struct ata_queued_cmd *qc;
u8 status;
qc = ata_qc_from_tag(ap, ap->active_tag);
WARN_ON(qc == NULL);
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
/* sleep-wait for BSY to clear */
DPRINTK("busy wait\n");
if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
qc->err_mask |= AC_ERR_TIMEOUT;
goto err_out;
}
/* make sure DRQ is set */
status = ata_chk_status(ap);
if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
qc->err_mask |= AC_ERR_HSM;
goto err_out;
}
/* send SCSI cdb */
DPRINTK("send cdb\n");
WARN_ON(qc->dev->cdb_len < 12);
if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
unsigned long flags;
/* Once we're done issuing command and kicking bmdma,
* irq handler takes over. To not lose irq, we need
* to clear NOINTR flag before sending cdb, but
* interrupt handler shouldn't be invoked before we're
* finished. Hence, the following locking.
*/
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags &= ~ATA_FLAG_NOINTR;
ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
ap->ops->bmdma_start(qc); /* initiate bmdma */
spin_unlock_irqrestore(&ap->host_set->lock, flags);
} else {
ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
/* PIO commands are handled by polling */
ap->hsm_task_state = HSM_ST;
ata_port_queue_task(ap, ata_pio_task, ap, 0);
}
return;
err_out:
ata_poll_qc_complete(qc);
}
/**
* ata_qc_timeout - Handle timeout of queued command
* @qc: Command that timed out
*
* Some part of the kernel (currently, only the SCSI layer)
* has noticed that the active command on port @ap has not
* completed after a specified length of time. Handle this
* condition by disabling DMA (if necessary) and completing
* transactions, with error if necessary.
*
* This also handles the case of the "lost interrupt", where
* for some reason (possibly hardware bug, possibly driver bug)
* an interrupt was not delivered to the driver, even though the
* transaction completed successfully.
*
* LOCKING:
* Inherited from SCSI layer (none, can sleep)
*/
static void ata_qc_timeout(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_host_set *host_set = ap->host_set;
u8 host_stat = 0, drv_stat;
unsigned long flags;
DPRINTK("ENTER\n");
ap->hsm_task_state = HSM_ST_IDLE;
spin_lock_irqsave(&host_set->lock, flags);
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
host_stat = ap->ops->bmdma_status(ap);
/* before we do anything else, clear DMA-Start bit */
ap->ops->bmdma_stop(qc);
/* fall through */
default:
ata_altstatus(ap);
drv_stat = ata_chk_status(ap);
/* ack bmdma irq events */
ap->ops->irq_clear(ap);
printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
ap->id, qc->tf.command, drv_stat, host_stat);
/* complete taskfile transaction */
qc->err_mask |= ac_err_mask(drv_stat);
break;
}
spin_unlock_irqrestore(&host_set->lock, flags);
ata_eh_qc_complete(qc);
DPRINTK("EXIT\n");
}
/**
* ata_eng_timeout - Handle timeout of queued command
* @ap: Port on which timed-out command is active
*
* Some part of the kernel (currently, only the SCSI layer)
* has noticed that the active command on port @ap has not
* completed after a specified length of time. Handle this
* condition by disabling DMA (if necessary) and completing
* transactions, with error if necessary.
*
* This also handles the case of the "lost interrupt", where
* for some reason (possibly hardware bug, possibly driver bug)
* an interrupt was not delivered to the driver, even though the
* transaction completed successfully.
*
* LOCKING:
* Inherited from SCSI layer (none, can sleep)
*/
void ata_eng_timeout(struct ata_port *ap)
{
DPRINTK("ENTER\n");
ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
DPRINTK("EXIT\n");
}
/**
* ata_qc_new - Request an available ATA command, for queueing
* @ap: Port associated with device @dev
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
{
struct ata_queued_cmd *qc = NULL;
unsigned int i;
for (i = 0; i < ATA_MAX_QUEUE; i++)
if (!test_and_set_bit(i, &ap->qactive)) {
qc = ata_qc_from_tag(ap, i);
break;
}
if (qc)
qc->tag = i;
return qc;
}
/**
* ata_qc_new_init - Request an available ATA command, and initialize it
* @ap: Port associated with device @dev
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
struct ata_device *dev)
{
struct ata_queued_cmd *qc;
qc = ata_qc_new(ap);
if (qc) {
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
}
return qc;
}
/**
* ata_qc_free - free unused ata_queued_cmd
* @qc: Command to complete
*
* Designed to free unused ata_queued_cmd object
* in case something prevents using it.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_free(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int tag;
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
qc->flags = 0;
tag = qc->tag;
if (likely(ata_tag_valid(tag))) {
if (tag == ap->active_tag)
ap->active_tag = ATA_TAG_POISON;
qc->tag = ATA_TAG_POISON;
clear_bit(tag, &ap->qactive);
}
}
void __ata_qc_complete(struct ata_queued_cmd *qc)
{
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
ata_sg_clean(qc);
/* atapi: mark qc as inactive to prevent the interrupt handler
* from completing the command twice later, before the error handler
* is called. (when rc != 0 and atapi request sense is needed)
*/
qc->flags &= ~ATA_QCFLAG_ACTIVE;
/* call completion callback */
qc->complete_fn(qc);
}
static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
return 1;
case ATA_PROT_ATAPI:
case ATA_PROT_PIO:
if (ap->flags & ATA_FLAG_PIO_DMA)
return 1;
/* fall through */
default:
return 0;
}
/* never reached */
}
/**
* ata_qc_issue - issue taskfile to device
* @qc: command to issue to device
*
* Prepare an ATA command to submission to device.
* This includes mapping the data into a DMA-able
* area, filling in the S/G table, and finally
* writing the taskfile to hardware, starting the command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
qc->ap->active_tag = qc->tag;
qc->flags |= ATA_QCFLAG_ACTIVE;
if (ata_should_dma_map(qc)) {
if (qc->flags & ATA_QCFLAG_SG) {
if (ata_sg_setup(qc))
goto sg_err;
} else if (qc->flags & ATA_QCFLAG_SINGLE) {
if (ata_sg_setup_one(qc))
goto sg_err;
}
} else {
qc->flags &= ~ATA_QCFLAG_DMAMAP;
}
ap->ops->qc_prep(qc);
qc->err_mask |= ap->ops->qc_issue(qc);
if (unlikely(qc->err_mask))
goto err;
return;
sg_err:
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->err_mask |= AC_ERR_SYSTEM;
err:
ata_qc_complete(qc);
}
/**
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
* @qc: command to issue to device
*
* Using various libata functions and hooks, this function
* starts an ATA command. ATA commands are grouped into
* classes called "protocols", and issuing each type of protocol
* is slightly different.
*
* May be used as the qc_issue() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
ata_dev_select(ap, qc->dev->devno, 1, 0);
switch (qc->tf.protocol) {
case ATA_PROT_NODATA:
ata_tf_to_host(ap, &qc->tf);
break;
case ATA_PROT_DMA:
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ap->ops->bmdma_start(qc); /* initiate bmdma */
break;
case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
ap->hsm_task_state = HSM_ST;
ata_port_queue_task(ap, ata_pio_task, ap, 0);
break;
case ATA_PROT_ATAPI:
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
ata_port_queue_task(ap, atapi_packet_task, ap, 0);
break;
case ATA_PROT_ATAPI_NODATA:
ap->flags |= ATA_FLAG_NOINTR;
ata_tf_to_host(ap, &qc->tf);
ata_port_queue_task(ap, atapi_packet_task, ap, 0);
break;
case ATA_PROT_ATAPI_DMA:
ap->flags |= ATA_FLAG_NOINTR;
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ata_port_queue_task(ap, atapi_packet_task, ap, 0);
break;
default:
WARN_ON(1);
return AC_ERR_SYSTEM;
}
return 0;
}
/**
* ata_host_intr - Handle host interrupt for given (port, task)
* @ap: Port on which interrupt arrived (possibly...)
* @qc: Taskfile currently active in engine
*
* Handle host interrupt for given queued command. Currently,
* only DMA interrupts are handled. All other commands are
* handled via polling with interrupts disabled (nIEN bit).
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* One if interrupt was handled, zero if not (shared irq).
*/
inline unsigned int ata_host_intr (struct ata_port *ap,
struct ata_queued_cmd *qc)
{
u8 status, host_stat;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
case ATA_PROT_ATAPI:
/* check status of DMA engine */
host_stat = ap->ops->bmdma_status(ap);
VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
/* if it's not our irq... */
if (!(host_stat & ATA_DMA_INTR))
goto idle_irq;
/* before we do anything else, clear DMA-Start bit */
ap->ops->bmdma_stop(qc);
/* fall through */
case ATA_PROT_ATAPI_NODATA:
case ATA_PROT_NODATA:
/* check altstatus */
status = ata_altstatus(ap);
if (status & ATA_BUSY)
goto idle_irq;
/* check main status, clearing INTRQ */
status = ata_chk_status(ap);
if (unlikely(status & ATA_BUSY))
goto idle_irq;
DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
ap->id, qc->tf.protocol, status);
/* ack bmdma irq events */
ap->ops->irq_clear(ap);
/* complete taskfile transaction */
qc->err_mask |= ac_err_mask(status);
ata_qc_complete(qc);
break;
default:
goto idle_irq;
}
return 1; /* irq handled */
idle_irq:
ap->stats.idle_irq++;
#ifdef ATA_IRQ_TRAP
if ((ap->stats.idle_irq % 1000) == 0) {
ata_irq_ack(ap, 0); /* debug trap */
printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
return 1;
}
#endif
return 0; /* irq not handled */
}
/**
* ata_interrupt - Default ATA host interrupt handler
* @irq: irq line (unused)
* @dev_instance: pointer to our ata_host_set information structure
* @regs: unused
*
* Default interrupt handler for PCI IDE devices. Calls
* ata_host_intr() for each port that is not disabled.
*
* LOCKING:
* Obtains host_set lock during operation.
*
* RETURNS:
* IRQ_NONE or IRQ_HANDLED.
*/
irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
{
struct ata_host_set *host_set = dev_instance;
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
spin_lock_irqsave(&host_set->lock, flags);
for (i = 0; i < host_set->n_ports; i++) {
struct ata_port *ap;
ap = host_set->ports[i];
if (ap &&
!(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
(qc->flags & ATA_QCFLAG_ACTIVE))
handled |= ata_host_intr(ap, qc);
}
}
spin_unlock_irqrestore(&host_set->lock, flags);
return IRQ_RETVAL(handled);
}
/*
* Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
* without filling any other registers
*/
static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
u8 cmd)
{
struct ata_taskfile tf;
int err;
ata_tf_init(ap, &tf, dev->devno);
tf.command = cmd;
tf.flags |= ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
if (err)
printk(KERN_ERR "%s: ata command failed: %d\n",
__FUNCTION__, err);
return err;
}
static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
{
u8 cmd;
if (!ata_try_flush_cache(dev))
return 0;
if (ata_id_has_flush_ext(dev->id))
cmd = ATA_CMD_FLUSH_EXT;
else
cmd = ATA_CMD_FLUSH;
return ata_do_simple_cmd(ap, dev, cmd);
}
static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
{
return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
}
static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
{
return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
}
/**
* ata_device_resume - wakeup a previously suspended devices
* @ap: port the device is connected to
* @dev: the device to resume
*
* Kick the drive back into action, by sending it an idle immediate
* command and making sure its transfer mode matches between drive
* and host.
*
*/
int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
{
if (ap->flags & ATA_FLAG_SUSPENDED) {
struct ata_device *failed_dev;
ap->flags &= ~ATA_FLAG_SUSPENDED;
while (ata_set_mode(ap, &failed_dev))
ata_dev_disable(ap, failed_dev);
}
if (!ata_dev_enabled(dev))
return 0;
if (dev->class == ATA_DEV_ATA)
ata_start_drive(ap, dev);
return 0;
}
/**
* ata_device_suspend - prepare a device for suspend
* @ap: port the device is connected to
* @dev: the device to suspend
*
* Flush the cache on the drive, if appropriate, then issue a
* standbynow command.
*/
int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
{
if (!ata_dev_enabled(dev))
return 0;
if (dev->class == ATA_DEV_ATA)
ata_flush_cache(ap, dev);
if (state.event != PM_EVENT_FREEZE)
ata_standby_drive(ap, dev);
ap->flags |= ATA_FLAG_SUSPENDED;
return 0;
}
/**
* ata_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized. Allocates space for PRD table.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
int ata_port_start (struct ata_port *ap)
{
struct device *dev = ap->dev;
int rc;
ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
if (!ap->prd)
return -ENOMEM;
rc = ata_pad_alloc(ap, dev);
if (rc) {
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
return rc;
}
DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
return 0;
}
/**
* ata_port_stop - Undo ata_port_start()
* @ap: Port to shut down
*
* Frees the PRD table.
*
* May be used as the port_stop() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_port_stop (struct ata_port *ap)
{
struct device *dev = ap->dev;
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
ata_pad_free(ap, dev);
}
void ata_host_stop (struct ata_host_set *host_set)
{
if (host_set->mmio_base)
iounmap(host_set->mmio_base);
}
/**
* ata_host_remove - Unregister SCSI host structure with upper layers
* @ap: Port to unregister
* @do_unregister: 1 if we fully unregister, 0 to just stop the port
*
* LOCKING:
* Inherited from caller.
*/
static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
{
struct Scsi_Host *sh = ap->host;
DPRINTK("ENTER\n");
if (do_unregister)
scsi_remove_host(sh);
ap->ops->port_stop(ap);
}
/**
* ata_host_init - Initialize an ata_port structure
* @ap: Structure to initialize
* @host: associated SCSI mid-layer structure
* @host_set: Collection of hosts to which @ap belongs
* @ent: Probe information provided by low-level driver
* @port_no: Port number associated with this ata_port
*
* Initialize a new ata_port structure, and its associated
* scsi_host.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
struct ata_host_set *host_set,
const struct ata_probe_ent *ent, unsigned int port_no)
{
unsigned int i;
host->max_id = 16;
host->max_lun = 1;
host->max_channel = 1;
host->unique_id = ata_unique_id++;
host->max_cmd_len = 12;
ap->flags = ATA_FLAG_DISABLED;
ap->id = host->unique_id;
ap->host = host;
ap->ctl = ATA_DEVCTL_OBS;
ap->host_set = host_set;
ap->dev = ent->dev;
ap->port_no = port_no;
ap->hard_port_no =
ent->legacy_mode ? ent->hard_port_no : port_no;
ap->pio_mask = ent->pio_mask;
ap->mwdma_mask = ent->mwdma_mask;
ap->udma_mask = ent->udma_mask;
ap->flags |= ent->host_flags;
ap->ops = ent->port_ops;
ap->cbl = ATA_CBL_NONE;
ap->sata_spd_limit = UINT_MAX;
ap->active_tag = ATA_TAG_POISON;
ap->last_ctl = 0xFF;
INIT_WORK(&ap->port_task, NULL, NULL);
INIT_LIST_HEAD(&ap->eh_done_q);
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
dev->devno = i;
dev->pio_mask = UINT_MAX;
dev->mwdma_mask = UINT_MAX;
dev->udma_mask = UINT_MAX;
}
#ifdef ATA_IRQ_TRAP
ap->stats.unhandled_irq = 1;
ap->stats.idle_irq = 1;
#endif
memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
}
/**
* ata_host_add - Attach low-level ATA driver to system
* @ent: Information provided by low-level driver
* @host_set: Collections of ports to which we add
* @port_no: Port number associated with this host
*
* Attach low-level ATA driver to system.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* New ata_port on success, for NULL on error.
*/
static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
struct ata_host_set *host_set,
unsigned int port_no)
{
struct Scsi_Host *host;
struct ata_port *ap;
int rc;
DPRINTK("ENTER\n");
if (!ent->port_ops->probe_reset &&
!(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
printk(KERN_ERR "ata%u: no reset mechanism available\n",
port_no);
return NULL;
}
host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
if (!host)
return NULL;
host->transportt = &ata_scsi_transport_template;
ap = (struct ata_port *) &host->hostdata[0];
ata_host_init(ap, host, host_set, ent, port_no);
rc = ap->ops->port_start(ap);
if (rc)
goto err_out;
return ap;
err_out:
scsi_host_put(host);
return NULL;
}
/**
* ata_device_add - Register hardware device with ATA and SCSI layers
* @ent: Probe information describing hardware device to be registered
*
* This function processes the information provided in the probe
* information struct @ent, allocates the necessary ATA and SCSI
* host information structures, initializes them, and registers
* everything with requisite kernel subsystems.
*
* This function requests irqs, probes the ATA bus, and probes
* the SCSI bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Number of ports registered. Zero on error (no ports registered).
*/
int ata_device_add(const struct ata_probe_ent *ent)
{
unsigned int count = 0, i;
struct device *dev = ent->dev;
struct ata_host_set *host_set;
DPRINTK("ENTER\n");
/* alloc a container for our list of ATA ports (buses) */
host_set = kzalloc(sizeof(struct ata_host_set) +
(ent->n_ports * sizeof(void *)), GFP_KERNEL);
if (!host_set)
return 0;
spin_lock_init(&host_set->lock);
host_set->dev = dev;
host_set->n_ports = ent->n_ports;
host_set->irq = ent->irq;
host_set->mmio_base = ent->mmio_base;
host_set->private_data = ent->private_data;
host_set->ops = ent->port_ops;
host_set->flags = ent->host_set_flags;
/* register each port bound to this device */
for (i = 0; i < ent->n_ports; i++) {
struct ata_port *ap;
unsigned long xfer_mode_mask;
ap = ata_host_add(ent, host_set, i);
if (!ap)
goto err_out;
host_set->ports[i] = ap;
xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
(ap->pio_mask << ATA_SHIFT_PIO);
/* print per-port info to dmesg */
printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
"bmdma 0x%lX irq %lu\n",
ap->id,
ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
ata_mode_string(xfer_mode_mask),
ap->ioaddr.cmd_addr,
ap->ioaddr.ctl_addr,
ap->ioaddr.bmdma_addr,
ent->irq);
ata_chk_status(ap);
host_set->ops->irq_clear(ap);
count++;
}
if (!count)
goto err_free_ret;
/* obtain irq, that is shared between channels */
if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
DRV_NAME, host_set))
goto err_out;
/* perform each probe synchronously */
DPRINTK("probe begin\n");
for (i = 0; i < count; i++) {
struct ata_port *ap;
int rc;
ap = host_set->ports[i];
DPRINTK("ata%u: bus probe begin\n", ap->id);
rc = ata_bus_probe(ap);
DPRINTK("ata%u: bus probe end\n", ap->id);
if (rc) {
/* FIXME: do something useful here?
* Current libata behavior will
* tear down everything when
* the module is removed
* or the h/w is unplugged.
*/
}
rc = scsi_add_host(ap->host, dev);
if (rc) {
printk(KERN_ERR "ata%u: scsi_add_host failed\n",
ap->id);
/* FIXME: do something useful here */
/* FIXME: handle unconditional calls to
* scsi_scan_host and ata_host_remove, below,
* at the very least
*/
}
}
/* probes are done, now scan each port's disk(s) */
DPRINTK("host probe begin\n");
for (i = 0; i < count; i++) {
struct ata_port *ap = host_set->ports[i];
ata_scsi_scan_host(ap);
}
dev_set_drvdata(dev, host_set);
VPRINTK("EXIT, returning %u\n", ent->n_ports);
return ent->n_ports; /* success */
err_out:
for (i = 0; i < count; i++) {
ata_host_remove(host_set->ports[i], 1);
scsi_host_put(host_set->ports[i]->host);
}
err_free_ret:
kfree(host_set);
VPRINTK("EXIT, returning 0\n");
return 0;
}
/**
* ata_host_set_remove - PCI layer callback for device removal
* @host_set: ATA host set that was removed
*
* Unregister all objects associated with this host set. Free those
* objects.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*/
void ata_host_set_remove(struct ata_host_set *host_set)
{
struct ata_port *ap;
unsigned int i;
for (i = 0; i < host_set->n_ports; i++) {
ap = host_set->ports[i];
scsi_remove_host(ap->host);
}
free_irq(host_set->irq, host_set);
for (i = 0; i < host_set->n_ports; i++) {
ap = host_set->ports[i];
ata_scsi_release(ap->host);
if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
struct ata_ioports *ioaddr = &ap->ioaddr;
if (ioaddr->cmd_addr == 0x1f0)
release_region(0x1f0, 8);
else if (ioaddr->cmd_addr == 0x170)
release_region(0x170, 8);
}
scsi_host_put(ap->host);
}
if (host_set->ops->host_stop)
host_set->ops->host_stop(host_set);
kfree(host_set);
}
/**
* ata_scsi_release - SCSI layer callback hook for host unload
* @host: libata host to be unloaded
*
* Performs all duties necessary to shut down a libata port...
* Kill port kthread, disable port, and release resources.
*
* LOCKING:
* Inherited from SCSI layer.
*
* RETURNS:
* One.
*/
int ata_scsi_release(struct Scsi_Host *host)
{
struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
int i;
DPRINTK("ENTER\n");
ap->ops->port_disable(ap);
ata_host_remove(ap, 0);
for (i = 0; i < ATA_MAX_DEVICES; i++)
kfree(ap->device[i].id);
DPRINTK("EXIT\n");
return 1;
}
/**
* ata_std_ports - initialize ioaddr with standard port offsets.
* @ioaddr: IO address structure to be initialized
*
* Utility function which initializes data_addr, error_addr,
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
* device_addr, status_addr, and command_addr to standard offsets
* relative to cmd_addr.
*
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
*/
void ata_std_ports(struct ata_ioports *ioaddr)
{
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
}
#ifdef CONFIG_PCI
void ata_pci_host_stop (struct ata_host_set *host_set)
{
struct pci_dev *pdev = to_pci_dev(host_set->dev);
pci_iounmap(pdev, host_set->mmio_base);
}
/**
* ata_pci_remove_one - PCI layer callback for device removal
* @pdev: PCI device that was removed
*
* PCI layer indicates to libata via this hook that
* hot-unplug or module unload event has occurred.
* Handle this by unregistering all objects associated
* with this PCI device. Free those objects. Then finally
* release PCI resources and disable device.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*/
void ata_pci_remove_one (struct pci_dev *pdev)
{
struct device *dev = pci_dev_to_dev(pdev);
struct ata_host_set *host_set = dev_get_drvdata(dev);
ata_host_set_remove(host_set);
pci_release_regions(pdev);
pci_disable_device(pdev);
dev_set_drvdata(dev, NULL);
}
/* move to PCI subsystem */
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
{
unsigned long tmp = 0;
switch (bits->width) {
case 1: {
u8 tmp8 = 0;
pci_read_config_byte(pdev, bits->reg, &tmp8);
tmp = tmp8;
break;
}
case 2: {
u16 tmp16 = 0;
pci_read_config_word(pdev, bits->reg, &tmp16);
tmp = tmp16;
break;
}
case 4: {
u32 tmp32 = 0;
pci_read_config_dword(pdev, bits->reg, &tmp32);
tmp = tmp32;
break;
}
default:
return -EINVAL;
}
tmp &= bits->mask;
return (tmp == bits->val) ? 1 : 0;
}
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
int ata_pci_device_resume(struct pci_dev *pdev)
{
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_device(pdev);
pci_set_master(pdev);
return 0;
}
#endif /* CONFIG_PCI */
static int __init ata_init(void)
{
ata_wq = create_workqueue("ata");
if (!ata_wq)
return -ENOMEM;
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
return 0;
}
static void __exit ata_exit(void)
{
destroy_workqueue(ata_wq);
}
module_init(ata_init);
module_exit(ata_exit);
static unsigned long ratelimit_time;
static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
int ata_ratelimit(void)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&ata_ratelimit_lock, flags);
if (time_after(jiffies, ratelimit_time)) {
rc = 1;
ratelimit_time = jiffies + (HZ/5);
} else
rc = 0;
spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
return rc;
}
/*
* libata is essentially a library of internal helper functions for
* low-level ATA host controller drivers. As such, the API/ABI is
* likely to change as new drivers are added and updated.
* Do not depend on ABI/API stability.
*/
EXPORT_SYMBOL_GPL(ata_std_bios_param);
EXPORT_SYMBOL_GPL(ata_std_ports);
EXPORT_SYMBOL_GPL(ata_device_add);
EXPORT_SYMBOL_GPL(ata_host_set_remove);
EXPORT_SYMBOL_GPL(ata_sg_init);
EXPORT_SYMBOL_GPL(ata_sg_init_one);
EXPORT_SYMBOL_GPL(__ata_qc_complete);
EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
EXPORT_SYMBOL_GPL(ata_eng_timeout);
EXPORT_SYMBOL_GPL(ata_tf_load);
EXPORT_SYMBOL_GPL(ata_tf_read);
EXPORT_SYMBOL_GPL(ata_noop_dev_select);
EXPORT_SYMBOL_GPL(ata_std_dev_select);
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
EXPORT_SYMBOL_GPL(ata_check_status);
EXPORT_SYMBOL_GPL(ata_altstatus);
EXPORT_SYMBOL_GPL(ata_exec_command);
EXPORT_SYMBOL_GPL(ata_port_start);
EXPORT_SYMBOL_GPL(ata_port_stop);
EXPORT_SYMBOL_GPL(ata_host_stop);
EXPORT_SYMBOL_GPL(ata_interrupt);
EXPORT_SYMBOL_GPL(ata_qc_prep);
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
EXPORT_SYMBOL_GPL(ata_bmdma_start);
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
EXPORT_SYMBOL_GPL(ata_bmdma_status);
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
EXPORT_SYMBOL_GPL(ata_port_probe);
EXPORT_SYMBOL_GPL(sata_phy_reset);
EXPORT_SYMBOL_GPL(__sata_phy_reset);
EXPORT_SYMBOL_GPL(ata_bus_reset);
EXPORT_SYMBOL_GPL(ata_std_probeinit);
EXPORT_SYMBOL_GPL(ata_std_softreset);
EXPORT_SYMBOL_GPL(sata_std_hardreset);
EXPORT_SYMBOL_GPL(ata_std_postreset);
EXPORT_SYMBOL_GPL(ata_std_probe_reset);
EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
EXPORT_SYMBOL_GPL(ata_dev_revalidate);
EXPORT_SYMBOL_GPL(ata_dev_classify);
EXPORT_SYMBOL_GPL(ata_dev_pair);
EXPORT_SYMBOL_GPL(ata_port_disable);
EXPORT_SYMBOL_GPL(ata_ratelimit);
EXPORT_SYMBOL_GPL(ata_busy_sleep);
EXPORT_SYMBOL_GPL(ata_port_queue_task);
EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
EXPORT_SYMBOL_GPL(ata_scsi_error);
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
EXPORT_SYMBOL_GPL(ata_scsi_release);
EXPORT_SYMBOL_GPL(ata_host_intr);
EXPORT_SYMBOL_GPL(ata_id_string);
EXPORT_SYMBOL_GPL(ata_id_c_string);
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
EXPORT_SYMBOL_GPL(ata_timing_compute);
EXPORT_SYMBOL_GPL(ata_timing_merge);
#ifdef CONFIG_PCI
EXPORT_SYMBOL_GPL(pci_test_config_bits);
EXPORT_SYMBOL_GPL(ata_pci_host_stop);
EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
EXPORT_SYMBOL_GPL(ata_pci_init_one);
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
EXPORT_SYMBOL_GPL(ata_pci_default_filter);
EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
#endif /* CONFIG_PCI */
EXPORT_SYMBOL_GPL(ata_device_suspend);
EXPORT_SYMBOL_GPL(ata_device_resume);
EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
EXPORT_SYMBOL_GPL(ata_scsi_device_resume);