/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "isci.h"
#include "task.h"
#include "request.h"
#include "sata.h"
#include "scu_completion_codes.h"
#include "sas.h"
/**
* This method returns the sgl element pair for the specificed sgl_pair index.
* @sci_req: This parameter specifies the IO request for which to retrieve
* the Scatter-Gather List element pair.
* @sgl_pair_index: This parameter specifies the index into the SGL element
* pair to be retrieved.
*
* This method returns a pointer to an struct scu_sgl_element_pair.
*/
static struct scu_sgl_element_pair *scic_sds_request_get_sgl_element_pair(
struct scic_sds_request *sci_req,
u32 sgl_pair_index
) {
struct scu_task_context *task_context;
task_context = (struct scu_task_context *)sci_req->task_context_buffer;
if (sgl_pair_index == 0) {
return &task_context->sgl_pair_ab;
} else if (sgl_pair_index == 1) {
return &task_context->sgl_pair_cd;
}
return &sci_req->sg_table[sgl_pair_index - 2];
}
/**
* This function will build the SGL list for an IO request.
* @sci_req: This parameter specifies the IO request for which to build
* the Scatter-Gather List.
*
*/
void scic_sds_request_build_sgl(struct scic_sds_request *sds_request)
{
struct isci_request *isci_request = sci_req_to_ireq(sds_request);
struct isci_host *isci_host = isci_request->isci_host;
struct sas_task *task = isci_request_access_task(isci_request);
struct scatterlist *sg = NULL;
dma_addr_t dma_addr;
u32 sg_idx = 0;
struct scu_sgl_element_pair *scu_sg = NULL;
struct scu_sgl_element_pair *prev_sg = NULL;
if (task->num_scatter > 0) {
sg = task->scatter;
while (sg) {
scu_sg = scic_sds_request_get_sgl_element_pair(
sds_request,
sg_idx);
SCU_SGL_COPY(scu_sg->A, sg);
sg = sg_next(sg);
if (sg) {
SCU_SGL_COPY(scu_sg->B, sg);
sg = sg_next(sg);
} else
SCU_SGL_ZERO(scu_sg->B);
if (prev_sg) {
dma_addr =
scic_io_request_get_dma_addr(
sds_request,
scu_sg);
prev_sg->next_pair_upper =
upper_32_bits(dma_addr);
prev_sg->next_pair_lower =
lower_32_bits(dma_addr);
}
prev_sg = scu_sg;
sg_idx++;
}
} else { /* handle when no sg */
scu_sg = scic_sds_request_get_sgl_element_pair(sds_request,
sg_idx);
dma_addr = dma_map_single(&isci_host->pdev->dev,
task->scatter,
task->total_xfer_len,
task->data_dir);
isci_request->zero_scatter_daddr = dma_addr;
scu_sg->A.length = task->total_xfer_len;
scu_sg->A.address_upper = upper_32_bits(dma_addr);
scu_sg->A.address_lower = lower_32_bits(dma_addr);
}
if (scu_sg) {
scu_sg->next_pair_upper = 0;
scu_sg->next_pair_lower = 0;
}
}
static void scic_sds_io_request_build_ssp_command_iu(struct scic_sds_request *sci_req)
{
struct ssp_cmd_iu *cmd_iu;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
cmd_iu = &sci_req->ssp.cmd;
memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
cmd_iu->add_cdb_len = 0;
cmd_iu->_r_a = 0;
cmd_iu->_r_b = 0;
cmd_iu->en_fburst = 0; /* unsupported */
cmd_iu->task_prio = task->ssp_task.task_prio;
cmd_iu->task_attr = task->ssp_task.task_attr;
cmd_iu->_r_c = 0;
sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
sizeof(task->ssp_task.cdb) / sizeof(u32));
}
static void scic_sds_task_request_build_ssp_task_iu(struct scic_sds_request *sci_req)
{
struct ssp_task_iu *task_iu;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
task_iu = &sci_req->ssp.tmf;
memset(task_iu, 0, sizeof(struct ssp_task_iu));
memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
task_iu->task_func = isci_tmf->tmf_code;
task_iu->task_tag =
(ireq->ttype == tmf_task) ?
isci_tmf->io_tag :
SCI_CONTROLLER_INVALID_IO_TAG;
}
/**
* This method is will fill in the SCU Task Context for any type of SSP request.
* @sci_req:
* @task_context:
*
*/
static void scu_ssp_reqeust_construct_task_context(
struct scic_sds_request *sds_request,
struct scu_task_context *task_context)
{
dma_addr_t dma_addr;
struct scic_sds_controller *controller;
struct scic_sds_remote_device *target_device;
struct scic_sds_port *target_port;
controller = scic_sds_request_get_controller(sds_request);
target_device = scic_sds_request_get_device(sds_request);
target_port = scic_sds_request_get_port(sds_request);
/* Fill in the TC with the its required data */
task_context->abort = 0;
task_context->priority = 0;
task_context->initiator_request = 1;
task_context->connection_rate = target_device->connection_rate;
task_context->protocol_engine_index =
scic_sds_controller_get_protocol_engine_group(controller);
task_context->logical_port_index =
scic_sds_port_get_index(target_port);
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
task_context->valid = SCU_TASK_CONTEXT_VALID;
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
task_context->remote_node_index =
scic_sds_remote_device_get_index(sds_request->target_device);
task_context->command_code = 0;
task_context->link_layer_control = 0;
task_context->do_not_dma_ssp_good_response = 1;
task_context->strict_ordering = 0;
task_context->control_frame = 0;
task_context->timeout_enable = 0;
task_context->block_guard_enable = 0;
task_context->address_modifier = 0;
/* task_context->type.ssp.tag = sci_req->io_tag; */
task_context->task_phase = 0x01;
if (sds_request->was_tag_assigned_by_user) {
/*
* Build the task context now since we have already read
* the data
*/
sds_request->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(
controller) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(target_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
scic_sds_io_tag_get_index(sds_request->io_tag));
} else {
/*
* Build the task context now since we have already read
* the data
*
* I/O tag index is not assigned because we have to wait
* until we get a TCi
*/
sds_request->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(
owning_controller) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(target_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
}
/*
* Copy the physical address for the command buffer to the
* SCU Task Context
*/
dma_addr = scic_io_request_get_dma_addr(sds_request,
&sds_request->ssp.cmd);
task_context->command_iu_upper = upper_32_bits(dma_addr);
task_context->command_iu_lower = lower_32_bits(dma_addr);
/*
* Copy the physical address for the response buffer to the
* SCU Task Context
*/
dma_addr = scic_io_request_get_dma_addr(sds_request,
&sds_request->ssp.rsp);
task_context->response_iu_upper = upper_32_bits(dma_addr);
task_context->response_iu_lower = lower_32_bits(dma_addr);
}
/**
* This method is will fill in the SCU Task Context for a SSP IO request.
* @sci_req:
*
*/
static void scu_ssp_io_request_construct_task_context(
struct scic_sds_request *sci_req,
enum dma_data_direction dir,
u32 len)
{
struct scu_task_context *task_context;
task_context = scic_sds_request_get_task_context(sci_req);
scu_ssp_reqeust_construct_task_context(sci_req, task_context);
task_context->ssp_command_iu_length =
sizeof(struct ssp_cmd_iu) / sizeof(u32);
task_context->type.ssp.frame_type = SSP_COMMAND;
switch (dir) {
case DMA_FROM_DEVICE:
case DMA_NONE:
default:
task_context->task_type = SCU_TASK_TYPE_IOREAD;
break;
case DMA_TO_DEVICE:
task_context->task_type = SCU_TASK_TYPE_IOWRITE;
break;
}
task_context->transfer_length_bytes = len;
if (task_context->transfer_length_bytes > 0)
scic_sds_request_build_sgl(sci_req);
}
/**
* This method will fill in the SCU Task Context for a SSP Task request. The
* following important settings are utilized: -# priority ==
* SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
* ahead of other task destined for the same Remote Node. -# task_type ==
* SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
* (i.e. non-raw frame) is being utilized to perform task management. -#
* control_frame == 1. This ensures that the proper endianess is set so
* that the bytes are transmitted in the right order for a task frame.
* @sci_req: This parameter specifies the task request object being
* constructed.
*
*/
static void scu_ssp_task_request_construct_task_context(
struct scic_sds_request *sci_req)
{
struct scu_task_context *task_context;
task_context = scic_sds_request_get_task_context(sci_req);
scu_ssp_reqeust_construct_task_context(sci_req, task_context);
task_context->control_frame = 1;
task_context->priority = SCU_TASK_PRIORITY_HIGH;
task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
task_context->transfer_length_bytes = 0;
task_context->type.ssp.frame_type = SSP_TASK;
task_context->ssp_command_iu_length =
sizeof(struct ssp_task_iu) / sizeof(u32);
}
/**
* This method constructs the SSP Command IU data for this ssp passthrough
* comand request object.
* @sci_req: This parameter specifies the request object for which the SSP
* command information unit is being built.
*
* enum sci_status, returns invalid parameter is cdb > 16
*/
/**
* This method constructs the SATA request object.
* @sci_req:
* @sat_protocol:
* @transfer_length:
* @data_direction:
* @copy_rx_frame:
*
* enum sci_status
*/
static enum sci_status
scic_io_request_construct_sata(struct scic_sds_request *sci_req,
u32 len,
enum dma_data_direction dir,
bool copy)
{
enum sci_status status = SCI_SUCCESS;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
/* check for management protocols */
if (ireq->ttype == tmf_task) {
struct isci_tmf *tmf = isci_request_access_tmf(ireq);
if (tmf->tmf_code == isci_tmf_sata_srst_high ||
tmf->tmf_code == isci_tmf_sata_srst_low)
return scic_sds_stp_soft_reset_request_construct(sci_req);
else {
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: Request 0x%p received un-handled SAT "
"management protocol 0x%x.\n",
__func__, sci_req, tmf->tmf_code);
return SCI_FAILURE;
}
}
if (!sas_protocol_ata(task->task_proto)) {
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: Non-ATA protocol in SATA path: 0x%x\n",
__func__,
task->task_proto);
return SCI_FAILURE;
}
/* non data */
if (task->data_dir == DMA_NONE)
return scic_sds_stp_non_data_request_construct(sci_req);
/* NCQ */
if (task->ata_task.use_ncq)
return scic_sds_stp_ncq_request_construct(sci_req, len, dir);
/* DMA */
if (task->ata_task.dma_xfer)
return scic_sds_stp_udma_request_construct(sci_req, len, dir);
else /* PIO */
return scic_sds_stp_pio_request_construct(sci_req, copy);
return status;
}
static enum sci_status scic_io_request_construct_basic_ssp(struct scic_sds_request *sci_req)
{
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
sci_req->protocol = SCIC_SSP_PROTOCOL;
scu_ssp_io_request_construct_task_context(sci_req,
task->data_dir,
task->total_xfer_len);
scic_sds_io_request_build_ssp_command_iu(sci_req);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_CONSTRUCTED);
return SCI_SUCCESS;
}
enum sci_status scic_task_request_construct_ssp(
struct scic_sds_request *sci_req)
{
/* Construct the SSP Task SCU Task Context */
scu_ssp_task_request_construct_task_context(sci_req);
/* Fill in the SSP Task IU */
scic_sds_task_request_build_ssp_task_iu(sci_req);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_CONSTRUCTED);
return SCI_SUCCESS;
}
static enum sci_status scic_io_request_construct_basic_sata(struct scic_sds_request *sci_req)
{
enum sci_status status;
struct scic_sds_stp_request *stp_req;
bool copy = false;
struct isci_request *isci_request = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(isci_request);
stp_req = &sci_req->stp.req;
sci_req->protocol = SCIC_STP_PROTOCOL;
copy = (task->data_dir == DMA_NONE) ? false : true;
status = scic_io_request_construct_sata(sci_req,
task->total_xfer_len,
task->data_dir,
copy);
if (status == SCI_SUCCESS)
sci_base_state_machine_change_state(&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_CONSTRUCTED);
return status;
}
enum sci_status scic_task_request_construct_sata(struct scic_sds_request *sci_req)
{
enum sci_status status = SCI_SUCCESS;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
/* check for management protocols */
if (ireq->ttype == tmf_task) {
struct isci_tmf *tmf = isci_request_access_tmf(ireq);
if (tmf->tmf_code == isci_tmf_sata_srst_high ||
tmf->tmf_code == isci_tmf_sata_srst_low) {
status = scic_sds_stp_soft_reset_request_construct(sci_req);
} else {
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: Request 0x%p received un-handled SAT "
"Protocol 0x%x.\n",
__func__, sci_req, tmf->tmf_code);
return SCI_FAILURE;
}
}
if (status == SCI_SUCCESS)
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_CONSTRUCTED);
return status;
}
/**
* sci_req_tx_bytes - bytes transferred when reply underruns request
* @sci_req: request that was terminated early
*/
#define SCU_TASK_CONTEXT_SRAM 0x200000
static u32 sci_req_tx_bytes(struct scic_sds_request *sci_req)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
u32 ret_val = 0;
if (readl(&scic->smu_registers->address_modifier) == 0) {
void __iomem *scu_reg_base = scic->scu_registers;
/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
* BAR1 is the scu_registers
* 0x20002C = 0x200000 + 0x2c
* = start of task context SRAM + offset of (type.ssp.data_offset)
* TCi is the io_tag of struct scic_sds_request
*/
ret_val = readl(scu_reg_base +
(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
((sizeof(struct scu_task_context)) * scic_sds_io_tag_get_index(sci_req->io_tag)));
}
return ret_val;
}
enum sci_status
scic_sds_request_start(struct scic_sds_request *request)
{
if (request->device_sequence !=
scic_sds_remote_device_get_sequence(request->target_device))
return SCI_FAILURE;
if (request->state_handlers->start_handler)
return request->state_handlers->start_handler(request);
dev_warn(scic_to_dev(request->owning_controller),
"%s: SCIC IO Request requested to start while in wrong "
"state %d\n",
__func__,
sci_base_state_machine_get_state(&request->state_machine));
return SCI_FAILURE_INVALID_STATE;
}
enum sci_status
scic_sds_io_request_terminate(struct scic_sds_request *request)
{
if (request->state_handlers->abort_handler)
return request->state_handlers->abort_handler(request);
dev_warn(scic_to_dev(request->owning_controller),
"%s: SCIC IO Request requested to abort while in wrong "
"state %d\n",
__func__,
sci_base_state_machine_get_state(&request->state_machine));
return SCI_FAILURE_INVALID_STATE;
}
enum sci_status scic_sds_io_request_event_handler(
struct scic_sds_request *request,
u32 event_code)
{
if (request->state_handlers->event_handler)
return request->state_handlers->event_handler(request, event_code);
dev_warn(scic_to_dev(request->owning_controller),
"%s: SCIC IO Request given event code notification %x while "
"in wrong state %d\n",
__func__,
event_code,
sci_base_state_machine_get_state(&request->state_machine));
return SCI_FAILURE_INVALID_STATE;
}
/**
*
* @sci_req: The SCIC_SDS_IO_REQUEST_T object for which the start
* operation is to be executed.
* @frame_index: The frame index returned by the hardware for the reqeust
* object.
*
* This method invokes the core state frame handler for the
* SCIC_SDS_IO_REQUEST_T object. enum sci_status
*/
enum sci_status scic_sds_io_request_frame_handler(
struct scic_sds_request *request,
u32 frame_index)
{
if (request->state_handlers->frame_handler)
return request->state_handlers->frame_handler(request, frame_index);
dev_warn(scic_to_dev(request->owning_controller),
"%s: SCIC IO Request given unexpected frame %x while in "
"state %d\n",
__func__,
frame_index,
sci_base_state_machine_get_state(&request->state_machine));
scic_sds_controller_release_frame(request->owning_controller, frame_index);
return SCI_FAILURE_INVALID_STATE;
}
/*
* This function copies response data for requests returning response data
* instead of sense data.
* @sci_req: This parameter specifies the request object for which to copy
* the response data.
*/
static void scic_sds_io_request_copy_response(struct scic_sds_request *sci_req)
{
void *resp_buf;
u32 len;
struct ssp_response_iu *ssp_response;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
ssp_response = &sci_req->ssp.rsp;
resp_buf = &isci_tmf->resp.resp_iu;
len = min_t(u32,
SSP_RESP_IU_MAX_SIZE,
be32_to_cpu(ssp_response->response_data_len));
memcpy(resp_buf, ssp_response->resp_data, len);
}
/*
* This method implements the action taken when a constructed
* SCIC_SDS_IO_REQUEST_T object receives a scic_sds_request_start() request.
* This method will, if necessary, allocate a TCi for the io request object and
* then will, if necessary, copy the constructed TC data into the actual TC
* buffer. If everything is successful the post context field is updated with
* the TCi so the controller can post the request to the hardware. enum sci_status
* SCI_SUCCESS SCI_FAILURE_INSUFFICIENT_RESOURCES
*/
static enum sci_status scic_sds_request_constructed_state_start_handler(
struct scic_sds_request *request)
{
struct scu_task_context *task_context;
if (request->io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
request->io_tag =
scic_controller_allocate_io_tag(request->owning_controller);
}
/* Record the IO Tag in the request */
if (request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) {
task_context = request->task_context_buffer;
task_context->task_index = scic_sds_io_tag_get_index(request->io_tag);
switch (task_context->protocol_type) {
case SCU_TASK_CONTEXT_PROTOCOL_SMP:
case SCU_TASK_CONTEXT_PROTOCOL_SSP:
/* SSP/SMP Frame */
task_context->type.ssp.tag = request->io_tag;
task_context->type.ssp.target_port_transfer_tag = 0xFFFF;
break;
case SCU_TASK_CONTEXT_PROTOCOL_STP:
/*
* STP/SATA Frame
* task_context->type.stp.ncq_tag = request->ncq_tag; */
break;
case SCU_TASK_CONTEXT_PROTOCOL_NONE:
/* / @todo When do we set no protocol type? */
break;
default:
/* This should never happen since we build the IO requests */
break;
}
/*
* Check to see if we need to copy the task context buffer
* or have been building into the task context buffer */
if (request->was_tag_assigned_by_user == false) {
scic_sds_controller_copy_task_context(
request->owning_controller, request);
}
/* Add to the post_context the io tag value */
request->post_context |= scic_sds_io_tag_get_index(request->io_tag);
/* Everything is good go ahead and change state */
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_STARTED);
return SCI_SUCCESS;
}
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_terminate() request. Since the request
* has not yet been posted to the hardware the request transitions to the
* completed state. enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_request_constructed_state_abort_handler(
struct scic_sds_request *request)
{
/*
* This request has been terminated by the user make sure that the correct
* status code is returned */
scic_sds_request_set_status(request,
SCU_TASK_DONE_TASK_ABORT,
SCI_FAILURE_IO_TERMINATED);
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
return SCI_SUCCESS;
}
/*
* *****************************************************************************
* * STARTED STATE HANDLERS
* ***************************************************************************** */
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_terminate() request. Since the request
* has been posted to the hardware the io request state is changed to the
* aborting state. enum sci_status SCI_SUCCESS
*/
enum sci_status scic_sds_request_started_state_abort_handler(
struct scic_sds_request *request)
{
if (request->has_started_substate_machine)
sci_base_state_machine_stop(&request->started_substate_machine);
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_ABORTING);
return SCI_SUCCESS;
}
/*
* scic_sds_request_started_state_tc_completion_handler() - This method process
* TC (task context) completions for normal IO request (i.e. Task/Abort
* Completions of type 0). This method will update the
* SCIC_SDS_IO_REQUEST_T::status field.
* @sci_req: This parameter specifies the request for which a completion
* occurred.
* @completion_code: This parameter specifies the completion code received from
* the SCU.
*
*/
static enum sci_status
scic_sds_request_started_state_tc_completion_handler(struct scic_sds_request *sci_req,
u32 completion_code)
{
u8 datapres;
struct ssp_response_iu *resp_iu;
/*
* TODO: Any SDMA return code of other than 0 is bad
* decode 0x003C0000 to determine SDMA status
*/
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP):
{
/*
* There are times when the SCU hardware will return an early
* response because the io request specified more data than is
* returned by the target device (mode pages, inquiry data,
* etc.). We must check the response stats to see if this is
* truly a failed request or a good request that just got
* completed early.
*/
struct ssp_response_iu *resp = &sci_req->ssp.rsp;
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
sci_swab32_cpy(&sci_req->ssp.rsp,
&sci_req->ssp.rsp,
word_cnt);
if (resp->status == 0) {
scic_sds_request_set_status(
sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS_IO_DONE_EARLY);
} else {
scic_sds_request_set_status(
sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
}
}
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE):
{
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
sci_swab32_cpy(&sci_req->ssp.rsp,
&sci_req->ssp.rsp,
word_cnt);
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
break;
}
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
/*
* / @todo With TASK_DONE_RESP_LEN_ERR is the response frame
* guaranteed to be received before this completion status is
* posted?
*/
resp_iu = &sci_req->ssp.rsp;
datapres = resp_iu->datapres;
if ((datapres == 0x01) || (datapres == 0x02)) {
scic_sds_request_set_status(
sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
} else
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
break;
/* only stp device gets suspended. */
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
if (sci_req->protocol == SCIC_STP_PROTOCOL) {
scic_sds_request_set_status(
sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
} else {
scic_sds_request_set_status(
sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
}
break;
/* both stp/ssp device gets suspended */
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
scic_sds_request_set_status(
sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
break;
/* neither ssp nor stp gets suspended. */
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
default:
scic_sds_request_set_status(
sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
break;
}
/*
* TODO: This is probably wrong for ACK/NAK timeout conditions
*/
/* In all cases we will treat this as the completion of the IO req. */
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
return SCI_SUCCESS;
}
enum sci_status
scic_sds_io_request_tc_completion(struct scic_sds_request *request, u32 completion_code)
{
if (request->state_machine.current_state_id == SCI_BASE_REQUEST_STATE_STARTED &&
request->has_started_substate_machine == false)
return scic_sds_request_started_state_tc_completion_handler(request, completion_code);
else if (request->state_handlers->tc_completion_handler)
return request->state_handlers->tc_completion_handler(request, completion_code);
dev_warn(scic_to_dev(request->owning_controller),
"%s: SCIC IO Request given task completion notification %x "
"while in wrong state %d\n",
__func__,
completion_code,
sci_base_state_machine_get_state(&request->state_machine));
return SCI_FAILURE_INVALID_STATE;
}
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_frame_handler() request. This method
* first determines the frame type received. If this is a response frame then
* the response data is copied to the io request response buffer for processing
* at completion time. If the frame type is not a response buffer an error is
* logged. enum sci_status SCI_SUCCESS SCI_FAILURE_INVALID_PARAMETER_VALUE
*/
static enum sci_status
scic_sds_request_started_state_frame_handler(struct scic_sds_request *sci_req,
u32 frame_index)
{
enum sci_status status;
u32 *frame_header;
struct ssp_frame_hdr ssp_hdr;
ssize_t word_cnt;
status = scic_sds_unsolicited_frame_control_get_header(
&(scic_sds_request_get_controller(sci_req)->uf_control),
frame_index,
(void **)&frame_header);
word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
if (ssp_hdr.frame_type == SSP_RESPONSE) {
struct ssp_response_iu *resp_iu;
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
status = scic_sds_unsolicited_frame_control_get_buffer(
&(scic_sds_request_get_controller(sci_req)->uf_control),
frame_index,
(void **)&resp_iu);
sci_swab32_cpy(&sci_req->ssp.rsp,
resp_iu, word_cnt);
resp_iu = &sci_req->ssp.rsp;
if ((resp_iu->datapres == 0x01) ||
(resp_iu->datapres == 0x02)) {
scic_sds_request_set_status(
sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
} else
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
} else {
/* This was not a response frame why did it get forwarded? */
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: SCIC IO Request 0x%p received unexpected "
"frame %d type 0x%02x\n",
__func__,
sci_req,
frame_index,
ssp_hdr.frame_type);
}
/*
* In any case we are done with this frame buffer return it to the
* controller
*/
scic_sds_controller_release_frame(
sci_req->owning_controller, frame_index);
return SCI_SUCCESS;
}
/*
* *****************************************************************************
* * COMPLETED STATE HANDLERS
* ***************************************************************************** */
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_complete() request. This method frees up
* any io request resources that have been allocated and transitions the
* request to its final state. Consider stopping the state machine instead of
* transitioning to the final state? enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_request_completed_state_complete_handler(
struct scic_sds_request *request)
{
if (request->was_tag_assigned_by_user != true) {
scic_controller_free_io_tag(
request->owning_controller, request->io_tag);
}
if (request->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) {
scic_sds_controller_release_frame(
request->owning_controller, request->saved_rx_frame_index);
}
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_FINAL);
return SCI_SUCCESS;
}
/*
* *****************************************************************************
* * ABORTING STATE HANDLERS
* ***************************************************************************** */
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_terminate() request. This method is the
* io request aborting state abort handlers. On receipt of a multiple
* terminate requests the io request will transition to the completed state.
* This should not happen in normal operation. enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_request_aborting_state_abort_handler(
struct scic_sds_request *request)
{
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
return SCI_SUCCESS;
}
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_task_completion() request. This method
* decodes the completion type waiting for the abort task complete
* notification. When the abort task complete is received the io request
* transitions to the completed state. enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_request_aborting_state_tc_completion_handler(
struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_TASK_ABORT, SCI_FAILURE_IO_TERMINATED
);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
default:
/*
* Unless we get some strange error wait for the task abort to complete
* TODO: Should there be a state change for this completion? */
break;
}
return SCI_SUCCESS;
}
/*
* This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
* object receives a scic_sds_request_frame_handler() request. This method
* discards the unsolicited frame since we are waiting for the abort task
* completion. enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_request_aborting_state_frame_handler(
struct scic_sds_request *sci_req,
u32 frame_index)
{
/* TODO: Is it even possible to get an unsolicited frame in the aborting state? */
scic_sds_controller_release_frame(
sci_req->owning_controller, frame_index);
return SCI_SUCCESS;
}
/**
* This method processes the completions transport layer (TL) status to
* determine if the RAW task management frame was sent successfully. If the
* raw frame was sent successfully, then the state for the task request
* transitions to waiting for a response frame.
* @sci_req: This parameter specifies the request for which the TC
* completion was received.
* @completion_code: This parameter indicates the completion status information
* for the TC.
*
* Indicate if the tc completion handler was successful. SCI_SUCCESS currently
* this method always returns success.
*/
static enum sci_status scic_sds_ssp_task_request_await_tc_completion_tc_completion_handler(
struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
/*
* Currently, the decision is to simply allow the task request to
* timeout if the task IU wasn't received successfully.
* There is a potential for receiving multiple task responses if we
* decide to send the task IU again. */
dev_warn(scic_to_dev(sci_req->owning_controller),
"%s: TaskRequest:0x%p CompletionCode:%x - "
"ACK/NAK timeout\n",
__func__,
sci_req,
completion_code);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE);
break;
default:
/*
* All other completion status cause the IO to be complete. If a NAK
* was received, then it is up to the user to retry the request. */
scic_sds_request_set_status(
sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
}
return SCI_SUCCESS;
}
/**
* This method is responsible for processing a terminate/abort request for this
* TC while the request is waiting for the task management response
* unsolicited frame.
* @sci_req: This parameter specifies the request for which the
* termination was requested.
*
* This method returns an indication as to whether the abort request was
* successfully handled. need to update to ensure the received UF doesn't cause
* damage to subsequent requests (i.e. put the extended tag in a holding
* pattern for this particular device).
*/
static enum sci_status scic_sds_ssp_task_request_await_tc_response_abort_handler(
struct scic_sds_request *request)
{
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_ABORTING);
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
return SCI_SUCCESS;
}
/**
* This method processes an unsolicited frame while the task mgmt request is
* waiting for a response frame. It will copy the response data, release
* the unsolicited frame, and transition the request to the
* SCI_BASE_REQUEST_STATE_COMPLETED state.
* @sci_req: This parameter specifies the request for which the
* unsolicited frame was received.
* @frame_index: This parameter indicates the unsolicited frame index that
* should contain the response.
*
* This method returns an indication of whether the TC response frame was
* handled successfully or not. SCI_SUCCESS Currently this value is always
* returned and indicates successful processing of the TC response. Should
* probably update to check frame type and make sure it is a response frame.
*/
static enum sci_status scic_sds_ssp_task_request_await_tc_response_frame_handler(
struct scic_sds_request *request,
u32 frame_index)
{
scic_sds_io_request_copy_response(request);
sci_base_state_machine_change_state(&request->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
scic_sds_controller_release_frame(request->owning_controller,
frame_index);
return SCI_SUCCESS;
}
/**
* This method processes an abnormal TC completion while the SMP request is
* waiting for a response frame. It decides what happened to the IO based
* on TC completion status.
* @sci_req: This parameter specifies the request for which the TC
* completion was received.
* @completion_code: This parameter indicates the completion status information
* for the TC.
*
* Indicate if the tc completion handler was successful. SCI_SUCCESS currently
* this method always returns success.
*/
static enum sci_status scic_sds_smp_request_await_response_tc_completion_handler(
struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
/*
* In the AWAIT RESPONSE state, any TC completion is unexpected.
* but if the TC has success status, we complete the IO anyway. */
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS
);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
/*
* These status has been seen in a specific LSI expander, which sometimes
* is not able to send smp response within 2 ms. This causes our hardware
* break the connection and set TC completion with one of these SMP_XXX_XX_ERR
* status. For these type of error, we ask scic user to retry the request. */
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_SMP_RESP_TO_ERR, SCI_FAILURE_RETRY_REQUIRED
);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
default:
/*
* All other completion status cause the IO to be complete. If a NAK
* was received, then it is up to the user to retry the request. */
scic_sds_request_set_status(
sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
}
return SCI_SUCCESS;
}
/*
* This function processes an unsolicited frame while the SMP request is waiting
* for a response frame. It will copy the response data, release the
* unsolicited frame, and transition the request to the
* SCI_BASE_REQUEST_STATE_COMPLETED state.
* @sci_req: This parameter specifies the request for which the
* unsolicited frame was received.
* @frame_index: This parameter indicates the unsolicited frame index that
* should contain the response.
*
* This function returns an indication of whether the response frame was handled
* successfully or not. SCI_SUCCESS Currently this value is always returned and
* indicates successful processing of the TC response.
*/
static enum sci_status
scic_sds_smp_request_await_response_frame_handler(struct scic_sds_request *sci_req,
u32 frame_index)
{
enum sci_status status;
void *frame_header;
struct smp_resp *rsp_hdr = &sci_req->smp.rsp;
ssize_t word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
status = scic_sds_unsolicited_frame_control_get_header(
&(scic_sds_request_get_controller(sci_req)->uf_control),
frame_index,
&frame_header);
/* byte swap the header. */
sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
if (rsp_hdr->frame_type == SMP_RESPONSE) {
void *smp_resp;
status = scic_sds_unsolicited_frame_control_get_buffer(
&(scic_sds_request_get_controller(sci_req)->uf_control),
frame_index,
&smp_resp);
word_cnt = (sizeof(struct smp_req) - SMP_RESP_HDR_SZ) /
sizeof(u32);
sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
smp_resp, word_cnt);
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION);
} else {
/* This was not a response frame why did it get forwarded? */
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: SCIC SMP Request 0x%p received unexpected frame "
"%d type 0x%02x\n",
__func__,
sci_req,
frame_index,
rsp_hdr->frame_type);
scic_sds_request_set_status(
sci_req,
SCU_TASK_DONE_SMP_FRM_TYPE_ERR,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
}
scic_sds_controller_release_frame(sci_req->owning_controller,
frame_index);
return SCI_SUCCESS;
}
/**
* This method processes the completions transport layer (TL) status to
* determine if the SMP request was sent successfully. If the SMP request
* was sent successfully, then the state for the SMP request transits to
* waiting for a response frame.
* @sci_req: This parameter specifies the request for which the TC
* completion was received.
* @completion_code: This parameter indicates the completion status information
* for the TC.
*
* Indicate if the tc completion handler was successful. SCI_SUCCESS currently
* this method always returns success.
*/
static enum sci_status scic_sds_smp_request_await_tc_completion_tc_completion_handler(
struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(
sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS
);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
default:
/*
* All other completion status cause the IO to be complete. If a NAK
* was received, then it is up to the user to retry the request. */
scic_sds_request_set_status(
sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
);
sci_base_state_machine_change_state(
&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_COMPLETED);
break;
}
return SCI_SUCCESS;
}
static const struct scic_sds_io_request_state_handler scic_sds_request_state_handler_table[] = {
[SCI_BASE_REQUEST_STATE_INITIAL] = { },
[SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
.start_handler = scic_sds_request_constructed_state_start_handler,
.abort_handler = scic_sds_request_constructed_state_abort_handler,
},
[SCI_BASE_REQUEST_STATE_STARTED] = {
.abort_handler = scic_sds_request_started_state_abort_handler,
.tc_completion_handler = scic_sds_request_started_state_tc_completion_handler,
.frame_handler = scic_sds_request_started_state_frame_handler,
},
[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION] = {
.abort_handler = scic_sds_request_started_state_abort_handler,
.tc_completion_handler = scic_sds_ssp_task_request_await_tc_completion_tc_completion_handler,
},
[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE] = {
.abort_handler = scic_sds_ssp_task_request_await_tc_response_abort_handler,
.frame_handler = scic_sds_ssp_task_request_await_tc_response_frame_handler,
},
[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE] = {
.abort_handler = scic_sds_request_started_state_abort_handler,
.tc_completion_handler = scic_sds_smp_request_await_response_tc_completion_handler,
.frame_handler = scic_sds_smp_request_await_response_frame_handler,
},
[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION] = {
.abort_handler = scic_sds_request_started_state_abort_handler,
.tc_completion_handler = scic_sds_smp_request_await_tc_completion_tc_completion_handler,
},
[SCI_BASE_REQUEST_STATE_COMPLETED] = {
.complete_handler = scic_sds_request_completed_state_complete_handler,
},
[SCI_BASE_REQUEST_STATE_ABORTING] = {
.abort_handler = scic_sds_request_aborting_state_abort_handler,
.tc_completion_handler = scic_sds_request_aborting_state_tc_completion_handler,
.frame_handler = scic_sds_request_aborting_state_frame_handler,
},
[SCI_BASE_REQUEST_STATE_FINAL] = { },
};
/**
* isci_request_process_response_iu() - This function sets the status and
* response iu, in the task struct, from the request object for the upper
* layer driver.
* @sas_task: This parameter is the task struct from the upper layer driver.
* @resp_iu: This parameter points to the response iu of the completed request.
* @dev: This parameter specifies the linux device struct.
*
* none.
*/
static void isci_request_process_response_iu(
struct sas_task *task,
struct ssp_response_iu *resp_iu,
struct device *dev)
{
dev_dbg(dev,
"%s: resp_iu = %p "
"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
"resp_iu->response_data_len = %x, "
"resp_iu->sense_data_len = %x\nrepsonse data: ",
__func__,
resp_iu,
resp_iu->status,
resp_iu->datapres,
resp_iu->response_data_len,
resp_iu->sense_data_len);
task->task_status.stat = resp_iu->status;
/* libsas updates the task status fields based on the response iu. */
sas_ssp_task_response(dev, task, resp_iu);
}
/**
* isci_request_set_open_reject_status() - This function prepares the I/O
* completion for OPEN_REJECT conditions.
* @request: This parameter is the completed isci_request object.
* @response_ptr: This parameter specifies the service response for the I/O.
* @status_ptr: This parameter specifies the exec status for the I/O.
* @complete_to_host_ptr: This parameter specifies the action to be taken by
* the LLDD with respect to completing this request or forcing an abort
* condition on the I/O.
* @open_rej_reason: This parameter specifies the encoded reason for the
* abandon-class reject.
*
* none.
*/
static void isci_request_set_open_reject_status(
struct isci_request *request,
struct sas_task *task,
enum service_response *response_ptr,
enum exec_status *status_ptr,
enum isci_completion_selection *complete_to_host_ptr,
enum sas_open_rej_reason open_rej_reason)
{
/* Task in the target is done. */
request->complete_in_target = true;
*response_ptr = SAS_TASK_UNDELIVERED;
*status_ptr = SAS_OPEN_REJECT;
*complete_to_host_ptr = isci_perform_normal_io_completion;
task->task_status.open_rej_reason = open_rej_reason;
}
/**
* isci_request_handle_controller_specific_errors() - This function decodes
* controller-specific I/O completion error conditions.
* @request: This parameter is the completed isci_request object.
* @response_ptr: This parameter specifies the service response for the I/O.
* @status_ptr: This parameter specifies the exec status for the I/O.
* @complete_to_host_ptr: This parameter specifies the action to be taken by
* the LLDD with respect to completing this request or forcing an abort
* condition on the I/O.
*
* none.
*/
static void isci_request_handle_controller_specific_errors(
struct isci_remote_device *isci_device,
struct isci_request *request,
struct sas_task *task,
enum service_response *response_ptr,
enum exec_status *status_ptr,
enum isci_completion_selection *complete_to_host_ptr)
{
unsigned int cstatus;
cstatus = request->sci.scu_status;
dev_dbg(&request->isci_host->pdev->dev,
"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
"- controller status = 0x%x\n",
__func__, request, cstatus);
/* Decode the controller-specific errors; most
* important is to recognize those conditions in which
* the target may still have a task outstanding that
* must be aborted.
*
* Note that there are SCU completion codes being
* named in the decode below for which SCIC has already
* done work to handle them in a way other than as
* a controller-specific completion code; these are left
* in the decode below for completeness sake.
*/
switch (cstatus) {
case SCU_TASK_DONE_DMASETUP_DIRERR:
/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
case SCU_TASK_DONE_XFERCNT_ERR:
/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
if (task->task_proto == SAS_PROTOCOL_SMP) {
/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
*response_ptr = SAS_TASK_COMPLETE;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
*status_ptr = SAS_DEVICE_UNKNOWN;
else
*status_ptr = SAS_ABORTED_TASK;
request->complete_in_target = true;
*complete_to_host_ptr =
isci_perform_normal_io_completion;
} else {
/* Task in the target is not done. */
*response_ptr = SAS_TASK_UNDELIVERED;
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
*status_ptr = SAS_DEVICE_UNKNOWN;
else
*status_ptr = SAM_STAT_TASK_ABORTED;
request->complete_in_target = false;
*complete_to_host_ptr =
isci_perform_error_io_completion;
}
break;
case SCU_TASK_DONE_CRC_ERR:
case SCU_TASK_DONE_NAK_CMD_ERR:
case SCU_TASK_DONE_EXCESS_DATA:
case SCU_TASK_DONE_UNEXP_FIS:
/* Also SCU_TASK_DONE_UNEXP_RESP: */
case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
/* These are conditions in which the target
* has completed the task, so that no cleanup
* is necessary.
*/
*response_ptr = SAS_TASK_COMPLETE;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
*status_ptr = SAS_DEVICE_UNKNOWN;
else
*status_ptr = SAS_ABORTED_TASK;
request->complete_in_target = true;
*complete_to_host_ptr = isci_perform_normal_io_completion;
break;
/* Note that the only open reject completion codes seen here will be
* abandon-class codes; all others are automatically retried in the SCU.
*/
case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
break;
case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
/* Note - the return of AB0 will change when
* libsas implements detection of zone violations.
*/
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB0);
break;
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB1);
break;
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB2);
break;
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB3);
break;
case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_BAD_DEST);
break;
case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_STP_NORES);
break;
case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_EPROTO);
break;
case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_CONN_RATE);
break;
case SCU_TASK_DONE_LL_R_ERR:
/* Also SCU_TASK_DONE_ACK_NAK_TO: */
case SCU_TASK_DONE_LL_PERR:
case SCU_TASK_DONE_LL_SY_TERM:
/* Also SCU_TASK_DONE_NAK_ERR:*/
case SCU_TASK_DONE_LL_LF_TERM:
/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
case SCU_TASK_DONE_LL_ABORT_ERR:
case SCU_TASK_DONE_SEQ_INV_TYPE:
/* Also SCU_TASK_DONE_UNEXP_XR: */
case SCU_TASK_DONE_XR_IU_LEN_ERR:
case SCU_TASK_DONE_INV_FIS_LEN:
/* Also SCU_TASK_DONE_XR_WD_LEN: */
case SCU_TASK_DONE_SDMA_ERR:
case SCU_TASK_DONE_OFFSET_ERR:
case SCU_TASK_DONE_MAX_PLD_ERR:
case SCU_TASK_DONE_LF_ERR:
case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
case SCU_TASK_DONE_SMP_LL_RX_ERR:
case SCU_TASK_DONE_UNEXP_DATA:
case SCU_TASK_DONE_UNEXP_SDBFIS:
case SCU_TASK_DONE_REG_ERR:
case SCU_TASK_DONE_SDB_ERR:
case SCU_TASK_DONE_TASK_ABORT:
default:
/* Task in the target is not done. */
*response_ptr = SAS_TASK_UNDELIVERED;
*status_ptr = SAM_STAT_TASK_ABORTED;
request->complete_in_target = false;
*complete_to_host_ptr = isci_perform_error_io_completion;
break;
}
}
/**
* isci_task_save_for_upper_layer_completion() - This function saves the
* request for later completion to the upper layer driver.
* @host: This parameter is a pointer to the host on which the the request
* should be queued (either as an error or success).
* @request: This parameter is the completed request.
* @response: This parameter is the response code for the completed task.
* @status: This parameter is the status code for the completed task.
*
* none.
*/
static void isci_task_save_for_upper_layer_completion(
struct isci_host *host,
struct isci_request *request,
enum service_response response,
enum exec_status status,
enum isci_completion_selection task_notification_selection)
{
struct sas_task *task = isci_request_access_task(request);
task_notification_selection
= isci_task_set_completion_status(task, response, status,
task_notification_selection);
/* Tasks aborted specifically by a call to the lldd_abort_task
* function should not be completed to the host in the regular path.
*/
switch (task_notification_selection) {
case isci_perform_normal_io_completion:
/* Normal notification (task_done) */
dev_dbg(&host->pdev->dev,
"%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Add to the completed list. */
list_add(&request->completed_node,
&host->requests_to_complete);
/* Take the request off the device's pending request list. */
list_del_init(&request->dev_node);
break;
case isci_perform_aborted_io_completion:
/* No notification to libsas because this request is
* already in the abort path.
*/
dev_warn(&host->pdev->dev,
"%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Wake up whatever process was waiting for this
* request to complete.
*/
WARN_ON(request->io_request_completion == NULL);
if (request->io_request_completion != NULL) {
/* Signal whoever is waiting that this
* request is complete.
*/
complete(request->io_request_completion);
}
break;
case isci_perform_error_io_completion:
/* Use sas_task_abort */
dev_warn(&host->pdev->dev,
"%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Add to the aborted list. */
list_add(&request->completed_node,
&host->requests_to_errorback);
break;
default:
dev_warn(&host->pdev->dev,
"%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Add to the error to libsas list. */
list_add(&request->completed_node,
&host->requests_to_errorback);
break;
}
}
static void isci_request_io_request_complete(struct isci_host *isci_host,
struct isci_request *request,
enum sci_io_status completion_status)
{
struct sas_task *task = isci_request_access_task(request);
struct ssp_response_iu *resp_iu;
void *resp_buf;
unsigned long task_flags;
struct isci_remote_device *isci_device = request->isci_device;
enum service_response response = SAS_TASK_UNDELIVERED;
enum exec_status status = SAS_ABORTED_TASK;
enum isci_request_status request_status;
enum isci_completion_selection complete_to_host
= isci_perform_normal_io_completion;
dev_dbg(&isci_host->pdev->dev,
"%s: request = %p, task = %p,\n"
"task->data_dir = %d completion_status = 0x%x\n",
__func__,
request,
task,
task->data_dir,
completion_status);
spin_lock(&request->state_lock);
request_status = isci_request_get_state(request);
/* Decode the request status. Note that if the request has been
* aborted by a task management function, we don't care
* what the status is.
*/
switch (request_status) {
case aborted:
/* "aborted" indicates that the request was aborted by a task
* management function, since once a task management request is
* perfomed by the device, the request only completes because
* of the subsequent driver terminate.
*
* Aborted also means an external thread is explicitly managing
* this request, so that we do not complete it up the stack.
*
* The target is still there (since the TMF was successful).
*/
request->complete_in_target = true;
response = SAS_TASK_COMPLETE;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if ((isci_device->status == isci_stopping)
|| (isci_device->status == isci_stopped)
)
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_aborted_io_completion;
/* This was an aborted request. */
spin_unlock(&request->state_lock);
break;
case aborting:
/* aborting means that the task management function tried and
* failed to abort the request. We need to note the request
* as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
* target as down.
*
* Aborting also means an external thread is explicitly managing
* this request, so that we do not complete it up the stack.
*/
request->complete_in_target = true;
response = SAS_TASK_UNDELIVERED;
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
/* The device has been /is being stopped. Note that
* we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_PHY_DOWN;
complete_to_host = isci_perform_aborted_io_completion;
/* This was an aborted request. */
spin_unlock(&request->state_lock);
break;
case terminating:
/* This was an terminated request. This happens when
* the I/O is being terminated because of an action on
* the device (reset, tear down, etc.), and the I/O needs
* to be completed up the stack.
*/
request->complete_in_target = true;
response = SAS_TASK_UNDELIVERED;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_aborted_io_completion;
/* This was a terminated request. */
spin_unlock(&request->state_lock);
break;
default:
/* The request is done from an SCU HW perspective. */
request->status = completed;
spin_unlock(&request->state_lock);
/* This is an active request being completed from the core. */
switch (completion_status) {
case SCI_IO_FAILURE_RESPONSE_VALID:
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
__func__,
request,
task);
if (sas_protocol_ata(task->task_proto)) {
resp_buf = &request->sci.stp.rsp;
isci_request_process_stp_response(task,
resp_buf);
} else if (SAS_PROTOCOL_SSP == task->task_proto) {
/* crack the iu response buffer. */
resp_iu = &request->sci.ssp.rsp;
isci_request_process_response_iu(task, resp_iu,
&isci_host->pdev->dev);
} else if (SAS_PROTOCOL_SMP == task->task_proto) {
dev_err(&isci_host->pdev->dev,
"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
"SAS_PROTOCOL_SMP protocol\n",
__func__);
} else
dev_err(&isci_host->pdev->dev,
"%s: unknown protocol\n", __func__);
/* use the task status set in the task struct by the
* isci_request_process_response_iu call.
*/
request->complete_in_target = true;
response = task->task_status.resp;
status = task->task_status.stat;
break;
case SCI_IO_SUCCESS:
case SCI_IO_SUCCESS_IO_DONE_EARLY:
response = SAS_TASK_COMPLETE;
status = SAM_STAT_GOOD;
request->complete_in_target = true;
if (task->task_proto == SAS_PROTOCOL_SMP) {
void *rsp = &request->sci.smp.rsp;
dev_dbg(&isci_host->pdev->dev,
"%s: SMP protocol completion\n",
__func__);
sg_copy_from_buffer(
&task->smp_task.smp_resp, 1,
rsp, sizeof(struct smp_resp));
} else if (completion_status
== SCI_IO_SUCCESS_IO_DONE_EARLY) {
/* This was an SSP / STP / SATA transfer.
* There is a possibility that less data than
* the maximum was transferred.
*/
u32 transferred_length = sci_req_tx_bytes(&request->sci);
task->task_status.residual
= task->total_xfer_len - transferred_length;
/* If there were residual bytes, call this an
* underrun.
*/
if (task->task_status.residual != 0)
status = SAS_DATA_UNDERRUN;
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
__func__,
status);
} else
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_SUCCESS\n",
__func__);
break;
case SCI_IO_FAILURE_TERMINATED:
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
__func__,
request,
task);
/* The request was terminated explicitly. No handling
* is needed in the SCSI error handler path.
*/
request->complete_in_target = true;
response = SAS_TASK_UNDELIVERED;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_normal_io_completion;
break;
case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
isci_request_handle_controller_specific_errors(
isci_device, request, task, &response, &status,
&complete_to_host);
break;
case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
/* This is a special case, in that the I/O completion
* is telling us that the device needs a reset.
* In order for the device reset condition to be
* noticed, the I/O has to be handled in the error
* handler. Set the reset flag and cause the
* SCSI error thread to be scheduled.
*/
spin_lock_irqsave(&task->task_state_lock, task_flags);
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&task->task_state_lock, task_flags);
/* Fail the I/O. */
response = SAS_TASK_UNDELIVERED;
status = SAM_STAT_TASK_ABORTED;
complete_to_host = isci_perform_error_io_completion;
request->complete_in_target = false;
break;
default:
/* Catch any otherwise unhandled error codes here. */
dev_warn(&isci_host->pdev->dev,
"%s: invalid completion code: 0x%x - "
"isci_request = %p\n",
__func__, completion_status, request);
response = SAS_TASK_UNDELIVERED;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if ((isci_device->status == isci_stopping) ||
(isci_device->status == isci_stopped))
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_error_io_completion;
request->complete_in_target = false;
break;
}
break;
}
isci_request_unmap_sgl(request, isci_host->pdev);
/* Put the completed request on the correct list */
isci_task_save_for_upper_layer_completion(isci_host, request, response,
status, complete_to_host
);
/* complete the io request to the core. */
scic_controller_complete_io(&isci_host->sci,
&isci_device->sci,
&request->sci);
/* set terminated handle so it cannot be completed or
* terminated again, and to cause any calls into abort
* task to recognize the already completed case.
*/
request->terminated = true;
isci_host_can_dequeue(isci_host, 1);
}
/**
* scic_sds_request_initial_state_enter() -
* @object: This parameter specifies the base object for which the state
* transition is occurring.
*
* This method implements the actions taken when entering the
* SCI_BASE_REQUEST_STATE_INITIAL state. This state is entered when the initial
* base request is constructed. Entry into the initial state sets all handlers
* for the io request object to their default handlers. none
*/
static void scic_sds_request_initial_state_enter(void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCI_BASE_REQUEST_STATE_INITIAL
);
}
/**
* scic_sds_request_constructed_state_enter() -
* @object: The io request object that is to enter the constructed state.
*
* This method implements the actions taken when entering the
* SCI_BASE_REQUEST_STATE_CONSTRUCTED state. The method sets the state handlers
* for the the constructed state. none
*/
static void scic_sds_request_constructed_state_enter(void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCI_BASE_REQUEST_STATE_CONSTRUCTED
);
}
/**
* scic_sds_request_started_state_enter() -
* @object: This parameter specifies the base object for which the state
* transition is occurring. This is cast into a SCIC_SDS_IO_REQUEST object.
*
* This method implements the actions taken when entering the
* SCI_BASE_REQUEST_STATE_STARTED state. If the io request object type is a
* SCSI Task request we must enter the started substate machine. none
*/
static void scic_sds_request_started_state_enter(void *object)
{
struct scic_sds_request *sci_req = object;
struct sci_base_state_machine *sm = &sci_req->state_machine;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct domain_device *dev = sci_dev_to_domain(sci_req->target_device);
struct sas_task *task;
/* XXX as hch said always creating an internal sas_task for tmf
* requests would simplify the driver
*/
task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCI_BASE_REQUEST_STATE_STARTED
);
/* Most of the request state machines have a started substate machine so
* start its execution on the entry to the started state.
*/
if (sci_req->has_started_substate_machine == true)
sci_base_state_machine_start(&sci_req->started_substate_machine);
if (!task && dev->dev_type == SAS_END_DEV) {
sci_base_state_machine_change_state(sm,
SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION);
} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
sci_base_state_machine_change_state(sm,
SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE);
}
}
/**
* scic_sds_request_started_state_exit() -
* @object: This parameter specifies the base object for which the state
* transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST
* object.
*
* This method implements the actions taken when exiting the
* SCI_BASE_REQUEST_STATE_STARTED state. For task requests the action will be
* to stop the started substate machine. none
*/
static void scic_sds_request_started_state_exit(void *object)
{
struct scic_sds_request *sci_req = object;
if (sci_req->has_started_substate_machine == true)
sci_base_state_machine_stop(&sci_req->started_substate_machine);
}
/**
* scic_sds_request_completed_state_enter() -
* @object: This parameter specifies the base object for which the state
* transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST
* object.
*
* This method implements the actions taken when entering the
* SCI_BASE_REQUEST_STATE_COMPLETED state. This state is entered when the
* SCIC_SDS_IO_REQUEST has completed. The method will decode the request
* completion status and convert it to an enum sci_status to return in the
* completion callback function. none
*/
static void scic_sds_request_completed_state_enter(void *object)
{
struct scic_sds_request *sci_req = object;
struct scic_sds_controller *scic =
scic_sds_request_get_controller(sci_req);
struct isci_host *ihost = scic_to_ihost(scic);
struct isci_request *ireq = sci_req_to_ireq(sci_req);
SET_STATE_HANDLER(sci_req,
scic_sds_request_state_handler_table,
SCI_BASE_REQUEST_STATE_COMPLETED);
/* Tell the SCI_USER that the IO request is complete */
if (sci_req->is_task_management_request == false)
isci_request_io_request_complete(ihost, ireq,
sci_req->sci_status);
else
isci_task_request_complete(ihost, ireq, sci_req->sci_status);
}
/**
* scic_sds_request_aborting_state_enter() -
* @object: This parameter specifies the base object for which the state
* transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST
* object.
*
* This method implements the actions taken when entering the
* SCI_BASE_REQUEST_STATE_ABORTING state. none
*/
static void scic_sds_request_aborting_state_enter(void *object)
{
struct scic_sds_request *sci_req = object;
/* Setting the abort bit in the Task Context is required by the silicon. */
sci_req->task_context_buffer->abort = 1;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCI_BASE_REQUEST_STATE_ABORTING
);
}
/**
* scic_sds_request_final_state_enter() -
* @object: This parameter specifies the base object for which the state
* transition is occurring. This is cast into a SCIC_SDS_IO_REQUEST object.
*
* This method implements the actions taken when entering the
* SCI_BASE_REQUEST_STATE_FINAL state. The only action required is to put the
* state handlers in place. none
*/
static void scic_sds_request_final_state_enter(void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCI_BASE_REQUEST_STATE_FINAL
);
}
static void scic_sds_io_request_started_task_mgmt_await_tc_completion_substate_enter(
void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION
);
}
static void scic_sds_io_request_started_task_mgmt_await_task_response_substate_enter(
void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE
);
}
static void scic_sds_smp_request_started_await_response_substate_enter(void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE
);
}
static void scic_sds_smp_request_started_await_tc_completion_substate_enter(void *object)
{
struct scic_sds_request *sci_req = object;
SET_STATE_HANDLER(
sci_req,
scic_sds_request_state_handler_table,
SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION
);
}
static const struct sci_base_state scic_sds_request_state_table[] = {
[SCI_BASE_REQUEST_STATE_INITIAL] = {
.enter_state = scic_sds_request_initial_state_enter,
},
[SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
.enter_state = scic_sds_request_constructed_state_enter,
},
[SCI_BASE_REQUEST_STATE_STARTED] = {
.enter_state = scic_sds_request_started_state_enter,
.exit_state = scic_sds_request_started_state_exit
},
[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION] = {
.enter_state = scic_sds_io_request_started_task_mgmt_await_tc_completion_substate_enter,
},
[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE] = {
.enter_state = scic_sds_io_request_started_task_mgmt_await_task_response_substate_enter,
},
[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE] = {
.enter_state = scic_sds_smp_request_started_await_response_substate_enter,
},
[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION] = {
.enter_state = scic_sds_smp_request_started_await_tc_completion_substate_enter,
},
[SCI_BASE_REQUEST_STATE_COMPLETED] = {
.enter_state = scic_sds_request_completed_state_enter,
},
[SCI_BASE_REQUEST_STATE_ABORTING] = {
.enter_state = scic_sds_request_aborting_state_enter,
},
[SCI_BASE_REQUEST_STATE_FINAL] = {
.enter_state = scic_sds_request_final_state_enter,
},
};
static void scic_sds_general_request_construct(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 io_tag, struct scic_sds_request *sci_req)
{
sci_base_state_machine_construct(&sci_req->state_machine, sci_req,
scic_sds_request_state_table, SCI_BASE_REQUEST_STATE_INITIAL);
sci_base_state_machine_start(&sci_req->state_machine);
sci_req->io_tag = io_tag;
sci_req->owning_controller = scic;
sci_req->target_device = sci_dev;
sci_req->has_started_substate_machine = false;
sci_req->protocol = SCIC_NO_PROTOCOL;
sci_req->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
sci_req->device_sequence = scic_sds_remote_device_get_sequence(sci_dev);
sci_req->sci_status = SCI_SUCCESS;
sci_req->scu_status = 0;
sci_req->post_context = 0xFFFFFFFF;
sci_req->is_task_management_request = false;
if (io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
sci_req->was_tag_assigned_by_user = false;
sci_req->task_context_buffer = &sci_req->tc;
} else {
sci_req->was_tag_assigned_by_user = true;
sci_req->task_context_buffer =
scic_sds_controller_get_task_context_buffer(scic, io_tag);
}
}
static enum sci_status
scic_io_request_construct(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 io_tag, struct scic_sds_request *sci_req)
{
struct domain_device *dev = sci_dev_to_domain(sci_dev);
enum sci_status status = SCI_SUCCESS;
/* Build the common part of the request */
scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
if (sci_dev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
return SCI_FAILURE_INVALID_REMOTE_DEVICE;
if (dev->dev_type == SAS_END_DEV)
/* pass */;
else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
memset(&sci_req->stp.cmd, 0, sizeof(sci_req->stp.cmd));
else if (dev_is_expander(dev))
memset(&sci_req->smp.cmd, 0, sizeof(sci_req->smp.cmd));
else
return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
memset(sci_req->task_context_buffer, 0,
offsetof(struct scu_task_context, sgl_pair_ab));
return status;
}
enum sci_status scic_task_request_construct(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 io_tag, struct scic_sds_request *sci_req)
{
struct domain_device *dev = sci_dev_to_domain(sci_dev);
enum sci_status status = SCI_SUCCESS;
/* Build the common part of the request */
scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
if (dev->dev_type == SAS_END_DEV ||
dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
sci_req->is_task_management_request = true;
memset(sci_req->task_context_buffer, 0, sizeof(struct scu_task_context));
} else
status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
return status;
}
static enum sci_status isci_request_ssp_request_construct(
struct isci_request *request)
{
enum sci_status status;
dev_dbg(&request->isci_host->pdev->dev,
"%s: request = %p\n",
__func__,
request);
status = scic_io_request_construct_basic_ssp(&request->sci);
return status;
}
static enum sci_status isci_request_stp_request_construct(
struct isci_request *request)
{
struct sas_task *task = isci_request_access_task(request);
enum sci_status status;
struct host_to_dev_fis *register_fis;
dev_dbg(&request->isci_host->pdev->dev,
"%s: request = %p\n",
__func__,
request);
/* Get the host_to_dev_fis from the core and copy
* the fis from the task into it.
*/
register_fis = isci_sata_task_to_fis_copy(task);
status = scic_io_request_construct_basic_sata(&request->sci);
/* Set the ncq tag in the fis, from the queue
* command in the task.
*/
if (isci_sata_is_task_ncq(task)) {
isci_sata_set_ncq_tag(
register_fis,
task
);
}
return status;
}
/*
* This function will fill in the SCU Task Context for a SMP request. The
* following important settings are utilized: -# task_type ==
* SCU_TASK_TYPE_SMP. This simply indicates that a normal request type
* (i.e. non-raw frame) is being utilized to perform task management. -#
* control_frame == 1. This ensures that the proper endianess is set so
* that the bytes are transmitted in the right order for a smp request frame.
* @sci_req: This parameter specifies the smp request object being
* constructed.
*
*/
static void
scu_smp_request_construct_task_context(struct scic_sds_request *sci_req,
struct smp_req *smp_req)
{
dma_addr_t dma_addr;
struct scic_sds_controller *scic;
struct scic_sds_remote_device *sci_dev;
struct scic_sds_port *sci_port;
struct scu_task_context *task_context;
ssize_t word_cnt = sizeof(struct smp_req) / sizeof(u32);
/* byte swap the smp request. */
sci_swab32_cpy(&sci_req->smp.cmd, smp_req,
word_cnt);
task_context = scic_sds_request_get_task_context(sci_req);
scic = scic_sds_request_get_controller(sci_req);
sci_dev = scic_sds_request_get_device(sci_req);
sci_port = scic_sds_request_get_port(sci_req);
/*
* Fill in the TC with the its required data
* 00h
*/
task_context->priority = 0;
task_context->initiator_request = 1;
task_context->connection_rate = sci_dev->connection_rate;
task_context->protocol_engine_index =
scic_sds_controller_get_protocol_engine_group(scic);
task_context->logical_port_index = scic_sds_port_get_index(sci_port);
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
task_context->abort = 0;
task_context->valid = SCU_TASK_CONTEXT_VALID;
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
/* 04h */
task_context->remote_node_index = sci_dev->rnc.remote_node_index;
task_context->command_code = 0;
task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
/* 08h */
task_context->link_layer_control = 0;
task_context->do_not_dma_ssp_good_response = 1;
task_context->strict_ordering = 0;
task_context->control_frame = 1;
task_context->timeout_enable = 0;
task_context->block_guard_enable = 0;
/* 0ch */
task_context->address_modifier = 0;
/* 10h */
task_context->ssp_command_iu_length = smp_req->req_len;
/* 14h */
task_context->transfer_length_bytes = 0;
/*
* 18h ~ 30h, protocol specific
* since commandIU has been build by framework at this point, we just
* copy the frist DWord from command IU to this location. */
memcpy(&task_context->type.smp, &sci_req->smp.cmd, sizeof(u32));
/*
* 40h
* "For SMP you could program it to zero. We would prefer that way
* so that done code will be consistent." - Venki
*/
task_context->task_phase = 0;
if (sci_req->was_tag_assigned_by_user) {
/*
* Build the task context now since we have already read
* the data
*/
sci_req->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(scic) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(sci_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
scic_sds_io_tag_get_index(sci_req->io_tag));
} else {
/*
* Build the task context now since we have already read
* the data.
* I/O tag index is not assigned because we have to wait
* until we get a TCi.
*/
sci_req->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(scic) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(sci_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
}
/*
* Copy the physical address for the command buffer to the SCU Task
* Context command buffer should not contain command header.
*/
dma_addr = scic_io_request_get_dma_addr(sci_req,
((char *) &sci_req->smp.cmd) +
sizeof(u32));
task_context->command_iu_upper = upper_32_bits(dma_addr);
task_context->command_iu_lower = lower_32_bits(dma_addr);
/* SMP response comes as UF, so no need to set response IU address. */
task_context->response_iu_upper = 0;
task_context->response_iu_lower = 0;
}
static enum sci_status scic_io_request_construct_smp(struct scic_sds_request *sci_req)
{
struct smp_req *smp_req = kmalloc(sizeof(*smp_req), GFP_KERNEL);
if (!smp_req)
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
sci_req->protocol = SCIC_SMP_PROTOCOL;
/* Construct the SMP SCU Task Context */
memcpy(smp_req, &sci_req->smp.cmd, sizeof(*smp_req));
/*
* Look at the SMP requests' header fields; for certain SAS 1.x SMP
* functions under SAS 2.0, a zero request length really indicates
* a non-zero default length. */
if (smp_req->req_len == 0) {
switch (smp_req->func) {
case SMP_DISCOVER:
case SMP_REPORT_PHY_ERR_LOG:
case SMP_REPORT_PHY_SATA:
case SMP_REPORT_ROUTE_INFO:
smp_req->req_len = 2;
break;
case SMP_CONF_ROUTE_INFO:
case SMP_PHY_CONTROL:
case SMP_PHY_TEST_FUNCTION:
smp_req->req_len = 9;
break;
/* Default - zero is a valid default for 2.0. */
}
}
scu_smp_request_construct_task_context(sci_req, smp_req);
sci_base_state_machine_change_state(&sci_req->state_machine,
SCI_BASE_REQUEST_STATE_CONSTRUCTED);
kfree(smp_req);
return SCI_SUCCESS;
}
/*
* isci_smp_request_build() - This function builds the smp request.
* @ireq: This parameter points to the isci_request allocated in the
* request construct function.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
static enum sci_status isci_smp_request_build(struct isci_request *ireq)
{
enum sci_status status = SCI_FAILURE;
struct sas_task *task = isci_request_access_task(ireq);
struct scic_sds_request *sci_req = &ireq->sci;
dev_dbg(&ireq->isci_host->pdev->dev,
"%s: request = %p\n", __func__, ireq);
dev_dbg(&ireq->isci_host->pdev->dev,
"%s: smp_req len = %d\n",
__func__,
task->smp_task.smp_req.length);
/* copy the smp_command to the address; */
sg_copy_to_buffer(&task->smp_task.smp_req, 1,
&sci_req->smp.cmd,
sizeof(struct smp_req));
status = scic_io_request_construct_smp(sci_req);
if (status != SCI_SUCCESS)
dev_warn(&ireq->isci_host->pdev->dev,
"%s: failed with status = %d\n",
__func__,
status);
return status;
}
/**
* isci_io_request_build() - This function builds the io request object.
* @isci_host: This parameter specifies the ISCI host object
* @request: This parameter points to the isci_request object allocated in the
* request construct function.
* @sci_device: This parameter is the handle for the sci core's remote device
* object that is the destination for this request.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
static enum sci_status isci_io_request_build(
struct isci_host *isci_host,
struct isci_request *request,
struct isci_remote_device *isci_device)
{
enum sci_status status = SCI_SUCCESS;
struct sas_task *task = isci_request_access_task(request);
struct scic_sds_remote_device *sci_device = &isci_device->sci;
dev_dbg(&isci_host->pdev->dev,
"%s: isci_device = 0x%p; request = %p, "
"num_scatter = %d\n",
__func__,
isci_device,
request,
task->num_scatter);
/* map the sgl addresses, if present.
* libata does the mapping for sata devices
* before we get the request.
*/
if (task->num_scatter &&
!sas_protocol_ata(task->task_proto) &&
!(SAS_PROTOCOL_SMP & task->task_proto)) {
request->num_sg_entries = dma_map_sg(
&isci_host->pdev->dev,
task->scatter,
task->num_scatter,
task->data_dir
);
if (request->num_sg_entries == 0)
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
/* build the common request object. For now,
* we will let the core allocate the IO tag.
*/
status = scic_io_request_construct(&isci_host->sci, sci_device,
SCI_CONTROLLER_INVALID_IO_TAG,
&request->sci);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"%s: failed request construct\n",
__func__);
return SCI_FAILURE;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
status = isci_smp_request_build(request);
break;
case SAS_PROTOCOL_SSP:
status = isci_request_ssp_request_construct(request);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
status = isci_request_stp_request_construct(request);
break;
default:
dev_warn(&isci_host->pdev->dev,
"%s: unknown protocol\n", __func__);
return SCI_FAILURE;
}
return SCI_SUCCESS;
}
/**
* isci_request_alloc_core() - This function gets the request object from the
* isci_host dma cache.
* @isci_host: This parameter specifies the ISCI host object
* @isci_request: This parameter will contain the pointer to the new
* isci_request object.
* @isci_device: This parameter is the pointer to the isci remote device object
* that is the destination for this request.
* @gfp_flags: This parameter specifies the os allocation flags.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
static int isci_request_alloc_core(
struct isci_host *isci_host,
struct isci_request **isci_request,
struct isci_remote_device *isci_device,
gfp_t gfp_flags)
{
int ret = 0;
dma_addr_t handle;
struct isci_request *request;
/* get pointer to dma memory. This actually points
* to both the isci_remote_device object and the
* sci object. The isci object is at the beginning
* of the memory allocated here.
*/
request = dma_pool_alloc(isci_host->dma_pool, gfp_flags, &handle);
if (!request) {
dev_warn(&isci_host->pdev->dev,
"%s: dma_pool_alloc returned NULL\n", __func__);
return -ENOMEM;
}
/* initialize the request object. */
spin_lock_init(&request->state_lock);
request->request_daddr = handle;
request->isci_host = isci_host;
request->isci_device = isci_device;
request->io_request_completion = NULL;
request->terminated = false;
request->num_sg_entries = 0;
request->complete_in_target = false;
INIT_LIST_HEAD(&request->completed_node);
INIT_LIST_HEAD(&request->dev_node);
*isci_request = request;
isci_request_change_state(request, allocated);
return ret;
}
static int isci_request_alloc_io(
struct isci_host *isci_host,
struct sas_task *task,
struct isci_request **isci_request,
struct isci_remote_device *isci_device,
gfp_t gfp_flags)
{
int retval = isci_request_alloc_core(isci_host, isci_request,
isci_device, gfp_flags);
if (!retval) {
(*isci_request)->ttype_ptr.io_task_ptr = task;
(*isci_request)->ttype = io_task;
task->lldd_task = *isci_request;
}
return retval;
}
/**
* isci_request_alloc_tmf() - This function gets the request object from the
* isci_host dma cache and initializes the relevant fields as a sas_task.
* @isci_host: This parameter specifies the ISCI host object
* @sas_task: This parameter is the task struct from the upper layer driver.
* @isci_request: This parameter will contain the pointer to the new
* isci_request object.
* @isci_device: This parameter is the pointer to the isci remote device object
* that is the destination for this request.
* @gfp_flags: This parameter specifies the os allocation flags.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
int isci_request_alloc_tmf(
struct isci_host *isci_host,
struct isci_tmf *isci_tmf,
struct isci_request **isci_request,
struct isci_remote_device *isci_device,
gfp_t gfp_flags)
{
int retval = isci_request_alloc_core(isci_host, isci_request,
isci_device, gfp_flags);
if (!retval) {
(*isci_request)->ttype_ptr.tmf_task_ptr = isci_tmf;
(*isci_request)->ttype = tmf_task;
}
return retval;
}
/**
* isci_request_execute() - This function allocates the isci_request object,
* all fills in some common fields.
* @isci_host: This parameter specifies the ISCI host object
* @sas_task: This parameter is the task struct from the upper layer driver.
* @isci_request: This parameter will contain the pointer to the new
* isci_request object.
* @gfp_flags: This parameter specifies the os allocation flags.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
int isci_request_execute(
struct isci_host *isci_host,
struct sas_task *task,
struct isci_request **isci_request,
gfp_t gfp_flags)
{
int ret = 0;
struct scic_sds_remote_device *sci_device;
enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
struct isci_remote_device *isci_device;
struct isci_request *request;
unsigned long flags;
isci_device = task->dev->lldd_dev;
sci_device = &isci_device->sci;
/* do common allocation and init of request object. */
ret = isci_request_alloc_io(
isci_host,
task,
&request,
isci_device,
gfp_flags
);
if (ret)
goto out;
status = isci_io_request_build(isci_host, request, isci_device);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"%s: request_construct failed - status = 0x%x\n",
__func__,
status);
goto out;
}
spin_lock_irqsave(&isci_host->scic_lock, flags);
/* send the request, let the core assign the IO TAG. */
status = scic_controller_start_io(&isci_host->sci, sci_device,
&request->sci,
SCI_CONTROLLER_INVALID_IO_TAG);
if (status != SCI_SUCCESS &&
status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
dev_warn(&isci_host->pdev->dev,
"%s: failed request start (0x%x)\n",
__func__, status);
spin_unlock_irqrestore(&isci_host->scic_lock, flags);
goto out;
}
/* Either I/O started OK, or the core has signaled that
* the device needs a target reset.
*
* In either case, hold onto the I/O for later.
*
* Update it's status and add it to the list in the
* remote device object.
*/
isci_request_change_state(request, started);
list_add(&request->dev_node, &isci_device->reqs_in_process);
if (status == SCI_SUCCESS) {
/* Save the tag for possible task mgmt later. */
request->io_tag = request->sci.io_tag;
} else {
/* The request did not really start in the
* hardware, so clear the request handle
* here so no terminations will be done.
*/
request->terminated = true;
}
spin_unlock_irqrestore(&isci_host->scic_lock, flags);
if (status ==
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
/* Signal libsas that we need the SCSI error
* handler thread to work on this I/O and that
* we want a device reset.
*/
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&task->task_state_lock, flags);
/* Cause this task to be scheduled in the SCSI error
* handler thread.
*/
isci_execpath_callback(isci_host, task,
sas_task_abort);
/* Change the status, since we are holding
* the I/O until it is managed by the SCSI
* error handler.
*/
status = SCI_SUCCESS;
}
out:
if (status != SCI_SUCCESS) {
/* release dma memory on failure. */
isci_request_free(isci_host, request);
request = NULL;
ret = SCI_FAILURE;
}
*isci_request = request;
return ret;
}