/* esp_scsi.c: ESP SCSI driver.
*
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/completion.h>
#include <linux/kallsyms.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/irqreturn.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_transport_spi.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "esp"
#define PFX DRV_MODULE_NAME ": "
#define DRV_VERSION "2.000"
#define DRV_MODULE_RELDATE "April 19, 2007"
/* SCSI bus reset settle time in seconds. */
static int esp_bus_reset_settle = 3;
static u32 esp_debug;
#define ESP_DEBUG_INTR 0x00000001
#define ESP_DEBUG_SCSICMD 0x00000002
#define ESP_DEBUG_RESET 0x00000004
#define ESP_DEBUG_MSGIN 0x00000008
#define ESP_DEBUG_MSGOUT 0x00000010
#define ESP_DEBUG_CMDDONE 0x00000020
#define ESP_DEBUG_DISCONNECT 0x00000040
#define ESP_DEBUG_DATASTART 0x00000080
#define ESP_DEBUG_DATADONE 0x00000100
#define ESP_DEBUG_RECONNECT 0x00000200
#define ESP_DEBUG_AUTOSENSE 0x00000400
#define ESP_DEBUG_EVENT 0x00000800
#define ESP_DEBUG_COMMAND 0x00001000
#define esp_log_intr(f, a...) \
do { if (esp_debug & ESP_DEBUG_INTR) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_reset(f, a...) \
do { if (esp_debug & ESP_DEBUG_RESET) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_msgin(f, a...) \
do { if (esp_debug & ESP_DEBUG_MSGIN) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_msgout(f, a...) \
do { if (esp_debug & ESP_DEBUG_MSGOUT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_cmddone(f, a...) \
do { if (esp_debug & ESP_DEBUG_CMDDONE) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_disconnect(f, a...) \
do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_datastart(f, a...) \
do { if (esp_debug & ESP_DEBUG_DATASTART) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_datadone(f, a...) \
do { if (esp_debug & ESP_DEBUG_DATADONE) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_reconnect(f, a...) \
do { if (esp_debug & ESP_DEBUG_RECONNECT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_autosense(f, a...) \
do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_event(f, a...) \
do { if (esp_debug & ESP_DEBUG_EVENT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_command(f, a...) \
do { if (esp_debug & ESP_DEBUG_COMMAND) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_read8(REG) esp->ops->esp_read8(esp, REG)
#define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
static void esp_log_fill_regs(struct esp *esp,
struct esp_event_ent *p)
{
p->sreg = esp->sreg;
p->seqreg = esp->seqreg;
p->sreg2 = esp->sreg2;
p->ireg = esp->ireg;
p->select_state = esp->select_state;
p->event = esp->event;
}
void scsi_esp_cmd(struct esp *esp, u8 val)
{
struct esp_event_ent *p;
int idx = esp->esp_event_cur;
p = &esp->esp_event_log[idx];
p->type = ESP_EVENT_TYPE_CMD;
p->val = val;
esp_log_fill_regs(esp, p);
esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
esp_log_command("cmd[%02x]\n", val);
esp_write8(val, ESP_CMD);
}
EXPORT_SYMBOL(scsi_esp_cmd);
static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
{
if (esp->flags & ESP_FLAG_USE_FIFO) {
int i;
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
for (i = 0; i < len; i++)
esp_write8(esp->command_block[i], ESP_FDATA);
scsi_esp_cmd(esp, cmd);
} else {
if (esp->rev == FASHME)
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
cmd |= ESP_CMD_DMA;
esp->ops->send_dma_cmd(esp, esp->command_block_dma,
len, max_len, 0, cmd);
}
}
static void esp_event(struct esp *esp, u8 val)
{
struct esp_event_ent *p;
int idx = esp->esp_event_cur;
p = &esp->esp_event_log[idx];
p->type = ESP_EVENT_TYPE_EVENT;
p->val = val;
esp_log_fill_regs(esp, p);
esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
esp->event = val;
}
static void esp_dump_cmd_log(struct esp *esp)
{
int idx = esp->esp_event_cur;
int stop = idx;
shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
do {
struct esp_event_ent *p = &esp->esp_event_log[idx];
shost_printk(KERN_INFO, esp->host,
"ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
"sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
idx,
p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
p->val, p->sreg, p->seqreg,
p->sreg2, p->ireg, p->select_state, p->event);
idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
} while (idx != stop);
}
static void esp_flush_fifo(struct esp *esp)
{
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->rev == ESP236) {
int lim = 1000;
while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
if (--lim == 0) {
shost_printk(KERN_ALERT, esp->host,
"ESP_FF_BYTES will not clear!\n");
break;
}
udelay(1);
}
}
}
static void hme_read_fifo(struct esp *esp)
{
int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
int idx = 0;
while (fcnt--) {
esp->fifo[idx++] = esp_read8(ESP_FDATA);
esp->fifo[idx++] = esp_read8(ESP_FDATA);
}
if (esp->sreg2 & ESP_STAT2_F1BYTE) {
esp_write8(0, ESP_FDATA);
esp->fifo[idx++] = esp_read8(ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
}
esp->fifo_cnt = idx;
}
static void esp_set_all_config3(struct esp *esp, u8 val)
{
int i;
for (i = 0; i < ESP_MAX_TARGET; i++)
esp->target[i].esp_config3 = val;
}
/* Reset the ESP chip, _not_ the SCSI bus. */
static void esp_reset_esp(struct esp *esp)
{
u8 family_code, version;
/* Now reset the ESP chip */
scsi_esp_cmd(esp, ESP_CMD_RC);
scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
if (esp->rev == FAST)
esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
/* This is the only point at which it is reliable to read
* the ID-code for a fast ESP chip variants.
*/
esp->max_period = ((35 * esp->ccycle) / 1000);
if (esp->rev == FAST) {
version = esp_read8(ESP_UID);
family_code = (version & 0xf8) >> 3;
if (family_code == 0x02)
esp->rev = FAS236;
else if (family_code == 0x0a)
esp->rev = FASHME; /* Version is usually '5'. */
else
esp->rev = FAS100A;
esp->min_period = ((4 * esp->ccycle) / 1000);
} else {
esp->min_period = ((5 * esp->ccycle) / 1000);
}
if (esp->rev == FAS236) {
/*
* The AM53c974 chip returns the same ID as FAS236;
* try to configure glitch eater.
*/
u8 config4 = ESP_CONFIG4_GE1;
esp_write8(config4, ESP_CFG4);
config4 = esp_read8(ESP_CFG4);
if (config4 & ESP_CONFIG4_GE1) {
esp->rev = PCSCSI;
esp_write8(esp->config4, ESP_CFG4);
}
}
esp->max_period = (esp->max_period + 3)>>2;
esp->min_period = (esp->min_period + 3)>>2;
esp_write8(esp->config1, ESP_CFG1);
switch (esp->rev) {
case ESP100:
/* nothing to do */
break;
case ESP100A:
esp_write8(esp->config2, ESP_CFG2);
break;
case ESP236:
/* Slow 236 */
esp_write8(esp->config2, ESP_CFG2);
esp->prev_cfg3 = esp->target[0].esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
break;
case FASHME:
esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
/* fallthrough... */
case FAS236:
case PCSCSI:
/* Fast 236, AM53c974 or HME */
esp_write8(esp->config2, ESP_CFG2);
if (esp->rev == FASHME) {
u8 cfg3 = esp->target[0].esp_config3;
cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
if (esp->scsi_id >= 8)
cfg3 |= ESP_CONFIG3_IDBIT3;
esp_set_all_config3(esp, cfg3);
} else {
u32 cfg3 = esp->target[0].esp_config3;
cfg3 |= ESP_CONFIG3_FCLK;
esp_set_all_config3(esp, cfg3);
}
esp->prev_cfg3 = esp->target[0].esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
if (esp->rev == FASHME) {
esp->radelay = 80;
} else {
if (esp->flags & ESP_FLAG_DIFFERENTIAL)
esp->radelay = 0;
else
esp->radelay = 96;
}
break;
case FAS100A:
/* Fast 100a */
esp_write8(esp->config2, ESP_CFG2);
esp_set_all_config3(esp,
(esp->target[0].esp_config3 |
ESP_CONFIG3_FCLOCK));
esp->prev_cfg3 = esp->target[0].esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
esp->radelay = 32;
break;
default:
break;
}
/* Reload the configuration registers */
esp_write8(esp->cfact, ESP_CFACT);
esp->prev_stp = 0;
esp_write8(esp->prev_stp, ESP_STP);
esp->prev_soff = 0;
esp_write8(esp->prev_soff, ESP_SOFF);
esp_write8(esp->neg_defp, ESP_TIMEO);
/* Eat any bitrot in the chip */
esp_read8(ESP_INTRPT);
udelay(100);
}
static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
{
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
struct scatterlist *sg = scsi_sglist(cmd);
int total = 0, i;
if (cmd->sc_data_direction == DMA_NONE)
return;
if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
/*
* For pseudo DMA and PIO we need the virtual address instead of
* a dma address, so perform an identity mapping.
*/
spriv->num_sg = scsi_sg_count(cmd);
for (i = 0; i < spriv->num_sg; i++) {
sg[i].dma_address = (uintptr_t)sg_virt(&sg[i]);
total += sg_dma_len(&sg[i]);
}
} else {
spriv->num_sg = scsi_dma_map(cmd);
for (i = 0; i < spriv->num_sg; i++)
total += sg_dma_len(&sg[i]);
}
spriv->cur_residue = sg_dma_len(sg);
spriv->cur_sg = sg;
spriv->tot_residue = total;
}
static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd)
{
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
return ent->sense_dma +
(ent->sense_ptr - cmd->sense_buffer);
}
return sg_dma_address(p->cur_sg) +
(sg_dma_len(p->cur_sg) -
p->cur_residue);
}
static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd)
{
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
return SCSI_SENSE_BUFFERSIZE -
(ent->sense_ptr - cmd->sense_buffer);
}
return p->cur_residue;
}
static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd, unsigned int len)
{
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->sense_ptr += len;
return;
}
p->cur_residue -= len;
p->tot_residue -= len;
if (p->cur_residue < 0 || p->tot_residue < 0) {
shost_printk(KERN_ERR, esp->host,
"Data transfer overflow.\n");
shost_printk(KERN_ERR, esp->host,
"cur_residue[%d] tot_residue[%d] len[%u]\n",
p->cur_residue, p->tot_residue, len);
p->cur_residue = 0;
p->tot_residue = 0;
}
if (!p->cur_residue && p->tot_residue) {
p->cur_sg++;
p->cur_residue = sg_dma_len(p->cur_sg);
}
}
static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
{
if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
scsi_dma_unmap(cmd);
}
static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->saved_sense_ptr = ent->sense_ptr;
return;
}
ent->saved_cur_residue = spriv->cur_residue;
ent->saved_cur_sg = spriv->cur_sg;
ent->saved_tot_residue = spriv->tot_residue;
}
static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->sense_ptr = ent->saved_sense_ptr;
return;
}
spriv->cur_residue = ent->saved_cur_residue;
spriv->cur_sg = ent->saved_cur_sg;
spriv->tot_residue = ent->saved_tot_residue;
}
static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
{
if (cmd->cmd_len == 6 ||
cmd->cmd_len == 10 ||
cmd->cmd_len == 12) {
esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
} else {
esp->flags |= ESP_FLAG_DOING_SLOWCMD;
}
}
static void esp_write_tgt_config3(struct esp *esp, int tgt)
{
if (esp->rev > ESP100A) {
u8 val = esp->target[tgt].esp_config3;
if (val != esp->prev_cfg3) {
esp->prev_cfg3 = val;
esp_write8(val, ESP_CFG3);
}
}
}
static void esp_write_tgt_sync(struct esp *esp, int tgt)
{
u8 off = esp->target[tgt].esp_offset;
u8 per = esp->target[tgt].esp_period;
if (off != esp->prev_soff) {
esp->prev_soff = off;
esp_write8(off, ESP_SOFF);
}
if (per != esp->prev_stp) {
esp->prev_stp = per;
esp_write8(per, ESP_STP);
}
}
static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
{
if (esp->rev == FASHME) {
/* Arbitrary segment boundaries, 24-bit counts. */
if (dma_len > (1U << 24))
dma_len = (1U << 24);
} else {
u32 base, end;
/* ESP chip limits other variants by 16-bits of transfer
* count. Actually on FAS100A and FAS236 we could get
* 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
* in the ESP_CFG2 register but that causes other unwanted
* changes so we don't use it currently.
*/
if (dma_len > (1U << 16))
dma_len = (1U << 16);
/* All of the DMA variants hooked up to these chips
* cannot handle crossing a 24-bit address boundary.
*/
base = dma_addr & ((1U << 24) - 1U);
end = base + dma_len;
if (end > (1U << 24))
end = (1U <<24);
dma_len = end - base;
}
return dma_len;
}
static int esp_need_to_nego_wide(struct esp_target_data *tp)
{
struct scsi_target *target = tp->starget;
return spi_width(target) != tp->nego_goal_width;
}
static int esp_need_to_nego_sync(struct esp_target_data *tp)
{
struct scsi_target *target = tp->starget;
/* When offset is zero, period is "don't care". */
if (!spi_offset(target) && !tp->nego_goal_offset)
return 0;
if (spi_offset(target) == tp->nego_goal_offset &&
spi_period(target) == tp->nego_goal_period)
return 0;
return 1;
}
static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
struct esp_lun_data *lp)
{
if (!ent->orig_tag[0]) {
/* Non-tagged, slot already taken? */
if (lp->non_tagged_cmd)
return -EBUSY;
if (lp->hold) {
/* We are being held by active tagged
* commands.
*/
if (lp->num_tagged)
return -EBUSY;
/* Tagged commands completed, we can unplug
* the queue and run this untagged command.
*/
lp->hold = 0;
} else if (lp->num_tagged) {
/* Plug the queue until num_tagged decreases
* to zero in esp_free_lun_tag.
*/
lp->hold = 1;
return -EBUSY;
}
lp->non_tagged_cmd = ent;
return 0;
}
/* Tagged command. Check that it isn't blocked by a non-tagged one. */
if (lp->non_tagged_cmd || lp->hold)
return -EBUSY;
BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
lp->tagged_cmds[ent->orig_tag[1]] = ent;
lp->num_tagged++;
return 0;
}
static void esp_free_lun_tag(struct esp_cmd_entry *ent,
struct esp_lun_data *lp)
{
if (ent->orig_tag[0]) {
BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
lp->tagged_cmds[ent->orig_tag[1]] = NULL;
lp->num_tagged--;
} else {
BUG_ON(lp->non_tagged_cmd != ent);
lp->non_tagged_cmd = NULL;
}
}
static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
{
ent->sense_ptr = ent->cmd->sense_buffer;
if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
ent->sense_dma = (uintptr_t)ent->sense_ptr;
return;
}
ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
}
static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
{
if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
dma_unmap_single(esp->dev, ent->sense_dma,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
ent->sense_ptr = NULL;
}
/* When a contingent allegiance conditon is created, we force feed a
* REQUEST_SENSE command to the device to fetch the sense data. I
* tried many other schemes, relying on the scsi error handling layer
* to send out the REQUEST_SENSE automatically, but this was difficult
* to get right especially in the presence of applications like smartd
* which use SG_IO to send out their own REQUEST_SENSE commands.
*/
static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
struct scsi_device *dev = cmd->device;
int tgt, lun;
u8 *p, val;
tgt = dev->id;
lun = dev->lun;
if (!ent->sense_ptr) {
esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
tgt, lun);
esp_map_sense(esp, ent);
}
ent->saved_sense_ptr = ent->sense_ptr;
esp->active_cmd = ent;
p = esp->command_block;
esp->msg_out_len = 0;
*p++ = IDENTIFY(0, lun);
*p++ = REQUEST_SENSE;
*p++ = ((dev->scsi_level <= SCSI_2) ?
(lun << 5) : 0);
*p++ = 0;
*p++ = 0;
*p++ = SCSI_SENSE_BUFFERSIZE;
*p++ = 0;
esp->select_state = ESP_SELECT_BASIC;
val = tgt;
if (esp->rev == FASHME)
val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
esp_write8(val, ESP_BUSID);
esp_write_tgt_sync(esp, tgt);
esp_write_tgt_config3(esp, tgt);
val = (p - esp->command_block);
esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
}
static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
{
struct esp_cmd_entry *ent;
list_for_each_entry(ent, &esp->queued_cmds, list) {
struct scsi_cmnd *cmd = ent->cmd;
struct scsi_device *dev = cmd->device;
struct esp_lun_data *lp = dev->hostdata;
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->tag[0] = 0;
ent->tag[1] = 0;
return ent;
}
if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
ent->tag[0] = 0;
ent->tag[1] = 0;
}
ent->orig_tag[0] = ent->tag[0];
ent->orig_tag[1] = ent->tag[1];
if (esp_alloc_lun_tag(ent, lp) < 0)
continue;
return ent;
}
return NULL;
}
static void esp_maybe_execute_command(struct esp *esp)
{
struct esp_target_data *tp;
struct scsi_device *dev;
struct scsi_cmnd *cmd;
struct esp_cmd_entry *ent;
int tgt, lun, i;
u32 val, start_cmd;
u8 *p;
if (esp->active_cmd ||
(esp->flags & ESP_FLAG_RESETTING))
return;
ent = find_and_prep_issuable_command(esp);
if (!ent)
return;
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
esp_autosense(esp, ent);
return;
}
cmd = ent->cmd;
dev = cmd->device;
tgt = dev->id;
lun = dev->lun;
tp = &esp->target[tgt];
list_move(&ent->list, &esp->active_cmds);
esp->active_cmd = ent;
esp_map_dma(esp, cmd);
esp_save_pointers(esp, ent);
esp_check_command_len(esp, cmd);
p = esp->command_block;
esp->msg_out_len = 0;
if (tp->flags & ESP_TGT_CHECK_NEGO) {
/* Need to negotiate. If the target is broken
* go for synchronous transfers and non-wide.
*/
if (tp->flags & ESP_TGT_BROKEN) {
tp->flags &= ~ESP_TGT_DISCONNECT;
tp->nego_goal_period = 0;
tp->nego_goal_offset = 0;
tp->nego_goal_width = 0;
tp->nego_goal_tags = 0;
}
/* If the settings are not changing, skip this. */
if (spi_width(tp->starget) == tp->nego_goal_width &&
spi_period(tp->starget) == tp->nego_goal_period &&
spi_offset(tp->starget) == tp->nego_goal_offset) {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
goto build_identify;
}
if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
esp->msg_out_len =
spi_populate_width_msg(&esp->msg_out[0],
(tp->nego_goal_width ?
1 : 0));
tp->flags |= ESP_TGT_NEGO_WIDE;
} else if (esp_need_to_nego_sync(tp)) {
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
tp->flags |= ESP_TGT_NEGO_SYNC;
} else {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
}
/* Process it like a slow command. */
if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
esp->flags |= ESP_FLAG_DOING_SLOWCMD;
}
build_identify:
*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
if (ent->tag[0] && esp->rev == ESP100) {
/* ESP100 lacks select w/atn3 command, use select
* and stop instead.
*/
esp->flags |= ESP_FLAG_DOING_SLOWCMD;
}
if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
start_cmd = ESP_CMD_SELA;
if (ent->tag[0]) {
*p++ = ent->tag[0];
*p++ = ent->tag[1];
start_cmd = ESP_CMD_SA3;
}
for (i = 0; i < cmd->cmd_len; i++)
*p++ = cmd->cmnd[i];
esp->select_state = ESP_SELECT_BASIC;
} else {
esp->cmd_bytes_left = cmd->cmd_len;
esp->cmd_bytes_ptr = &cmd->cmnd[0];
if (ent->tag[0]) {
for (i = esp->msg_out_len - 1;
i >= 0; i--)
esp->msg_out[i + 2] = esp->msg_out[i];
esp->msg_out[0] = ent->tag[0];
esp->msg_out[1] = ent->tag[1];
esp->msg_out_len += 2;
}
start_cmd = ESP_CMD_SELAS;
esp->select_state = ESP_SELECT_MSGOUT;
}
val = tgt;
if (esp->rev == FASHME)
val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
esp_write8(val, ESP_BUSID);
esp_write_tgt_sync(esp, tgt);
esp_write_tgt_config3(esp, tgt);
val = (p - esp->command_block);
if (esp_debug & ESP_DEBUG_SCSICMD) {
printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
for (i = 0; i < cmd->cmd_len; i++)
printk("%02x ", cmd->cmnd[i]);
printk("]\n");
}
esp_send_dma_cmd(esp, val, 16, start_cmd);
}
static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
{
struct list_head *head = &esp->esp_cmd_pool;
struct esp_cmd_entry *ret;
if (list_empty(head)) {
ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
} else {
ret = list_entry(head->next, struct esp_cmd_entry, list);
list_del(&ret->list);
memset(ret, 0, sizeof(*ret));
}
return ret;
}
static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
{
list_add(&ent->list, &esp->esp_cmd_pool);
}
static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd, unsigned int result)
{
struct scsi_device *dev = cmd->device;
int tgt = dev->id;
int lun = dev->lun;
esp->active_cmd = NULL;
esp_unmap_dma(esp, cmd);
esp_free_lun_tag(ent, dev->hostdata);
cmd->result = result;
if (ent->eh_done) {
complete(ent->eh_done);
ent->eh_done = NULL;
}
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
esp_unmap_sense(esp, ent);
/* Restore the message/status bytes to what we actually
* saw originally. Also, report that we are providing
* the sense data.
*/
cmd->result = ((DRIVER_SENSE << 24) |
(DID_OK << 16) |
(COMMAND_COMPLETE << 8) |
(SAM_STAT_CHECK_CONDITION << 0));
ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
if (esp_debug & ESP_DEBUG_AUTOSENSE) {
int i;
printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
esp->host->unique_id, tgt, lun);
for (i = 0; i < 18; i++)
printk("%02x ", cmd->sense_buffer[i]);
printk("]\n");
}
}
cmd->scsi_done(cmd);
list_del(&ent->list);
esp_put_ent(esp, ent);
esp_maybe_execute_command(esp);
}
static unsigned int compose_result(unsigned int status, unsigned int message,
unsigned int driver_code)
{
return (status | (message << 8) | (driver_code << 16));
}
static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_device *dev = ent->cmd->device;
struct esp_lun_data *lp = dev->hostdata;
scsi_track_queue_full(dev, lp->num_tagged - 1);
}
static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct scsi_device *dev = cmd->device;
struct esp *esp = shost_priv(dev->host);
struct esp_cmd_priv *spriv;
struct esp_cmd_entry *ent;
ent = esp_get_ent(esp);
if (!ent)
return SCSI_MLQUEUE_HOST_BUSY;
ent->cmd = cmd;
cmd->scsi_done = done;
spriv = ESP_CMD_PRIV(cmd);
spriv->num_sg = 0;
list_add_tail(&ent->list, &esp->queued_cmds);
esp_maybe_execute_command(esp);
return 0;
}
static DEF_SCSI_QCMD(esp_queuecommand)
static int esp_check_gross_error(struct esp *esp)
{
if (esp->sreg & ESP_STAT_SPAM) {
/* Gross Error, could be one of:
* - top of fifo overwritten
* - top of command register overwritten
* - DMA programmed with wrong direction
* - improper phase change
*/
shost_printk(KERN_ERR, esp->host,
"Gross error sreg[%02x]\n", esp->sreg);
/* XXX Reset the chip. XXX */
return 1;
}
return 0;
}
static int esp_check_spur_intr(struct esp *esp)
{
switch (esp->rev) {
case ESP100:
case ESP100A:
/* The interrupt pending bit of the status register cannot
* be trusted on these revisions.
*/
esp->sreg &= ~ESP_STAT_INTR;
break;
default:
if (!(esp->sreg & ESP_STAT_INTR)) {
if (esp->ireg & ESP_INTR_SR)
return 1;
/* If the DMA is indicating interrupt pending and the
* ESP is not, the only possibility is a DMA error.
*/
if (!esp->ops->dma_error(esp)) {
shost_printk(KERN_ERR, esp->host,
"Spurious irq, sreg=%02x.\n",
esp->sreg);
return -1;
}
shost_printk(KERN_ERR, esp->host, "DMA error\n");
/* XXX Reset the chip. XXX */
return -1;
}
break;
}
return 0;
}
static void esp_schedule_reset(struct esp *esp)
{
esp_log_reset("esp_schedule_reset() from %pf\n",
__builtin_return_address(0));
esp->flags |= ESP_FLAG_RESETTING;
esp_event(esp, ESP_EVENT_RESET);
}
/* In order to avoid having to add a special half-reconnected state
* into the driver we just sit here and poll through the rest of
* the reselection process to get the tag message bytes.
*/
static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
struct esp_lun_data *lp)
{
struct esp_cmd_entry *ent;
int i;
if (!lp->num_tagged) {
shost_printk(KERN_ERR, esp->host,
"Reconnect w/num_tagged==0\n");
return NULL;
}
esp_log_reconnect("reconnect tag, ");
for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
if (esp->ops->irq_pending(esp))
break;
}
if (i == ESP_QUICKIRQ_LIMIT) {
shost_printk(KERN_ERR, esp->host,
"Reconnect IRQ1 timeout\n");
return NULL;
}
esp->sreg = esp_read8(ESP_STATUS);
esp->ireg = esp_read8(ESP_INTRPT);
esp_log_reconnect("IRQ(%d:%x:%x), ",
i, esp->ireg, esp->sreg);
if (esp->ireg & ESP_INTR_DC) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, got disconnect.\n");
return NULL;
}
if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, not MIP sreg[%02x].\n", esp->sreg);
return NULL;
}
/* DMA in the tag bytes... */
esp->command_block[0] = 0xff;
esp->command_block[1] = 0xff;
esp->ops->send_dma_cmd(esp, esp->command_block_dma,
2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
/* ACK the message. */
scsi_esp_cmd(esp, ESP_CMD_MOK);
for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
if (esp->ops->irq_pending(esp)) {
esp->sreg = esp_read8(ESP_STATUS);
esp->ireg = esp_read8(ESP_INTRPT);
if (esp->ireg & ESP_INTR_FDONE)
break;
}
udelay(1);
}
if (i == ESP_RESELECT_TAG_LIMIT) {
shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
return NULL;
}
esp->ops->dma_drain(esp);
esp->ops->dma_invalidate(esp);
esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
i, esp->ireg, esp->sreg,
esp->command_block[0],
esp->command_block[1]);
if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
esp->command_block[0] > ORDERED_QUEUE_TAG) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, bad tag type %02x.\n",
esp->command_block[0]);
return NULL;
}
ent = lp->tagged_cmds[esp->command_block[1]];
if (!ent) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, no entry for tag %02x.\n",
esp->command_block[1]);
return NULL;
}
return ent;
}
static int esp_reconnect(struct esp *esp)
{
struct esp_cmd_entry *ent;
struct esp_target_data *tp;
struct esp_lun_data *lp;
struct scsi_device *dev;
int target, lun;
BUG_ON(esp->active_cmd);
if (esp->rev == FASHME) {
/* FASHME puts the target and lun numbers directly
* into the fifo.
*/
target = esp->fifo[0];
lun = esp->fifo[1] & 0x7;
} else {
u8 bits = esp_read8(ESP_FDATA);
/* Older chips put the lun directly into the fifo, but
* the target is given as a sample of the arbitration
* lines on the bus at reselection time. So we should
* see the ID of the ESP and the one reconnecting target
* set in the bitmap.
*/
if (!(bits & esp->scsi_id_mask))
goto do_reset;
bits &= ~esp->scsi_id_mask;
if (!bits || (bits & (bits - 1)))
goto do_reset;
target = ffs(bits) - 1;
lun = (esp_read8(ESP_FDATA) & 0x7);
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->rev == ESP100) {
u8 ireg = esp_read8(ESP_INTRPT);
/* This chip has a bug during reselection that can
* cause a spurious illegal-command interrupt, which
* we simply ACK here. Another possibility is a bus
* reset so we must check for that.
*/
if (ireg & ESP_INTR_SR)
goto do_reset;
}
scsi_esp_cmd(esp, ESP_CMD_NULL);
}
esp_write_tgt_sync(esp, target);
esp_write_tgt_config3(esp, target);
scsi_esp_cmd(esp, ESP_CMD_MOK);
if (esp->rev == FASHME)
esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
ESP_BUSID);
tp = &esp->target[target];
dev = __scsi_device_lookup_by_target(tp->starget, lun);
if (!dev) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, no lp tgt[%u] lun[%u]\n",
target, lun);
goto do_reset;
}
lp = dev->hostdata;
ent = lp->non_tagged_cmd;
if (!ent) {
ent = esp_reconnect_with_tag(esp, lp);
if (!ent)
goto do_reset;
}
esp->active_cmd = ent;
esp_event(esp, ESP_EVENT_CHECK_PHASE);
esp_restore_pointers(esp, ent);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 1;
do_reset:
esp_schedule_reset(esp);
return 0;
}
static int esp_finish_select(struct esp *esp)
{
struct esp_cmd_entry *ent;
struct scsi_cmnd *cmd;
/* No longer selecting. */
esp->select_state = ESP_SELECT_NONE;
esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
ent = esp->active_cmd;
cmd = ent->cmd;
if (esp->ops->dma_error(esp)) {
/* If we see a DMA error during or as a result of selection,
* all bets are off.
*/
esp_schedule_reset(esp);
esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
return 0;
}
esp->ops->dma_invalidate(esp);
if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
struct esp_target_data *tp = &esp->target[cmd->device->id];
/* Carefully back out of the selection attempt. Release
* resources (such as DMA mapping & TAG) and reset state (such
* as message out and command delivery variables).
*/
if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
esp_unmap_dma(esp, cmd);
esp_free_lun_tag(ent, cmd->device->hostdata);
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
esp->cmd_bytes_ptr = NULL;
esp->cmd_bytes_left = 0;
} else {
esp_unmap_sense(esp, ent);
}
/* Now that the state is unwound properly, put back onto
* the issue queue. This command is no longer active.
*/
list_move(&ent->list, &esp->queued_cmds);
esp->active_cmd = NULL;
/* Return value ignored by caller, it directly invokes
* esp_reconnect().
*/
return 0;
}
if (esp->ireg == ESP_INTR_DC) {
struct scsi_device *dev = cmd->device;
/* Disconnect. Make sure we re-negotiate sync and
* wide parameters if this target starts responding
* again in the future.
*/
esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
scsi_esp_cmd(esp, ESP_CMD_ESEL);
esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
return 1;
}
if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
/* Selection successful. On pre-FAST chips we have
* to do a NOP and possibly clean out the FIFO.
*/
if (esp->rev <= ESP236) {
int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
scsi_esp_cmd(esp, ESP_CMD_NULL);
if (!fcnt &&
(!esp->prev_soff ||
((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
esp_flush_fifo(esp);
}
/* If we are doing a slow command, negotiation, etc.
* we'll do the right thing as we transition to the
* next phase.
*/
esp_event(esp, ESP_EVENT_CHECK_PHASE);
return 0;
}
shost_printk(KERN_INFO, esp->host,
"Unexpected selection completion ireg[%x]\n", esp->ireg);
esp_schedule_reset(esp);
return 0;
}
static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd)
{
int fifo_cnt, ecount, bytes_sent, flush_fifo;
fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
fifo_cnt <<= 1;
ecount = 0;
if (!(esp->sreg & ESP_STAT_TCNT)) {
ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
(((unsigned int)esp_read8(ESP_TCMED)) << 8));
if (esp->rev == FASHME)
ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
}
bytes_sent = esp->data_dma_len;
bytes_sent -= ecount;
bytes_sent -= esp->send_cmd_residual;
/*
* The am53c974 has a DMA 'pecularity'. The doc states:
* In some odd byte conditions, one residual byte will
* be left in the SCSI FIFO, and the FIFO Flags will
* never count to '0 '. When this happens, the residual
* byte should be retrieved via PIO following completion
* of the BLAST operation.
*/
if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
size_t count = 1;
size_t offset = bytes_sent;
u8 bval = esp_read8(ESP_FDATA);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
ent->sense_ptr[bytes_sent] = bval;
else {
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
u8 *ptr;
ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
&offset, &count);
if (likely(ptr)) {
*(ptr + offset) = bval;
scsi_kunmap_atomic_sg(ptr);
}
}
bytes_sent += fifo_cnt;
ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
}
if (!(ent->flags & ESP_CMD_FLAG_WRITE))
bytes_sent -= fifo_cnt;
flush_fifo = 0;
if (!esp->prev_soff) {
/* Synchronous data transfer, always flush fifo. */
flush_fifo = 1;
} else {
if (esp->rev == ESP100) {
u32 fflags, phase;
/* ESP100 has a chip bug where in the synchronous data
* phase it can mistake a final long REQ pulse from the
* target as an extra data byte. Fun.
*
* To detect this case we resample the status register
* and fifo flags. If we're still in a data phase and
* we see spurious chunks in the fifo, we return error
* to the caller which should reset and set things up
* such that we only try future transfers to this
* target in synchronous mode.
*/
esp->sreg = esp_read8(ESP_STATUS);
phase = esp->sreg & ESP_STAT_PMASK;
fflags = esp_read8(ESP_FFLAGS);
if ((phase == ESP_DOP &&
(fflags & ESP_FF_ONOTZERO)) ||
(phase == ESP_DIP &&
(fflags & ESP_FF_FBYTES)))
return -1;
}
if (!(ent->flags & ESP_CMD_FLAG_WRITE))
flush_fifo = 1;
}
if (flush_fifo)
esp_flush_fifo(esp);
return bytes_sent;
}
static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
u8 scsi_period, u8 scsi_offset,
u8 esp_stp, u8 esp_soff)
{
spi_period(tp->starget) = scsi_period;
spi_offset(tp->starget) = scsi_offset;
spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
if (esp_soff) {
esp_stp &= 0x1f;
esp_soff |= esp->radelay;
if (esp->rev >= FAS236) {
u8 bit = ESP_CONFIG3_FSCSI;
if (esp->rev >= FAS100A)
bit = ESP_CONFIG3_FAST;
if (scsi_period < 50) {
if (esp->rev == FASHME)
esp_soff &= ~esp->radelay;
tp->esp_config3 |= bit;
} else {
tp->esp_config3 &= ~bit;
}
esp->prev_cfg3 = tp->esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
}
}
tp->esp_period = esp->prev_stp = esp_stp;
tp->esp_offset = esp->prev_soff = esp_soff;
esp_write8(esp_soff, ESP_SOFF);
esp_write8(esp_stp, ESP_STP);
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
spi_display_xfer_agreement(tp->starget);
}
static void esp_msgin_reject(struct esp *esp)
{
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
struct esp_target_data *tp;
int tgt;
tgt = cmd->device->id;
tp = &esp->target[tgt];
if (tp->flags & ESP_TGT_NEGO_WIDE) {
tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
if (!esp_need_to_nego_sync(tp)) {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
scsi_esp_cmd(esp, ESP_CMD_RATN);
} else {
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
tp->flags |= ESP_TGT_NEGO_SYNC;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
return;
}
if (tp->flags & ESP_TGT_NEGO_SYNC) {
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
tp->esp_period = 0;
tp->esp_offset = 0;
esp_setsync(esp, tp, 0, 0, 0, 0);
scsi_esp_cmd(esp, ESP_CMD_RATN);
return;
}
shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
esp_schedule_reset(esp);
}
static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
{
u8 period = esp->msg_in[3];
u8 offset = esp->msg_in[4];
u8 stp;
if (!(tp->flags & ESP_TGT_NEGO_SYNC))
goto do_reject;
if (offset > 15)
goto do_reject;
if (offset) {
int one_clock;
if (period > esp->max_period) {
period = offset = 0;
goto do_sdtr;
}
if (period < esp->min_period)
goto do_reject;
one_clock = esp->ccycle / 1000;
stp = DIV_ROUND_UP(period << 2, one_clock);
if (stp && esp->rev >= FAS236) {
if (stp >= 50)
stp--;
}
} else {
stp = 0;
}
esp_setsync(esp, tp, period, offset, stp, offset);
return;
do_reject:
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
return;
do_sdtr:
tp->nego_goal_period = period;
tp->nego_goal_offset = offset;
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
{
int size = 8 << esp->msg_in[3];
u8 cfg3;
if (esp->rev != FASHME)
goto do_reject;
if (size != 8 && size != 16)
goto do_reject;
if (!(tp->flags & ESP_TGT_NEGO_WIDE))
goto do_reject;
cfg3 = tp->esp_config3;
if (size == 16) {
tp->flags |= ESP_TGT_WIDE;
cfg3 |= ESP_CONFIG3_EWIDE;
} else {
tp->flags &= ~ESP_TGT_WIDE;
cfg3 &= ~ESP_CONFIG3_EWIDE;
}
tp->esp_config3 = cfg3;
esp->prev_cfg3 = cfg3;
esp_write8(cfg3, ESP_CFG3);
tp->flags &= ~ESP_TGT_NEGO_WIDE;
spi_period(tp->starget) = 0;
spi_offset(tp->starget) = 0;
if (!esp_need_to_nego_sync(tp)) {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
scsi_esp_cmd(esp, ESP_CMD_RATN);
} else {
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
tp->flags |= ESP_TGT_NEGO_SYNC;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
return;
do_reject:
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
static void esp_msgin_extended(struct esp *esp)
{
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
struct esp_target_data *tp;
int tgt = cmd->device->id;
tp = &esp->target[tgt];
if (esp->msg_in[2] == EXTENDED_SDTR) {
esp_msgin_sdtr(esp, tp);
return;
}
if (esp->msg_in[2] == EXTENDED_WDTR) {
esp_msgin_wdtr(esp, tp);
return;
}
shost_printk(KERN_INFO, esp->host,
"Unexpected extended msg type %x\n", esp->msg_in[2]);
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
/* Analyze msgin bytes received from target so far. Return non-zero
* if there are more bytes needed to complete the message.
*/
static int esp_msgin_process(struct esp *esp)
{
u8 msg0 = esp->msg_in[0];
int len = esp->msg_in_len;
if (msg0 & 0x80) {
/* Identify */
shost_printk(KERN_INFO, esp->host,
"Unexpected msgin identify\n");
return 0;
}
switch (msg0) {
case EXTENDED_MESSAGE:
if (len == 1)
return 1;
if (len < esp->msg_in[1] + 2)
return 1;
esp_msgin_extended(esp);
return 0;
case IGNORE_WIDE_RESIDUE: {
struct esp_cmd_entry *ent;
struct esp_cmd_priv *spriv;
if (len == 1)
return 1;
if (esp->msg_in[1] != 1)
goto do_reject;
ent = esp->active_cmd;
spriv = ESP_CMD_PRIV(ent->cmd);
if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
spriv->cur_sg--;
spriv->cur_residue = 1;
} else
spriv->cur_residue++;
spriv->tot_residue++;
return 0;
}
case NOP:
return 0;
case RESTORE_POINTERS:
esp_restore_pointers(esp, esp->active_cmd);
return 0;
case SAVE_POINTERS:
esp_save_pointers(esp, esp->active_cmd);
return 0;
case COMMAND_COMPLETE:
case DISCONNECT: {
struct esp_cmd_entry *ent = esp->active_cmd;
ent->message = msg0;
esp_event(esp, ESP_EVENT_FREE_BUS);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 0;
}
case MESSAGE_REJECT:
esp_msgin_reject(esp);
return 0;
default:
do_reject:
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
return 0;
}
}
static int esp_process_event(struct esp *esp)
{
int write, i;
again:
write = 0;
esp_log_event("process event %d phase %x\n",
esp->event, esp->sreg & ESP_STAT_PMASK);
switch (esp->event) {
case ESP_EVENT_CHECK_PHASE:
switch (esp->sreg & ESP_STAT_PMASK) {
case ESP_DOP:
esp_event(esp, ESP_EVENT_DATA_OUT);
break;
case ESP_DIP:
esp_event(esp, ESP_EVENT_DATA_IN);
break;
case ESP_STATP:
esp_flush_fifo(esp);
scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
esp_event(esp, ESP_EVENT_STATUS);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 1;
case ESP_MOP:
esp_event(esp, ESP_EVENT_MSGOUT);
break;
case ESP_MIP:
esp_event(esp, ESP_EVENT_MSGIN);
break;
case ESP_CMDP:
esp_event(esp, ESP_EVENT_CMD_START);
break;
default:
shost_printk(KERN_INFO, esp->host,
"Unexpected phase, sreg=%02x\n",
esp->sreg);
esp_schedule_reset(esp);
return 0;
}
goto again;
case ESP_EVENT_DATA_IN:
write = 1;
/* fallthru */
case ESP_EVENT_DATA_OUT: {
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
unsigned int dma_len = esp_cur_dma_len(ent, cmd);
if (esp->rev == ESP100)
scsi_esp_cmd(esp, ESP_CMD_NULL);
if (write)
ent->flags |= ESP_CMD_FLAG_WRITE;
else
ent->flags &= ~ESP_CMD_FLAG_WRITE;
if (esp->ops->dma_length_limit)
dma_len = esp->ops->dma_length_limit(esp, dma_addr,
dma_len);
else
dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
esp->data_dma_len = dma_len;
if (!dma_len) {
shost_printk(KERN_ERR, esp->host,
"DMA length is zero!\n");
shost_printk(KERN_ERR, esp->host,
"cur adr[%08llx] len[%08x]\n",
(unsigned long long)esp_cur_dma_addr(ent, cmd),
esp_cur_dma_len(ent, cmd));
esp_schedule_reset(esp);
return 0;
}
esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
(unsigned long long)dma_addr, dma_len, write);
esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
write, ESP_CMD_DMA | ESP_CMD_TI);
esp_event(esp, ESP_EVENT_DATA_DONE);
break;
}
case ESP_EVENT_DATA_DONE: {
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
int bytes_sent;
if (esp->ops->dma_error(esp)) {
shost_printk(KERN_INFO, esp->host,
"data done, DMA error, resetting\n");
esp_schedule_reset(esp);
return 0;
}
if (ent->flags & ESP_CMD_FLAG_WRITE) {
/* XXX parity errors, etc. XXX */
esp->ops->dma_drain(esp);
}
esp->ops->dma_invalidate(esp);
if (esp->ireg != ESP_INTR_BSERV) {
/* We should always see exactly a bus-service
* interrupt at the end of a successful transfer.
*/
shost_printk(KERN_INFO, esp->host,
"data done, not BSERV, resetting\n");
esp_schedule_reset(esp);
return 0;
}
bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
esp_log_datadone("data done flgs[%x] sent[%d]\n",
ent->flags, bytes_sent);
if (bytes_sent < 0) {
/* XXX force sync mode for this target XXX */
esp_schedule_reset(esp);
return 0;
}
esp_advance_dma(esp, ent, cmd, bytes_sent);
esp_event(esp, ESP_EVENT_CHECK_PHASE);
goto again;
}
case ESP_EVENT_STATUS: {
struct esp_cmd_entry *ent = esp->active_cmd;
if (esp->ireg & ESP_INTR_FDONE) {
ent->status = esp_read8(ESP_FDATA);
ent->message = esp_read8(ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_MOK);
} else if (esp->ireg == ESP_INTR_BSERV) {
ent->status = esp_read8(ESP_FDATA);
ent->message = 0xff;
esp_event(esp, ESP_EVENT_MSGIN);
return 0;
}
if (ent->message != COMMAND_COMPLETE) {
shost_printk(KERN_INFO, esp->host,
"Unexpected message %x in status\n",
ent->message);
esp_schedule_reset(esp);
return 0;
}
esp_event(esp, ESP_EVENT_FREE_BUS);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
break;
}
case ESP_EVENT_FREE_BUS: {
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
if (ent->message == COMMAND_COMPLETE ||
ent->message == DISCONNECT)
scsi_esp_cmd(esp, ESP_CMD_ESEL);
if (ent->message == COMMAND_COMPLETE) {
esp_log_cmddone("Command done status[%x] message[%x]\n",
ent->status, ent->message);
if (ent->status == SAM_STAT_TASK_SET_FULL)
esp_event_queue_full(esp, ent);
if (ent->status == SAM_STAT_CHECK_CONDITION &&
!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
esp_autosense(esp, ent);
} else {
esp_cmd_is_done(esp, ent, cmd,
compose_result(ent->status,
ent->message,
DID_OK));
}
} else if (ent->message == DISCONNECT) {
esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
cmd->device->id,
ent->tag[0], ent->tag[1]);
esp->active_cmd = NULL;
esp_maybe_execute_command(esp);
} else {
shost_printk(KERN_INFO, esp->host,
"Unexpected message %x in freebus\n",
ent->message);
esp_schedule_reset(esp);
return 0;
}
if (esp->active_cmd)
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
break;
}
case ESP_EVENT_MSGOUT: {
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp_debug & ESP_DEBUG_MSGOUT) {
int i;
printk("ESP: Sending message [ ");
for (i = 0; i < esp->msg_out_len; i++)
printk("%02x ", esp->msg_out[i]);
printk("]\n");
}
if (esp->rev == FASHME) {
int i;
/* Always use the fifo. */
for (i = 0; i < esp->msg_out_len; i++) {
esp_write8(esp->msg_out[i], ESP_FDATA);
esp_write8(0, ESP_FDATA);
}
scsi_esp_cmd(esp, ESP_CMD_TI);
} else {
if (esp->msg_out_len == 1) {
esp_write8(esp->msg_out[0], ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_TI);
} else if (esp->flags & ESP_FLAG_USE_FIFO) {
for (i = 0; i < esp->msg_out_len; i++)
esp_write8(esp->msg_out[i], ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_TI);
} else {
/* Use DMA. */
memcpy(esp->command_block,
esp->msg_out,
esp->msg_out_len);
esp->ops->send_dma_cmd(esp,
esp->command_block_dma,
esp->msg_out_len,
esp->msg_out_len,
0,
ESP_CMD_DMA|ESP_CMD_TI);
}
}
esp_event(esp, ESP_EVENT_MSGOUT_DONE);
break;
}
case ESP_EVENT_MSGOUT_DONE:
if (esp->rev == FASHME) {
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
} else {
if (esp->msg_out_len > 1)
esp->ops->dma_invalidate(esp);
/* XXX if the chip went into disconnected mode,
* we can't run the phase state machine anyway.
*/
if (!(esp->ireg & ESP_INTR_DC))
scsi_esp_cmd(esp, ESP_CMD_NULL);
}
esp->msg_out_len = 0;
esp_event(esp, ESP_EVENT_CHECK_PHASE);
goto again;
case ESP_EVENT_MSGIN:
if (esp->ireg & ESP_INTR_BSERV) {
if (esp->rev == FASHME) {
if (!(esp_read8(ESP_STATUS2) &
ESP_STAT2_FEMPTY))
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
} else {
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->rev == ESP100)
scsi_esp_cmd(esp, ESP_CMD_NULL);
}
scsi_esp_cmd(esp, ESP_CMD_TI);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 1;
}
if (esp->ireg & ESP_INTR_FDONE) {
u8 val;
if (esp->rev == FASHME)
val = esp->fifo[0];
else
val = esp_read8(ESP_FDATA);
esp->msg_in[esp->msg_in_len++] = val;
esp_log_msgin("Got msgin byte %x\n", val);
if (!esp_msgin_process(esp))
esp->msg_in_len = 0;
if (esp->rev == FASHME)
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
scsi_esp_cmd(esp, ESP_CMD_MOK);
/* Check whether a bus reset is to be done next */
if (esp->event == ESP_EVENT_RESET)
return 0;
if (esp->event != ESP_EVENT_FREE_BUS)
esp_event(esp, ESP_EVENT_CHECK_PHASE);
} else {
shost_printk(KERN_INFO, esp->host,
"MSGIN neither BSERV not FDON, resetting");
esp_schedule_reset(esp);
return 0;
}
break;
case ESP_EVENT_CMD_START:
memcpy(esp->command_block, esp->cmd_bytes_ptr,
esp->cmd_bytes_left);
esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
esp_event(esp, ESP_EVENT_CMD_DONE);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
break;
case ESP_EVENT_CMD_DONE:
esp->ops->dma_invalidate(esp);
if (esp->ireg & ESP_INTR_BSERV) {
esp_event(esp, ESP_EVENT_CHECK_PHASE);
goto again;
}
esp_schedule_reset(esp);
return 0;
case ESP_EVENT_RESET:
scsi_esp_cmd(esp, ESP_CMD_RS);
break;
default:
shost_printk(KERN_INFO, esp->host,
"Unexpected event %x, resetting\n", esp->event);
esp_schedule_reset(esp);
return 0;
}
return 1;
}
static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
esp_unmap_dma(esp, cmd);
esp_free_lun_tag(ent, cmd->device->hostdata);
cmd->result = DID_RESET << 16;
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
esp_unmap_sense(esp, ent);
cmd->scsi_done(cmd);
list_del(&ent->list);
esp_put_ent(esp, ent);
}
static void esp_clear_hold(struct scsi_device *dev, void *data)
{
struct esp_lun_data *lp = dev->hostdata;
BUG_ON(lp->num_tagged);
lp->hold = 0;
}
static void esp_reset_cleanup(struct esp *esp)
{
struct esp_cmd_entry *ent, *tmp;
int i;
list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
struct scsi_cmnd *cmd = ent->cmd;
list_del(&ent->list);
cmd->result = DID_RESET << 16;
cmd->scsi_done(cmd);
esp_put_ent(esp, ent);
}
list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
if (ent == esp->active_cmd)
esp->active_cmd = NULL;
esp_reset_cleanup_one(esp, ent);
}
BUG_ON(esp->active_cmd != NULL);
/* Force renegotiation of sync/wide transfers. */
for (i = 0; i < ESP_MAX_TARGET; i++) {
struct esp_target_data *tp = &esp->target[i];
tp->esp_period = 0;
tp->esp_offset = 0;
tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
ESP_CONFIG3_FSCSI |
ESP_CONFIG3_FAST);
tp->flags &= ~ESP_TGT_WIDE;
tp->flags |= ESP_TGT_CHECK_NEGO;
if (tp->starget)
__starget_for_each_device(tp->starget, NULL,
esp_clear_hold);
}
esp->flags &= ~ESP_FLAG_RESETTING;
}
/* Runs under host->lock */
static void __esp_interrupt(struct esp *esp)
{
int finish_reset, intr_done;
u8 phase;
/*
* Once INTRPT is read STATUS and SSTEP are cleared.
*/
esp->sreg = esp_read8(ESP_STATUS);
esp->seqreg = esp_read8(ESP_SSTEP);
esp->ireg = esp_read8(ESP_INTRPT);
if (esp->flags & ESP_FLAG_RESETTING) {
finish_reset = 1;
} else {
if (esp_check_gross_error(esp))
return;
finish_reset = esp_check_spur_intr(esp);
if (finish_reset < 0)
return;
}
if (esp->ireg & ESP_INTR_SR)
finish_reset = 1;
if (finish_reset) {
esp_reset_cleanup(esp);
if (esp->eh_reset) {
complete(esp->eh_reset);
esp->eh_reset = NULL;
}
return;
}
phase = (esp->sreg & ESP_STAT_PMASK);
if (esp->rev == FASHME) {
if (((phase != ESP_DIP && phase != ESP_DOP) &&
esp->select_state == ESP_SELECT_NONE &&
esp->event != ESP_EVENT_STATUS &&
esp->event != ESP_EVENT_DATA_DONE) ||
(esp->ireg & ESP_INTR_RSEL)) {
esp->sreg2 = esp_read8(ESP_STATUS2);
if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
(esp->sreg2 & ESP_STAT2_F1BYTE))
hme_read_fifo(esp);
}
}
esp_log_intr("intr sreg[%02x] seqreg[%02x] "
"sreg2[%02x] ireg[%02x]\n",
esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
intr_done = 0;
if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
shost_printk(KERN_INFO, esp->host,
"unexpected IREG %02x\n", esp->ireg);
if (esp->ireg & ESP_INTR_IC)
esp_dump_cmd_log(esp);
esp_schedule_reset(esp);
} else {
if (esp->ireg & ESP_INTR_RSEL) {
if (esp->active_cmd)
(void) esp_finish_select(esp);
intr_done = esp_reconnect(esp);
} else {
/* Some combination of FDONE, BSERV, DC. */
if (esp->select_state != ESP_SELECT_NONE)
intr_done = esp_finish_select(esp);
}
}
while (!intr_done)
intr_done = esp_process_event(esp);
}
irqreturn_t scsi_esp_intr(int irq, void *dev_id)
{
struct esp *esp = dev_id;
unsigned long flags;
irqreturn_t ret;
spin_lock_irqsave(esp->host->host_lock, flags);
ret = IRQ_NONE;
if (esp->ops->irq_pending(esp)) {
ret = IRQ_HANDLED;
for (;;) {
int i;
__esp_interrupt(esp);
if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
break;
esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
if (esp->ops->irq_pending(esp))
break;
}
if (i == ESP_QUICKIRQ_LIMIT)
break;
}
}
spin_unlock_irqrestore(esp->host->host_lock, flags);
return ret;
}
EXPORT_SYMBOL(scsi_esp_intr);
static void esp_get_revision(struct esp *esp)
{
u8 val;
esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
if (esp->config2 == 0) {
esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
esp_write8(esp->config2, ESP_CFG2);
val = esp_read8(ESP_CFG2);
val &= ~ESP_CONFIG2_MAGIC;
esp->config2 = 0;
if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
/*
* If what we write to cfg2 does not come back,
* cfg2 is not implemented.
* Therefore this must be a plain esp100.
*/
esp->rev = ESP100;
return;
}
}
esp_set_all_config3(esp, 5);
esp->prev_cfg3 = 5;
esp_write8(esp->config2, ESP_CFG2);
esp_write8(0, ESP_CFG3);
esp_write8(esp->prev_cfg3, ESP_CFG3);
val = esp_read8(ESP_CFG3);
if (val != 5) {
/* The cfg2 register is implemented, however
* cfg3 is not, must be esp100a.
*/
esp->rev = ESP100A;
} else {
esp_set_all_config3(esp, 0);
esp->prev_cfg3 = 0;
esp_write8(esp->prev_cfg3, ESP_CFG3);
/* All of cfg{1,2,3} implemented, must be one of
* the fas variants, figure out which one.
*/
if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
esp->rev = FAST;
esp->sync_defp = SYNC_DEFP_FAST;
} else {
esp->rev = ESP236;
}
}
}
static void esp_init_swstate(struct esp *esp)
{
int i;
INIT_LIST_HEAD(&esp->queued_cmds);
INIT_LIST_HEAD(&esp->active_cmds);
INIT_LIST_HEAD(&esp->esp_cmd_pool);
/* Start with a clear state, domain validation (via ->slave_configure,
* spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
* commands.
*/
for (i = 0 ; i < ESP_MAX_TARGET; i++) {
esp->target[i].flags = 0;
esp->target[i].nego_goal_period = 0;
esp->target[i].nego_goal_offset = 0;
esp->target[i].nego_goal_width = 0;
esp->target[i].nego_goal_tags = 0;
}
}
/* This places the ESP into a known state at boot time. */
static void esp_bootup_reset(struct esp *esp)
{
u8 val;
/* Reset the DMA */
esp->ops->reset_dma(esp);
/* Reset the ESP */
esp_reset_esp(esp);
/* Reset the SCSI bus, but tell ESP not to generate an irq */
val = esp_read8(ESP_CFG1);
val |= ESP_CONFIG1_SRRDISAB;
esp_write8(val, ESP_CFG1);
scsi_esp_cmd(esp, ESP_CMD_RS);
udelay(400);
esp_write8(esp->config1, ESP_CFG1);
/* Eat any bitrot in the chip and we are done... */
esp_read8(ESP_INTRPT);
}
static void esp_set_clock_params(struct esp *esp)
{
int fhz;
u8 ccf;
/* This is getting messy but it has to be done correctly or else
* you get weird behavior all over the place. We are trying to
* basically figure out three pieces of information.
*
* a) Clock Conversion Factor
*
* This is a representation of the input crystal clock frequency
* going into the ESP on this machine. Any operation whose timing
* is longer than 400ns depends on this value being correct. For
* example, you'll get blips for arbitration/selection during high
* load or with multiple targets if this is not set correctly.
*
* b) Selection Time-Out
*
* The ESP isn't very bright and will arbitrate for the bus and try
* to select a target forever if you let it. This value tells the
* ESP when it has taken too long to negotiate and that it should
* interrupt the CPU so we can see what happened. The value is
* computed as follows (from NCR/Symbios chip docs).
*
* (Time Out Period) * (Input Clock)
* STO = ----------------------------------
* (8192) * (Clock Conversion Factor)
*
* We use a time out period of 250ms (ESP_BUS_TIMEOUT).
*
* c) Imperical constants for synchronous offset and transfer period
* register values
*
* This entails the smallest and largest sync period we could ever
* handle on this ESP.
*/
fhz = esp->cfreq;
ccf = ((fhz / 1000000) + 4) / 5;
if (ccf == 1)
ccf = 2;
/* If we can't find anything reasonable, just assume 20MHZ.
* This is the clock frequency of the older sun4c's where I've
* been unable to find the clock-frequency PROM property. All
* other machines provide useful values it seems.
*/
if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
fhz = 20000000;
ccf = 4;
}
esp->cfact = (ccf == 8 ? 0 : ccf);
esp->cfreq = fhz;
esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
esp->ctick = ESP_TICK(ccf, esp->ccycle);
esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
esp->sync_defp = SYNC_DEFP_SLOW;
}
static const char *esp_chip_names[] = {
"ESP100",
"ESP100A",
"ESP236",
"FAS236",
"FAS100A",
"FAST",
"FASHME",
"AM53C974",
};
static struct scsi_transport_template *esp_transport_template;
int scsi_esp_register(struct esp *esp)
{
static int instance;
int err;
if (!esp->num_tags)
esp->num_tags = ESP_DEFAULT_TAGS;
esp->host->transportt = esp_transport_template;
esp->host->max_lun = ESP_MAX_LUN;
esp->host->cmd_per_lun = 2;
esp->host->unique_id = instance;
esp_set_clock_params(esp);
esp_get_revision(esp);
esp_init_swstate(esp);
esp_bootup_reset(esp);
dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
esp->host->unique_id, esp->regs, esp->dma_regs,
esp->host->irq);
dev_printk(KERN_INFO, esp->dev,
"esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
esp->host->unique_id, esp_chip_names[esp->rev],
esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
/* Let the SCSI bus reset settle. */
ssleep(esp_bus_reset_settle);
err = scsi_add_host(esp->host, esp->dev);
if (err)
return err;
instance++;
scsi_scan_host(esp->host);
return 0;
}
EXPORT_SYMBOL(scsi_esp_register);
void scsi_esp_unregister(struct esp *esp)
{
scsi_remove_host(esp->host);
}
EXPORT_SYMBOL(scsi_esp_unregister);
static int esp_target_alloc(struct scsi_target *starget)
{
struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
struct esp_target_data *tp = &esp->target[starget->id];
tp->starget = starget;
return 0;
}
static void esp_target_destroy(struct scsi_target *starget)
{
struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
struct esp_target_data *tp = &esp->target[starget->id];
tp->starget = NULL;
}
static int esp_slave_alloc(struct scsi_device *dev)
{
struct esp *esp = shost_priv(dev->host);
struct esp_target_data *tp = &esp->target[dev->id];
struct esp_lun_data *lp;
lp = kzalloc(sizeof(*lp), GFP_KERNEL);
if (!lp)
return -ENOMEM;
dev->hostdata = lp;
spi_min_period(tp->starget) = esp->min_period;
spi_max_offset(tp->starget) = 15;
if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
spi_max_width(tp->starget) = 1;
else
spi_max_width(tp->starget) = 0;
return 0;
}
static int esp_slave_configure(struct scsi_device *dev)
{
struct esp *esp = shost_priv(dev->host);
struct esp_target_data *tp = &esp->target[dev->id];
if (dev->tagged_supported)
scsi_change_queue_depth(dev, esp->num_tags);
tp->flags |= ESP_TGT_DISCONNECT;
if (!spi_initial_dv(dev->sdev_target))
spi_dv_device(dev);
return 0;
}
static void esp_slave_destroy(struct scsi_device *dev)
{
struct esp_lun_data *lp = dev->hostdata;
kfree(lp);
dev->hostdata = NULL;
}
static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
{
struct esp *esp = shost_priv(cmd->device->host);
struct esp_cmd_entry *ent, *tmp;
struct completion eh_done;
unsigned long flags;
/* XXX This helps a lot with debugging but might be a bit
* XXX much for the final driver.
*/
spin_lock_irqsave(esp->host->host_lock, flags);
shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
cmd, cmd->cmnd[0]);
ent = esp->active_cmd;
if (ent)
shost_printk(KERN_ERR, esp->host,
"Current command [%p:%02x]\n",
ent->cmd, ent->cmd->cmnd[0]);
list_for_each_entry(ent, &esp->queued_cmds, list) {
shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
ent->cmd, ent->cmd->cmnd[0]);
}
list_for_each_entry(ent, &esp->active_cmds, list) {
shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
ent->cmd, ent->cmd->cmnd[0]);
}
esp_dump_cmd_log(esp);
spin_unlock_irqrestore(esp->host->host_lock, flags);
spin_lock_irqsave(esp->host->host_lock, flags);
ent = NULL;
list_for_each_entry(tmp, &esp->queued_cmds, list) {
if (tmp->cmd == cmd) {
ent = tmp;
break;
}
}
if (ent) {
/* Easiest case, we didn't even issue the command
* yet so it is trivial to abort.
*/
list_del(&ent->list);
cmd->result = DID_ABORT << 16;
cmd->scsi_done(cmd);
esp_put_ent(esp, ent);
goto out_success;
}
init_completion(&eh_done);
ent = esp->active_cmd;
if (ent && ent->cmd == cmd) {
/* Command is the currently active command on
* the bus. If we already have an output message
* pending, no dice.
*/
if (esp->msg_out_len)
goto out_failure;
/* Send out an abort, encouraging the target to
* go to MSGOUT phase by asserting ATN.
*/
esp->msg_out[0] = ABORT_TASK_SET;
esp->msg_out_len = 1;
ent->eh_done = &eh_done;
scsi_esp_cmd(esp, ESP_CMD_SATN);
} else {
/* The command is disconnected. This is not easy to
* abort. For now we fail and let the scsi error
* handling layer go try a scsi bus reset or host
* reset.
*
* What we could do is put together a scsi command
* solely for the purpose of sending an abort message
* to the target. Coming up with all the code to
* cook up scsi commands, special case them everywhere,
* etc. is for questionable gain and it would be better
* if the generic scsi error handling layer could do at
* least some of that for us.
*
* Anyways this is an area for potential future improvement
* in this driver.
*/
goto out_failure;
}
spin_unlock_irqrestore(esp->host->host_lock, flags);
if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
spin_lock_irqsave(esp->host->host_lock, flags);
ent->eh_done = NULL;
spin_unlock_irqrestore(esp->host->host_lock, flags);
return FAILED;
}
return SUCCESS;
out_success:
spin_unlock_irqrestore(esp->host->host_lock, flags);
return SUCCESS;
out_failure:
/* XXX This might be a good location to set ESP_TGT_BROKEN
* XXX since we know which target/lun in particular is
* XXX causing trouble.
*/
spin_unlock_irqrestore(esp->host->host_lock, flags);
return FAILED;
}
static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
{
struct esp *esp = shost_priv(cmd->device->host);
struct completion eh_reset;
unsigned long flags;
init_completion(&eh_reset);
spin_lock_irqsave(esp->host->host_lock, flags);
esp->eh_reset = &eh_reset;
/* XXX This is too simple... We should add lots of
* XXX checks here so that if we find that the chip is
* XXX very wedged we return failure immediately so
* XXX that we can perform a full chip reset.
*/
esp->flags |= ESP_FLAG_RESETTING;
scsi_esp_cmd(esp, ESP_CMD_RS);
spin_unlock_irqrestore(esp->host->host_lock, flags);
ssleep(esp_bus_reset_settle);
if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
spin_lock_irqsave(esp->host->host_lock, flags);
esp->eh_reset = NULL;
spin_unlock_irqrestore(esp->host->host_lock, flags);
return FAILED;
}
return SUCCESS;
}
/* All bets are off, reset the entire device. */
static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
struct esp *esp = shost_priv(cmd->device->host);
unsigned long flags;
spin_lock_irqsave(esp->host->host_lock, flags);
esp_bootup_reset(esp);
esp_reset_cleanup(esp);
spin_unlock_irqrestore(esp->host->host_lock, flags);
ssleep(esp_bus_reset_settle);
return SUCCESS;
}
static const char *esp_info(struct Scsi_Host *host)
{
return "esp";
}
struct scsi_host_template scsi_esp_template = {
.module = THIS_MODULE,
.name = "esp",
.info = esp_info,
.queuecommand = esp_queuecommand,
.target_alloc = esp_target_alloc,
.target_destroy = esp_target_destroy,
.slave_alloc = esp_slave_alloc,
.slave_configure = esp_slave_configure,
.slave_destroy = esp_slave_destroy,
.eh_abort_handler = esp_eh_abort_handler,
.eh_bus_reset_handler = esp_eh_bus_reset_handler,
.eh_host_reset_handler = esp_eh_host_reset_handler,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.max_sectors = 0xffff,
.skip_settle_delay = 1,
};
EXPORT_SYMBOL(scsi_esp_template);
static void esp_get_signalling(struct Scsi_Host *host)
{
struct esp *esp = shost_priv(host);
enum spi_signal_type type;
if (esp->flags & ESP_FLAG_DIFFERENTIAL)
type = SPI_SIGNAL_HVD;
else
type = SPI_SIGNAL_SE;
spi_signalling(host) = type;
}
static void esp_set_offset(struct scsi_target *target, int offset)
{
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
struct esp *esp = shost_priv(host);
struct esp_target_data *tp = &esp->target[target->id];
if (esp->flags & ESP_FLAG_DISABLE_SYNC)
tp->nego_goal_offset = 0;
else
tp->nego_goal_offset = offset;
tp->flags |= ESP_TGT_CHECK_NEGO;
}
static void esp_set_period(struct scsi_target *target, int period)
{
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
struct esp *esp = shost_priv(host);
struct esp_target_data *tp = &esp->target[target->id];
tp->nego_goal_period = period;
tp->flags |= ESP_TGT_CHECK_NEGO;
}
static void esp_set_width(struct scsi_target *target, int width)
{
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
struct esp *esp = shost_priv(host);
struct esp_target_data *tp = &esp->target[target->id];
tp->nego_goal_width = (width ? 1 : 0);
tp->flags |= ESP_TGT_CHECK_NEGO;
}
static struct spi_function_template esp_transport_ops = {
.set_offset = esp_set_offset,
.show_offset = 1,
.set_period = esp_set_period,
.show_period = 1,
.set_width = esp_set_width,
.show_width = 1,
.get_signalling = esp_get_signalling,
};
static int __init esp_init(void)
{
BUILD_BUG_ON(sizeof(struct scsi_pointer) <
sizeof(struct esp_cmd_priv));
esp_transport_template = spi_attach_transport(&esp_transport_ops);
if (!esp_transport_template)
return -ENODEV;
return 0;
}
static void __exit esp_exit(void)
{
spi_release_transport(esp_transport_template);
}
MODULE_DESCRIPTION("ESP SCSI driver core");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_param(esp_bus_reset_settle, int, 0);
MODULE_PARM_DESC(esp_bus_reset_settle,
"ESP scsi bus reset delay in seconds");
module_param(esp_debug, int, 0);
MODULE_PARM_DESC(esp_debug,
"ESP bitmapped debugging message enable value:\n"
" 0x00000001 Log interrupt events\n"
" 0x00000002 Log scsi commands\n"
" 0x00000004 Log resets\n"
" 0x00000008 Log message in events\n"
" 0x00000010 Log message out events\n"
" 0x00000020 Log command completion\n"
" 0x00000040 Log disconnects\n"
" 0x00000080 Log data start\n"
" 0x00000100 Log data done\n"
" 0x00000200 Log reconnects\n"
" 0x00000400 Log auto-sense data\n"
);
module_init(esp_init);
module_exit(esp_exit);