// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale FlexTimer Module (FTM) alarm device driver.
*
* Copyright 2014 Freescale Semiconductor, Inc.
* Copyright 2019-2020 NXP
*
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/module.h>
#include <linux/fsl/ftm.h>
#include <linux/rtc.h>
#include <linux/time.h>
#include <linux/acpi.h>
#include <linux/pm_wakeirq.h>
#define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
/*
* Select Fixed frequency clock (32KHz) as clock source
* of FlexTimer Module
*/
#define FTM_SC_CLKS_FIXED_FREQ 0x02
#define FIXED_FREQ_CLK 32000
/* Select 128 (2^7) as divider factor */
#define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK)
/* Maximum counter value in FlexTimer's CNT registers */
#define MAX_COUNT_VAL 0xffff
struct ftm_rtc {
struct rtc_device *rtc_dev;
void __iomem *base;
bool big_endian;
u32 alarm_freq;
};
static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
{
if (dev->big_endian)
return ioread32be(dev->base + reg);
else
return ioread32(dev->base + reg);
}
static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
{
if (dev->big_endian)
iowrite32be(val, dev->base + reg);
else
iowrite32(val, dev->base + reg);
}
static inline void ftm_counter_enable(struct ftm_rtc *rtc)
{
u32 val;
/* select and enable counter clock source */
val = rtc_readl(rtc, FTM_SC);
val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
rtc_writel(rtc, FTM_SC, val);
}
static inline void ftm_counter_disable(struct ftm_rtc *rtc)
{
u32 val;
/* disable counter clock source */
val = rtc_readl(rtc, FTM_SC);
val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
rtc_writel(rtc, FTM_SC, val);
}
static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
{
unsigned int timeout = 100;
/*
*Fix errata A-007728 for flextimer
* If the FTM counter reaches the FTM_MOD value between
* the reading of the TOF bit and the writing of 0 to
* the TOF bit, the process of clearing the TOF bit
* does not work as expected when FTMx_CONF[NUMTOF] != 0
* and the current TOF count is less than FTMx_CONF[NUMTOF].
* If the above condition is met, the TOF bit remains set.
* If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
* TOF interrupt also remains asserted.
*
* Above is the errata discription
*
* In one word: software clearing TOF bit not works when
* FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
* reaches the FTM_MOD value.
*
* The workaround is clearing TOF bit until it works
* (FTM counter doesn't always reache the FTM_MOD anyway),
* which may cost some cycles.
*/
while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
}
static inline void ftm_irq_enable(struct ftm_rtc *rtc)
{
u32 val;
val = rtc_readl(rtc, FTM_SC);
val |= FTM_SC_TOIE;
rtc_writel(rtc, FTM_SC, val);
}
static inline void ftm_irq_disable(struct ftm_rtc *rtc)
{
u32 val;
val = rtc_readl(rtc, FTM_SC);
val &= ~FTM_SC_TOIE;
rtc_writel(rtc, FTM_SC, val);
}
static inline void ftm_reset_counter(struct ftm_rtc *rtc)
{
/*
* The CNT register contains the FTM counter value.
* Reset clears the CNT register. Writing any value to COUNT
* updates the counter with its initial value, CNTIN.
*/
rtc_writel(rtc, FTM_CNT, 0x00);
}
static void ftm_clean_alarm(struct ftm_rtc *rtc)
{
ftm_counter_disable(rtc);
rtc_writel(rtc, FTM_CNTIN, 0x00);
rtc_writel(rtc, FTM_MOD, ~0U);
ftm_reset_counter(rtc);
}
static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
{
struct ftm_rtc *rtc = dev;
rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
ftm_irq_acknowledge(rtc);
ftm_irq_disable(rtc);
ftm_clean_alarm(rtc);
return IRQ_HANDLED;
}
static int ftm_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct ftm_rtc *rtc = dev_get_drvdata(dev);
if (enabled)
ftm_irq_enable(rtc);
else
ftm_irq_disable(rtc);
return 0;
}
/*
* Note:
* The function is not really getting time from the RTC
* since FlexTimer is not a RTC device, but we need to
* get time to setup alarm, so we are using system time
* for now.
*/
static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
rtc_time64_to_tm(ktime_get_real_seconds(), tm);
return 0;
}
static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
return 0;
}
/*
* 1. Select fixed frequency clock (32KHz) as clock source;
* 2. Select 128 (2^7) as divider factor;
* So clock is 250 Hz (32KHz/128).
*
* 3. FlexTimer's CNT register is a 32bit register,
* but the register's 16 bit as counter value,it's other 16 bit
* is reserved.So minimum counter value is 0x0,maximum counter
* value is 0xffff.
* So max alarm value is 262 (65536 / 250) seconds
*/
static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
time64_t alm_time;
unsigned long long cycle;
struct ftm_rtc *rtc = dev_get_drvdata(dev);
alm_time = rtc_tm_to_time64(&alm->time);
ftm_clean_alarm(rtc);
cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
if (cycle > MAX_COUNT_VAL) {
pr_err("Out of alarm range {0~262} seconds.\n");
return -ERANGE;
}
ftm_irq_disable(rtc);
/*
* The counter increments until the value of MOD is reached,
* at which point the counter is reloaded with the value of CNTIN.
* The TOF (the overflow flag) bit is set when the FTM counter
* changes from MOD to CNTIN. So we should using the cycle - 1.
*/
rtc_writel(rtc, FTM_MOD, cycle - 1);
ftm_counter_enable(rtc);
ftm_irq_enable(rtc);
return 0;
}
static const struct rtc_class_ops ftm_rtc_ops = {
.read_time = ftm_rtc_read_time,
.read_alarm = ftm_rtc_read_alarm,
.set_alarm = ftm_rtc_set_alarm,
.alarm_irq_enable = ftm_rtc_alarm_irq_enable,
};
static int ftm_rtc_probe(struct platform_device *pdev)
{
int irq;
int ret;
struct ftm_rtc *rtc;
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
if (unlikely(!rtc)) {
dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, rtc);
rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc->rtc_dev))
return PTR_ERR(rtc->rtc_dev);
rtc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rtc->base)) {
dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
return PTR_ERR(rtc->base);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
0, dev_name(&pdev->dev), rtc);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request irq\n");
return ret;
}
rtc->big_endian =
device_property_read_bool(&pdev->dev, "big-endian");
rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
rtc->rtc_dev->ops = &ftm_rtc_ops;
device_init_wakeup(&pdev->dev, true);
ret = dev_pm_set_wake_irq(&pdev->dev, irq);
if (ret)
dev_err(&pdev->dev, "failed to enable irq wake\n");
ret = devm_rtc_register_device(rtc->rtc_dev);
if (ret) {
dev_err(&pdev->dev, "can't register rtc device\n");
return ret;
}
return 0;
}
static const struct of_device_id ftm_rtc_match[] = {
{ .compatible = "fsl,ls1012a-ftm-alarm", },
{ .compatible = "fsl,ls1021a-ftm-alarm", },
{ .compatible = "fsl,ls1028a-ftm-alarm", },
{ .compatible = "fsl,ls1043a-ftm-alarm", },
{ .compatible = "fsl,ls1046a-ftm-alarm", },
{ .compatible = "fsl,ls1088a-ftm-alarm", },
{ .compatible = "fsl,ls208xa-ftm-alarm", },
{ .compatible = "fsl,lx2160a-ftm-alarm", },
{ },
};
static const struct acpi_device_id ftm_imx_acpi_ids[] = {
{"NXP0014",},
{ }
};
MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
static struct platform_driver ftm_rtc_driver = {
.probe = ftm_rtc_probe,
.driver = {
.name = "ftm-alarm",
.of_match_table = ftm_rtc_match,
.acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
},
};
static int __init ftm_alarm_init(void)
{
return platform_driver_register(&ftm_rtc_driver);
}
device_initcall(ftm_alarm_init);
MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
MODULE_LICENSE("GPL");