// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ktime.h>
#include <linux/regulator/driver.h>
#include <linux/regmap.h>
#include <linux/list.h>
#include <linux/mfd/syscon.h>
#include <linux/io.h>
/* Pin control enable input pins. */
#define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE 0x00
#define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0 0x01
#define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1 0x02
#define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2 0x04
#define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3 0x08
#define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT 0x10
/* Pin control high power mode input pins. */
#define SPMI_REGULATOR_PIN_CTRL_HPM_NONE 0x00
#define SPMI_REGULATOR_PIN_CTRL_HPM_EN0 0x01
#define SPMI_REGULATOR_PIN_CTRL_HPM_EN1 0x02
#define SPMI_REGULATOR_PIN_CTRL_HPM_EN2 0x04
#define SPMI_REGULATOR_PIN_CTRL_HPM_EN3 0x08
#define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B 0x10
#define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT 0x20
/*
* Used with enable parameters to specify that hardware default register values
* should be left unaltered.
*/
#define SPMI_REGULATOR_USE_HW_DEFAULT 2
/* Soft start strength of a voltage switch type regulator */
enum spmi_vs_soft_start_str {
SPMI_VS_SOFT_START_STR_0P05_UA = 0,
SPMI_VS_SOFT_START_STR_0P25_UA,
SPMI_VS_SOFT_START_STR_0P55_UA,
SPMI_VS_SOFT_START_STR_0P75_UA,
SPMI_VS_SOFT_START_STR_HW_DEFAULT,
};
/**
* struct spmi_regulator_init_data - spmi-regulator initialization data
* @pin_ctrl_enable: Bit mask specifying which hardware pins should be
* used to enable the regulator, if any
* Value should be an ORing of
* SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants. If
* the bit specified by
* SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
* set, then pin control enable hardware registers
* will not be modified.
* @pin_ctrl_hpm: Bit mask specifying which hardware pins should be
* used to force the regulator into high power
* mode, if any
* Value should be an ORing of
* SPMI_REGULATOR_PIN_CTRL_HPM_* constants. If
* the bit specified by
* SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
* set, then pin control mode hardware registers
* will not be modified.
* @vs_soft_start_strength: This parameter sets the soft start strength for
* voltage switch type regulators. Its value
* should be one of SPMI_VS_SOFT_START_STR_*. If
* its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT,
* then the soft start strength will be left at its
* default hardware value.
*/
struct spmi_regulator_init_data {
unsigned pin_ctrl_enable;
unsigned pin_ctrl_hpm;
enum spmi_vs_soft_start_str vs_soft_start_strength;
};
/* These types correspond to unique register layouts. */
enum spmi_regulator_logical_type {
SPMI_REGULATOR_LOGICAL_TYPE_SMPS,
SPMI_REGULATOR_LOGICAL_TYPE_LDO,
SPMI_REGULATOR_LOGICAL_TYPE_VS,
SPMI_REGULATOR_LOGICAL_TYPE_BOOST,
SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS,
SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO,
SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO,
SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426,
SPMI_REGULATOR_LOGICAL_TYPE_HFS430,
};
enum spmi_regulator_type {
SPMI_REGULATOR_TYPE_BUCK = 0x03,
SPMI_REGULATOR_TYPE_LDO = 0x04,
SPMI_REGULATOR_TYPE_VS = 0x05,
SPMI_REGULATOR_TYPE_BOOST = 0x1b,
SPMI_REGULATOR_TYPE_FTS = 0x1c,
SPMI_REGULATOR_TYPE_BOOST_BYP = 0x1f,
SPMI_REGULATOR_TYPE_ULT_LDO = 0x21,
SPMI_REGULATOR_TYPE_ULT_BUCK = 0x22,
};
enum spmi_regulator_subtype {
SPMI_REGULATOR_SUBTYPE_GP_CTL = 0x08,
SPMI_REGULATOR_SUBTYPE_RF_CTL = 0x09,
SPMI_REGULATOR_SUBTYPE_N50 = 0x01,
SPMI_REGULATOR_SUBTYPE_N150 = 0x02,
SPMI_REGULATOR_SUBTYPE_N300 = 0x03,
SPMI_REGULATOR_SUBTYPE_N600 = 0x04,
SPMI_REGULATOR_SUBTYPE_N1200 = 0x05,
SPMI_REGULATOR_SUBTYPE_N600_ST = 0x06,
SPMI_REGULATOR_SUBTYPE_N1200_ST = 0x07,
SPMI_REGULATOR_SUBTYPE_N900_ST = 0x14,
SPMI_REGULATOR_SUBTYPE_N300_ST = 0x15,
SPMI_REGULATOR_SUBTYPE_P50 = 0x08,
SPMI_REGULATOR_SUBTYPE_P150 = 0x09,
SPMI_REGULATOR_SUBTYPE_P300 = 0x0a,
SPMI_REGULATOR_SUBTYPE_P600 = 0x0b,
SPMI_REGULATOR_SUBTYPE_P1200 = 0x0c,
SPMI_REGULATOR_SUBTYPE_LN = 0x10,
SPMI_REGULATOR_SUBTYPE_LV_P50 = 0x28,
SPMI_REGULATOR_SUBTYPE_LV_P150 = 0x29,
SPMI_REGULATOR_SUBTYPE_LV_P300 = 0x2a,
SPMI_REGULATOR_SUBTYPE_LV_P600 = 0x2b,
SPMI_REGULATOR_SUBTYPE_LV_P1200 = 0x2c,
SPMI_REGULATOR_SUBTYPE_LV_P450 = 0x2d,
SPMI_REGULATOR_SUBTYPE_LV100 = 0x01,
SPMI_REGULATOR_SUBTYPE_LV300 = 0x02,
SPMI_REGULATOR_SUBTYPE_MV300 = 0x08,
SPMI_REGULATOR_SUBTYPE_MV500 = 0x09,
SPMI_REGULATOR_SUBTYPE_HDMI = 0x10,
SPMI_REGULATOR_SUBTYPE_OTG = 0x11,
SPMI_REGULATOR_SUBTYPE_5V_BOOST = 0x01,
SPMI_REGULATOR_SUBTYPE_FTS_CTL = 0x08,
SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09,
SPMI_REGULATOR_SUBTYPE_FTS426_CTL = 0x0a,
SPMI_REGULATOR_SUBTYPE_BB_2A = 0x01,
SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0d,
SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0e,
SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0f,
SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10,
SPMI_REGULATOR_SUBTYPE_HFS430 = 0x0a,
};
enum spmi_common_regulator_registers {
SPMI_COMMON_REG_DIG_MAJOR_REV = 0x01,
SPMI_COMMON_REG_TYPE = 0x04,
SPMI_COMMON_REG_SUBTYPE = 0x05,
SPMI_COMMON_REG_VOLTAGE_RANGE = 0x40,
SPMI_COMMON_REG_VOLTAGE_SET = 0x41,
SPMI_COMMON_REG_MODE = 0x45,
SPMI_COMMON_REG_ENABLE = 0x46,
SPMI_COMMON_REG_PULL_DOWN = 0x48,
SPMI_COMMON_REG_SOFT_START = 0x4c,
SPMI_COMMON_REG_STEP_CTRL = 0x61,
};
/*
* Second common register layout used by newer devices starting with ftsmps426
* Note that some of the registers from the first common layout remain
* unchanged and their definition is not duplicated.
*/
enum spmi_ftsmps426_regulator_registers {
SPMI_FTSMPS426_REG_VOLTAGE_LSB = 0x40,
SPMI_FTSMPS426_REG_VOLTAGE_MSB = 0x41,
SPMI_FTSMPS426_REG_VOLTAGE_ULS_LSB = 0x68,
SPMI_FTSMPS426_REG_VOLTAGE_ULS_MSB = 0x69,
};
enum spmi_vs_registers {
SPMI_VS_REG_OCP = 0x4a,
SPMI_VS_REG_SOFT_START = 0x4c,
};
enum spmi_boost_registers {
SPMI_BOOST_REG_CURRENT_LIMIT = 0x4a,
};
enum spmi_boost_byp_registers {
SPMI_BOOST_BYP_REG_CURRENT_LIMIT = 0x4b,
};
enum spmi_saw3_registers {
SAW3_SECURE = 0x00,
SAW3_ID = 0x04,
SAW3_SPM_STS = 0x0C,
SAW3_AVS_STS = 0x10,
SAW3_PMIC_STS = 0x14,
SAW3_RST = 0x18,
SAW3_VCTL = 0x1C,
SAW3_AVS_CTL = 0x20,
SAW3_AVS_LIMIT = 0x24,
SAW3_AVS_DLY = 0x28,
SAW3_AVS_HYSTERESIS = 0x2C,
SAW3_SPM_STS2 = 0x38,
SAW3_SPM_PMIC_DATA_3 = 0x4C,
SAW3_VERSION = 0xFD0,
};
/* Used for indexing into ctrl_reg. These are offets from 0x40 */
enum spmi_common_control_register_index {
SPMI_COMMON_IDX_VOLTAGE_RANGE = 0,
SPMI_COMMON_IDX_VOLTAGE_SET = 1,
SPMI_COMMON_IDX_MODE = 5,
SPMI_COMMON_IDX_ENABLE = 6,
};
/* Common regulator control register layout */
#define SPMI_COMMON_ENABLE_MASK 0x80
#define SPMI_COMMON_ENABLE 0x80
#define SPMI_COMMON_DISABLE 0x00
#define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08
#define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04
#define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02
#define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01
#define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0f
/* Common regulator mode register layout */
#define SPMI_COMMON_MODE_HPM_MASK 0x80
#define SPMI_COMMON_MODE_AUTO_MASK 0x40
#define SPMI_COMMON_MODE_BYPASS_MASK 0x20
#define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10
#define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08
#define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04
#define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02
#define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01
#define SPMI_COMMON_MODE_FOLLOW_ALL_MASK 0x1f
#define SPMI_FTSMPS426_MODE_BYPASS_MASK 3
#define SPMI_FTSMPS426_MODE_RETENTION_MASK 4
#define SPMI_FTSMPS426_MODE_LPM_MASK 5
#define SPMI_FTSMPS426_MODE_AUTO_MASK 6
#define SPMI_FTSMPS426_MODE_HPM_MASK 7
#define SPMI_FTSMPS426_MODE_MASK 0x07
/* Common regulator pull down control register layout */
#define SPMI_COMMON_PULL_DOWN_ENABLE_MASK 0x80
/* LDO regulator current limit control register layout */
#define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80
/* LDO regulator soft start control register layout */
#define SPMI_LDO_SOFT_START_ENABLE_MASK 0x80
/* VS regulator over current protection control register layout */
#define SPMI_VS_OCP_OVERRIDE 0x01
#define SPMI_VS_OCP_NO_OVERRIDE 0x00
/* VS regulator soft start control register layout */
#define SPMI_VS_SOFT_START_ENABLE_MASK 0x80
#define SPMI_VS_SOFT_START_SEL_MASK 0x03
/* Boost regulator current limit control register layout */
#define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80
#define SPMI_BOOST_CURRENT_LIMIT_MASK 0x07
#define SPMI_VS_OCP_DEFAULT_MAX_RETRIES 10
#define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS 30
#define SPMI_VS_OCP_FALL_DELAY_US 90
#define SPMI_VS_OCP_FAULT_DELAY_US 20000
#define SPMI_FTSMPS_STEP_CTRL_STEP_MASK 0x18
#define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT 3
#define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK 0x07
#define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT 0
/* Clock rate in kHz of the FTSMPS regulator reference clock. */
#define SPMI_FTSMPS_CLOCK_RATE 19200
/* Minimum voltage stepper delay for each step. */
#define SPMI_FTSMPS_STEP_DELAY 8
#define SPMI_DEFAULT_STEP_DELAY 20
/*
* The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to
* adjust the step rate in order to account for oscillator variance.
*/
#define SPMI_FTSMPS_STEP_MARGIN_NUM 4
#define SPMI_FTSMPS_STEP_MARGIN_DEN 5
#define SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK 0x03
#define SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT 0
/* Clock rate in kHz of the FTSMPS426 regulator reference clock. */
#define SPMI_FTSMPS426_CLOCK_RATE 4800
#define SPMI_HFS430_CLOCK_RATE 1600
/* Minimum voltage stepper delay for each step. */
#define SPMI_FTSMPS426_STEP_DELAY 2
/*
* The ratio SPMI_FTSMPS426_STEP_MARGIN_NUM/SPMI_FTSMPS426_STEP_MARGIN_DEN is
* used to adjust the step rate in order to account for oscillator variance.
*/
#define SPMI_FTSMPS426_STEP_MARGIN_NUM 10
#define SPMI_FTSMPS426_STEP_MARGIN_DEN 11
/* VSET value to decide the range of ULT SMPS */
#define ULT_SMPS_RANGE_SPLIT 0x60
/**
* struct spmi_voltage_range - regulator set point voltage mapping description
* @min_uV: Minimum programmable output voltage resulting from
* set point register value 0x00
* @max_uV: Maximum programmable output voltage
* @step_uV: Output voltage increase resulting from the set point
* register value increasing by 1
* @set_point_min_uV: Minimum allowed voltage
* @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order
* to pick which range should be used in the case of
* overlapping set points.
* @n_voltages: Number of preferred voltage set points present in this
* range
* @range_sel: Voltage range register value corresponding to this range
*
* The following relationships must be true for the values used in this struct:
* (max_uV - min_uV) % step_uV == 0
* (set_point_min_uV - min_uV) % step_uV == 0*
* (set_point_max_uV - min_uV) % step_uV == 0*
* n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
*
* *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
* specify that the voltage range has meaning, but is not preferred.
*/
struct spmi_voltage_range {
int min_uV;
int max_uV;
int step_uV;
int set_point_min_uV;
int set_point_max_uV;
unsigned n_voltages;
u8 range_sel;
};
/*
* The ranges specified in the spmi_voltage_set_points struct must be listed
* so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
*/
struct spmi_voltage_set_points {
struct spmi_voltage_range *range;
int count;
unsigned n_voltages;
};
struct spmi_regulator {
struct regulator_desc desc;
struct device *dev;
struct delayed_work ocp_work;
struct regmap *regmap;
struct spmi_voltage_set_points *set_points;
enum spmi_regulator_logical_type logical_type;
int ocp_irq;
int ocp_count;
int ocp_max_retries;
int ocp_retry_delay_ms;
int hpm_min_load;
int slew_rate;
ktime_t vs_enable_time;
u16 base;
struct list_head node;
};
struct spmi_regulator_mapping {
enum spmi_regulator_type type;
enum spmi_regulator_subtype subtype;
enum spmi_regulator_logical_type logical_type;
u32 revision_min;
u32 revision_max;
const struct regulator_ops *ops;
struct spmi_voltage_set_points *set_points;
int hpm_min_load;
};
struct spmi_regulator_data {
const char *name;
u16 base;
const char *supply;
const char *ocp;
u16 force_type;
};
#define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \
_logical_type, _ops_val, _set_points_val, _hpm_min_load) \
{ \
.type = SPMI_REGULATOR_TYPE_##_type, \
.subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \
.revision_min = _dig_major_min, \
.revision_max = _dig_major_max, \
.logical_type = SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \
.ops = &spmi_##_ops_val##_ops, \
.set_points = &_set_points_val##_set_points, \
.hpm_min_load = _hpm_min_load, \
}
#define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \
{ \
.type = SPMI_REGULATOR_TYPE_VS, \
.subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \
.revision_min = _dig_major_min, \
.revision_max = _dig_major_max, \
.logical_type = SPMI_REGULATOR_LOGICAL_TYPE_VS, \
.ops = &spmi_vs_ops, \
}
#define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
_set_point_max_uV, _max_uV, _step_uV) \
{ \
.min_uV = _min_uV, \
.max_uV = _max_uV, \
.set_point_min_uV = _set_point_min_uV, \
.set_point_max_uV = _set_point_max_uV, \
.step_uV = _step_uV, \
.range_sel = _range_sel, \
}
#define DEFINE_SPMI_SET_POINTS(name) \
struct spmi_voltage_set_points name##_set_points = { \
.range = name##_ranges, \
.count = ARRAY_SIZE(name##_ranges), \
}
/*
* These tables contain the physically available PMIC regulator voltage setpoint
* ranges. Where two ranges overlap in hardware, one of the ranges is trimmed
* to ensure that the setpoints available to software are monotonically
* increasing and unique. The set_voltage callback functions expect these
* properties to hold.
*/
static struct spmi_voltage_range pldo_ranges[] = {
SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
};
static struct spmi_voltage_range nldo1_ranges[] = {
SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
};
static struct spmi_voltage_range nldo2_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500),
SPMI_VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250),
SPMI_VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500),
};
static struct spmi_voltage_range nldo3_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
SPMI_VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500),
SPMI_VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500),
};
static struct spmi_voltage_range ln_ldo_ranges[] = {
SPMI_VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000),
SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
};
static struct spmi_voltage_range smps_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
};
static struct spmi_voltage_range ftsmps_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000),
SPMI_VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000),
};
static struct spmi_voltage_range ftsmps2p5_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000),
SPMI_VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000),
};
static struct spmi_voltage_range ftsmps426_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 0, 320000, 1352000, 1352000, 4000),
};
static struct spmi_voltage_range boost_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
};
static struct spmi_voltage_range boost_byp_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
};
static struct spmi_voltage_range ult_lo_smps_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
SPMI_VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000),
};
static struct spmi_voltage_range ult_ho_smps_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
};
static struct spmi_voltage_range ult_nldo_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
};
static struct spmi_voltage_range ult_pldo_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
};
static struct spmi_voltage_range hfs430_ranges[] = {
SPMI_VOLTAGE_RANGE(0, 320000, 320000, 2040000, 2040000, 8000),
};
static DEFINE_SPMI_SET_POINTS(pldo);
static DEFINE_SPMI_SET_POINTS(nldo1);
static DEFINE_SPMI_SET_POINTS(nldo2);
static DEFINE_SPMI_SET_POINTS(nldo3);
static DEFINE_SPMI_SET_POINTS(ln_ldo);
static DEFINE_SPMI_SET_POINTS(smps);
static DEFINE_SPMI_SET_POINTS(ftsmps);
static DEFINE_SPMI_SET_POINTS(ftsmps2p5);
static DEFINE_SPMI_SET_POINTS(ftsmps426);
static DEFINE_SPMI_SET_POINTS(boost);
static DEFINE_SPMI_SET_POINTS(boost_byp);
static DEFINE_SPMI_SET_POINTS(ult_lo_smps);
static DEFINE_SPMI_SET_POINTS(ult_ho_smps);
static DEFINE_SPMI_SET_POINTS(ult_nldo);
static DEFINE_SPMI_SET_POINTS(ult_pldo);
static DEFINE_SPMI_SET_POINTS(hfs430);
static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf,
int len)
{
return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len);
}
static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr,
u8 *buf, int len)
{
return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len);
}
static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val,
u8 mask)
{
return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val);
}
static int spmi_regulator_vs_enable(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
if (vreg->ocp_irq) {
vreg->ocp_count = 0;
vreg->vs_enable_time = ktime_get();
}
return regulator_enable_regmap(rdev);
}
static int spmi_regulator_vs_ocp(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 reg = SPMI_VS_OCP_OVERRIDE;
return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, ®, 1);
}
static int spmi_regulator_select_voltage(struct spmi_regulator *vreg,
int min_uV, int max_uV)
{
const struct spmi_voltage_range *range;
int uV = min_uV;
int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
int selector, voltage_sel;
/* Check if request voltage is outside of physically settable range. */
lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
lim_max_uV =
vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
if (uV < lim_min_uV && max_uV >= lim_min_uV)
uV = lim_min_uV;
if (uV < lim_min_uV || uV > lim_max_uV) {
dev_err(vreg->dev,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, lim_min_uV, lim_max_uV);
return -EINVAL;
}
/* Find the range which uV is inside of. */
for (i = vreg->set_points->count - 1; i > 0; i--) {
range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
if (uV > range_max_uV && range_max_uV > 0)
break;
}
range_id = i;
range = &vreg->set_points->range[range_id];
/*
* Force uV to be an allowed set point by applying a ceiling function to
* the uV value.
*/
voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
uV = voltage_sel * range->step_uV + range->min_uV;
if (uV > max_uV) {
dev_err(vreg->dev,
"request v=[%d, %d] cannot be met by any set point; "
"next set point: %d\n",
min_uV, max_uV, uV);
return -EINVAL;
}
selector = 0;
for (i = 0; i < range_id; i++)
selector += vreg->set_points->range[i].n_voltages;
selector += (uV - range->set_point_min_uV) / range->step_uV;
return selector;
}
static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg,
unsigned selector, u8 *range_sel,
u8 *voltage_sel)
{
const struct spmi_voltage_range *range, *end;
unsigned offset;
range = vreg->set_points->range;
end = range + vreg->set_points->count;
for (; range < end; range++) {
if (selector < range->n_voltages) {
/*
* hardware selectors between set point min and real
* min are invalid so we ignore them
*/
offset = range->set_point_min_uV - range->min_uV;
offset /= range->step_uV;
*voltage_sel = selector + offset;
*range_sel = range->range_sel;
return 0;
}
selector -= range->n_voltages;
}
return -EINVAL;
}
static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel,
const struct spmi_voltage_range *range)
{
unsigned sw_sel = 0;
unsigned offset, max_hw_sel;
const struct spmi_voltage_range *r = vreg->set_points->range;
const struct spmi_voltage_range *end = r + vreg->set_points->count;
for (; r < end; r++) {
if (r == range && range->n_voltages) {
/*
* hardware selectors between set point min and real
* min and between set point max and real max are
* invalid so we return an error if they're
* programmed into the hardware
*/
offset = range->set_point_min_uV - range->min_uV;
offset /= range->step_uV;
if (hw_sel < offset)
return -EINVAL;
max_hw_sel = range->set_point_max_uV - range->min_uV;
max_hw_sel /= range->step_uV;
if (hw_sel > max_hw_sel)
return -EINVAL;
return sw_sel + hw_sel - offset;
}
sw_sel += r->n_voltages;
}
return -EINVAL;
}
static const struct spmi_voltage_range *
spmi_regulator_find_range(struct spmi_regulator *vreg)
{
u8 range_sel;
const struct spmi_voltage_range *range, *end;
range = vreg->set_points->range;
end = range + vreg->set_points->count;
spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1);
for (; range < end; range++)
if (range->range_sel == range_sel)
return range;
return NULL;
}
static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg,
int min_uV, int max_uV)
{
const struct spmi_voltage_range *range;
int uV = min_uV;
int i, selector;
range = spmi_regulator_find_range(vreg);
if (!range)
goto different_range;
if (uV < range->min_uV && max_uV >= range->min_uV)
uV = range->min_uV;
if (uV < range->min_uV || uV > range->max_uV) {
/* Current range doesn't support the requested voltage. */
goto different_range;
}
/*
* Force uV to be an allowed set point by applying a ceiling function to
* the uV value.
*/
uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
uV = uV * range->step_uV + range->min_uV;
if (uV > max_uV) {
/*
* No set point in the current voltage range is within the
* requested min_uV to max_uV range.
*/
goto different_range;
}
selector = 0;
for (i = 0; i < vreg->set_points->count; i++) {
if (uV >= vreg->set_points->range[i].set_point_min_uV
&& uV <= vreg->set_points->range[i].set_point_max_uV) {
selector +=
(uV - vreg->set_points->range[i].set_point_min_uV)
/ vreg->set_points->range[i].step_uV;
break;
}
selector += vreg->set_points->range[i].n_voltages;
}
if (selector >= vreg->set_points->n_voltages)
goto different_range;
return selector;
different_range:
return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
}
static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
/*
* Favor staying in the current voltage range if possible. This avoids
* voltage spikes that occur when changing the voltage range.
*/
return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV);
}
static int
spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
int ret;
u8 buf[2];
u8 range_sel, voltage_sel;
ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
if (ret)
return ret;
buf[0] = range_sel;
buf[1] = voltage_sel;
return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2);
}
static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
unsigned selector);
static int spmi_regulator_ftsmps426_set_voltage(struct regulator_dev *rdev,
unsigned selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 buf[2];
int mV;
mV = spmi_regulator_common_list_voltage(rdev, selector) / 1000;
buf[0] = mV & 0xff;
buf[1] = mV >> 8;
return spmi_vreg_write(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2);
}
static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev,
unsigned int old_selector, unsigned int new_selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
int diff_uV;
diff_uV = abs(spmi_regulator_common_list_voltage(rdev, new_selector) -
spmi_regulator_common_list_voltage(rdev, old_selector));
return DIV_ROUND_UP(diff_uV, vreg->slew_rate);
}
static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
const struct spmi_voltage_range *range;
u8 voltage_sel;
spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
range = spmi_regulator_find_range(vreg);
if (!range)
return -EINVAL;
return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
}
static int spmi_regulator_ftsmps426_get_voltage(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
const struct spmi_voltage_range *range;
u8 buf[2];
int uV;
spmi_vreg_read(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2);
uV = (((unsigned int)buf[1] << 8) | (unsigned int)buf[0]) * 1000;
range = vreg->set_points->range;
return (uV - range->set_point_min_uV) / range->step_uV;
}
static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
}
static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev,
unsigned selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 sel = selector;
/*
* Certain types of regulators do not have a range select register so
* only voltage set register needs to be written.
*/
return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1);
}
static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 selector;
int ret;
ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1);
if (ret)
return ret;
return selector;
}
static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
unsigned selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
int ret;
u8 range_sel, voltage_sel;
ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
if (ret)
return ret;
/*
* Calculate VSET based on range
* In case of range 0: voltage_sel is a 7 bit value, can be written
* witout any modification.
* In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
* [011].
*/
if (range_sel == 1)
voltage_sel |= ULT_SMPS_RANGE_SPLIT;
return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET,
voltage_sel, 0xff);
}
static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
const struct spmi_voltage_range *range;
u8 voltage_sel;
spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
range = spmi_regulator_find_range(vreg);
if (!range)
return -EINVAL;
if (range->range_sel == 1)
voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
}
static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
int uV = 0;
int i;
if (selector >= vreg->set_points->n_voltages)
return 0;
for (i = 0; i < vreg->set_points->count; i++) {
if (selector < vreg->set_points->range[i].n_voltages) {
uV = selector * vreg->set_points->range[i].step_uV
+ vreg->set_points->range[i].set_point_min_uV;
break;
}
selector -= vreg->set_points->range[i].n_voltages;
}
return uV;
}
static int
spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 mask = SPMI_COMMON_MODE_BYPASS_MASK;
u8 val = 0;
if (enable)
val = mask;
return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
}
static int
spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 val;
int ret;
ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1);
*enable = val & SPMI_COMMON_MODE_BYPASS_MASK;
return ret;
}
static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 reg;
spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1);
reg &= SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
switch (reg) {
case SPMI_COMMON_MODE_HPM_MASK:
return REGULATOR_MODE_NORMAL;
case SPMI_COMMON_MODE_AUTO_MASK:
return REGULATOR_MODE_FAST;
default:
return REGULATOR_MODE_IDLE;
}
}
static unsigned int spmi_regulator_ftsmps426_get_mode(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 reg;
spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1);
switch (reg) {
case SPMI_FTSMPS426_MODE_HPM_MASK:
return REGULATOR_MODE_NORMAL;
case SPMI_FTSMPS426_MODE_AUTO_MASK:
return REGULATOR_MODE_FAST;
default:
return REGULATOR_MODE_IDLE;
}
}
static int
spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
u8 val;
switch (mode) {
case REGULATOR_MODE_NORMAL:
val = SPMI_COMMON_MODE_HPM_MASK;
break;
case REGULATOR_MODE_FAST:
val = SPMI_COMMON_MODE_AUTO_MASK;
break;
default:
val = 0;
break;
}
return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
}
static int
spmi_regulator_ftsmps426_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
u8 mask = SPMI_FTSMPS426_MODE_MASK;
u8 val;
switch (mode) {
case REGULATOR_MODE_NORMAL:
val = SPMI_FTSMPS426_MODE_HPM_MASK;
break;
case REGULATOR_MODE_FAST:
val = SPMI_FTSMPS426_MODE_AUTO_MASK;
break;
case REGULATOR_MODE_IDLE:
val = SPMI_FTSMPS426_MODE_LPM_MASK;
break;
default:
return -EINVAL;
}
return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
}
static int
spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
unsigned int mode;
if (load_uA >= vreg->hpm_min_load)
mode = REGULATOR_MODE_NORMAL;
else
mode = REGULATOR_MODE_IDLE;
return spmi_regulator_common_set_mode(rdev, mode);
}
static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK;
return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN,
mask, mask);
}
static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK;
return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START,
mask, mask);
}
static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
enum spmi_regulator_logical_type type = vreg->logical_type;
unsigned int current_reg;
u8 reg;
u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK |
SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500;
if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST)
current_reg = SPMI_BOOST_REG_CURRENT_LIMIT;
else
current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT;
if (ilim_uA > max || ilim_uA <= 0)
return -EINVAL;
reg = (ilim_uA - 1) / 500;
reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
return spmi_vreg_update_bits(vreg, current_reg, reg, mask);
}
static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg)
{
int ret;
ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK);
vreg->vs_enable_time = ktime_get();
ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK);
return ret;
}
static void spmi_regulator_vs_ocp_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct spmi_regulator *vreg
= container_of(dwork, struct spmi_regulator, ocp_work);
spmi_regulator_vs_clear_ocp(vreg);
}
static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data)
{
struct spmi_regulator *vreg = data;
ktime_t ocp_irq_time;
s64 ocp_trigger_delay_us;
ocp_irq_time = ktime_get();
ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
vreg->vs_enable_time);
/*
* Reset the OCP count if there is a large delay between switch enable
* and when OCP triggers. This is indicative of a hotplug event as
* opposed to a fault.
*/
if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US)
vreg->ocp_count = 0;
/* Wait for switch output to settle back to 0 V after OCP triggered. */
udelay(SPMI_VS_OCP_FALL_DELAY_US);
vreg->ocp_count++;
if (vreg->ocp_count == 1) {
/* Immediately clear the over current condition. */
spmi_regulator_vs_clear_ocp(vreg);
} else if (vreg->ocp_count <= vreg->ocp_max_retries) {
/* Schedule the over current clear task to run later. */
schedule_delayed_work(&vreg->ocp_work,
msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
} else {
dev_err(vreg->dev,
"OCP triggered %d times; no further retries\n",
vreg->ocp_count);
}
return IRQ_HANDLED;
}
#define SAW3_VCTL_DATA_MASK 0xFF
#define SAW3_VCTL_CLEAR_MASK 0x700FF
#define SAW3_AVS_CTL_EN_MASK 0x1
#define SAW3_AVS_CTL_TGGL_MASK 0x8000000
#define SAW3_AVS_CTL_CLEAR_MASK 0x7efc00
static struct regmap *saw_regmap;
static void spmi_saw_set_vdd(void *data)
{
u32 vctl, data3, avs_ctl, pmic_sts;
bool avs_enabled = false;
unsigned long timeout;
u8 voltage_sel = *(u8 *)data;
regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl);
regmap_read(saw_regmap, SAW3_VCTL, &vctl);
regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3);
/* select the band */
vctl &= ~SAW3_VCTL_CLEAR_MASK;
vctl |= (u32)voltage_sel;
data3 &= ~SAW3_VCTL_CLEAR_MASK;
data3 |= (u32)voltage_sel;
/* If AVS is enabled, switch it off during the voltage change */
avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl;
if (avs_enabled) {
avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK;
regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
}
regmap_write(saw_regmap, SAW3_RST, 1);
regmap_write(saw_regmap, SAW3_VCTL, vctl);
regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3);
timeout = jiffies + usecs_to_jiffies(100);
do {
regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts);
pmic_sts &= SAW3_VCTL_DATA_MASK;
if (pmic_sts == (u32)voltage_sel)
break;
cpu_relax();
} while (time_before(jiffies, timeout));
/* After successful voltage change, switch the AVS back on */
if (avs_enabled) {
pmic_sts &= 0x3f;
avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK;
avs_ctl |= ((pmic_sts - 4) << 10);
avs_ctl |= (pmic_sts << 17);
avs_ctl |= SAW3_AVS_CTL_TGGL_MASK;
regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
}
}
static int
spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector)
{
struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
int ret;
u8 range_sel, voltage_sel;
ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
if (ret)
return ret;
if (0 != range_sel) {
dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \
range_sel, voltage_sel);
return -EINVAL;
}
/* Always do the SAW register writes on the first CPU */
return smp_call_function_single(0, spmi_saw_set_vdd, \
&voltage_sel, true);
}
static struct regulator_ops spmi_saw_ops = {};
static const struct regulator_ops spmi_smps_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_common_set_voltage,
.set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
.get_voltage_sel = spmi_regulator_common_get_voltage,
.map_voltage = spmi_regulator_common_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_pull_down = spmi_regulator_common_set_pull_down,
};
static const struct regulator_ops spmi_ldo_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_common_set_voltage,
.get_voltage_sel = spmi_regulator_common_get_voltage,
.map_voltage = spmi_regulator_common_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_bypass = spmi_regulator_common_set_bypass,
.get_bypass = spmi_regulator_common_get_bypass,
.set_pull_down = spmi_regulator_common_set_pull_down,
.set_soft_start = spmi_regulator_common_set_soft_start,
};
static const struct regulator_ops spmi_ln_ldo_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_common_set_voltage,
.get_voltage_sel = spmi_regulator_common_get_voltage,
.map_voltage = spmi_regulator_common_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_bypass = spmi_regulator_common_set_bypass,
.get_bypass = spmi_regulator_common_get_bypass,
};
static const struct regulator_ops spmi_vs_ops = {
.enable = spmi_regulator_vs_enable,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_pull_down = spmi_regulator_common_set_pull_down,
.set_soft_start = spmi_regulator_common_set_soft_start,
.set_over_current_protection = spmi_regulator_vs_ocp,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
};
static const struct regulator_ops spmi_boost_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_single_range_set_voltage,
.get_voltage_sel = spmi_regulator_single_range_get_voltage,
.map_voltage = spmi_regulator_single_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_input_current_limit = spmi_regulator_set_ilim,
};
static const struct regulator_ops spmi_ftsmps_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_common_set_voltage,
.set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
.get_voltage_sel = spmi_regulator_common_get_voltage,
.map_voltage = spmi_regulator_common_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_pull_down = spmi_regulator_common_set_pull_down,
};
static const struct regulator_ops spmi_ult_lo_smps_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_ult_lo_smps_set_voltage,
.set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
.get_voltage_sel = spmi_regulator_ult_lo_smps_get_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_pull_down = spmi_regulator_common_set_pull_down,
};
static const struct regulator_ops spmi_ult_ho_smps_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_single_range_set_voltage,
.set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
.get_voltage_sel = spmi_regulator_single_range_get_voltage,
.map_voltage = spmi_regulator_single_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_pull_down = spmi_regulator_common_set_pull_down,
};
static const struct regulator_ops spmi_ult_ldo_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_single_range_set_voltage,
.get_voltage_sel = spmi_regulator_single_range_get_voltage,
.map_voltage = spmi_regulator_single_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_common_set_mode,
.get_mode = spmi_regulator_common_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_bypass = spmi_regulator_common_set_bypass,
.get_bypass = spmi_regulator_common_get_bypass,
.set_pull_down = spmi_regulator_common_set_pull_down,
.set_soft_start = spmi_regulator_common_set_soft_start,
};
static const struct regulator_ops spmi_ftsmps426_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_ftsmps426_set_voltage,
.set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
.get_voltage_sel = spmi_regulator_ftsmps426_get_voltage,
.map_voltage = spmi_regulator_single_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_ftsmps426_set_mode,
.get_mode = spmi_regulator_ftsmps426_get_mode,
.set_load = spmi_regulator_common_set_load,
.set_pull_down = spmi_regulator_common_set_pull_down,
};
static const struct regulator_ops spmi_hfs430_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = spmi_regulator_ftsmps426_set_voltage,
.set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
.get_voltage_sel = spmi_regulator_ftsmps426_get_voltage,
.map_voltage = spmi_regulator_single_map_voltage,
.list_voltage = spmi_regulator_common_list_voltage,
.set_mode = spmi_regulator_ftsmps426_set_mode,
.get_mode = spmi_regulator_ftsmps426_get_mode,
};
/* Maximum possible digital major revision value */
#define INF 0xFF
static const struct spmi_regulator_mapping supported_regulators[] = {
/* type subtype dig_min dig_max ltype ops setpoints hpm_min */
SPMI_VREG(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000),
SPMI_VREG(BUCK, HFS430, 0, INF, HFS430, hfs430, hfs430, 10000),
SPMI_VREG(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000),
SPMI_VREG(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000),
SPMI_VREG(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000),
SPMI_VREG(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000),
SPMI_VREG(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000),
SPMI_VREG(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000),
SPMI_VREG(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000),
SPMI_VREG(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000),
SPMI_VREG(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000),
SPMI_VREG(LDO, P50, 0, INF, LDO, ldo, pldo, 5000),
SPMI_VREG(LDO, P150, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, P300, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, P600, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0),
SPMI_VREG(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000),
SPMI_VREG(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000),
SPMI_VREG_VS(LV100, 0, INF),
SPMI_VREG_VS(LV300, 0, INF),
SPMI_VREG_VS(MV300, 0, INF),
SPMI_VREG_VS(MV500, 0, INF),
SPMI_VREG_VS(HDMI, 0, INF),
SPMI_VREG_VS(OTG, 0, INF),
SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0),
SPMI_VREG(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000),
SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000),
SPMI_VREG(FTS, FTS426_CTL, 0, INF, FTSMPS426, ftsmps426, ftsmps426, 100000),
SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
ult_lo_smps, 100000),
SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
ult_lo_smps, 100000),
SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
ult_lo_smps, 100000),
SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
ult_ho_smps, 100000),
SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
SPMI_VREG(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
SPMI_VREG(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
SPMI_VREG(ULT_LDO, LV_P450, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
SPMI_VREG(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
SPMI_VREG(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
SPMI_VREG(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000),
};
static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points)
{
unsigned int n;
struct spmi_voltage_range *range = points->range;
for (; range < points->range + points->count; range++) {
n = 0;
if (range->set_point_max_uV) {
n = range->set_point_max_uV - range->set_point_min_uV;
n = (n / range->step_uV) + 1;
}
range->n_voltages = n;
points->n_voltages += n;
}
}
static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type)
{
const struct spmi_regulator_mapping *mapping;
int ret, i;
u32 dig_major_rev;
u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1];
u8 type, subtype;
ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version,
ARRAY_SIZE(version));
if (ret) {
dev_dbg(vreg->dev, "could not read version registers\n");
return ret;
}
dig_major_rev = version[SPMI_COMMON_REG_DIG_MAJOR_REV
- SPMI_COMMON_REG_DIG_MAJOR_REV];
if (!force_type) {
type = version[SPMI_COMMON_REG_TYPE -
SPMI_COMMON_REG_DIG_MAJOR_REV];
subtype = version[SPMI_COMMON_REG_SUBTYPE -
SPMI_COMMON_REG_DIG_MAJOR_REV];
} else {
type = force_type >> 8;
subtype = force_type;
}
for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
mapping = &supported_regulators[i];
if (mapping->type == type && mapping->subtype == subtype
&& mapping->revision_min <= dig_major_rev
&& mapping->revision_max >= dig_major_rev)
goto found;
}
dev_err(vreg->dev,
"unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
vreg->desc.name, type, subtype, dig_major_rev);
return -ENODEV;
found:
vreg->logical_type = mapping->logical_type;
vreg->set_points = mapping->set_points;
vreg->hpm_min_load = mapping->hpm_min_load;
vreg->desc.ops = mapping->ops;
if (mapping->set_points) {
if (!mapping->set_points->n_voltages)
spmi_calculate_num_voltages(mapping->set_points);
vreg->desc.n_voltages = mapping->set_points->n_voltages;
}
return 0;
}
static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg)
{
int ret;
u8 reg = 0;
int step, delay, slew_rate, step_delay;
const struct spmi_voltage_range *range;
ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, ®, 1);
if (ret) {
dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
return ret;
}
range = spmi_regulator_find_range(vreg);
if (!range)
return -EINVAL;
switch (vreg->logical_type) {
case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
step_delay = SPMI_FTSMPS_STEP_DELAY;
break;
default:
step_delay = SPMI_DEFAULT_STEP_DELAY;
break;
}
step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK;
step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT;
delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK;
delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT;
/* slew_rate has units of uV/us */
slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
slew_rate /= 1000 * (step_delay << delay);
slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM;
slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN;
/* Ensure that the slew rate is greater than 0 */
vreg->slew_rate = max(slew_rate, 1);
return ret;
}
static int spmi_regulator_init_slew_rate_ftsmps426(struct spmi_regulator *vreg,
int clock_rate)
{
int ret;
u8 reg = 0;
int delay, slew_rate;
const struct spmi_voltage_range *range = &vreg->set_points->range[0];
ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, ®, 1);
if (ret) {
dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
return ret;
}
delay = reg & SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK;
delay >>= SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT;
/* slew_rate has units of uV/us */
slew_rate = clock_rate * range->step_uV;
slew_rate /= 1000 * (SPMI_FTSMPS426_STEP_DELAY << delay);
slew_rate *= SPMI_FTSMPS426_STEP_MARGIN_NUM;
slew_rate /= SPMI_FTSMPS426_STEP_MARGIN_DEN;
/* Ensure that the slew rate is greater than 0 */
vreg->slew_rate = max(slew_rate, 1);
return ret;
}
static int spmi_regulator_init_registers(struct spmi_regulator *vreg,
const struct spmi_regulator_init_data *data)
{
int ret;
enum spmi_regulator_logical_type type;
u8 ctrl_reg[8], reg, mask;
type = vreg->logical_type;
ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
if (ret)
return ret;
/* Set up enable pin control. */
if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
|| type == SPMI_REGULATOR_LOGICAL_TYPE_LDO
|| type == SPMI_REGULATOR_LOGICAL_TYPE_VS)
&& !(data->pin_ctrl_enable
& SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
ctrl_reg[SPMI_COMMON_IDX_ENABLE] &=
~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
ctrl_reg[SPMI_COMMON_IDX_ENABLE] |=
data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
}
/* Set up mode pin control. */
if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
|| type == SPMI_REGULATOR_LOGICAL_TYPE_LDO)
&& !(data->pin_ctrl_hpm
& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
ctrl_reg[SPMI_COMMON_IDX_MODE] &=
~SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
ctrl_reg[SPMI_COMMON_IDX_MODE] |=
data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
}
if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS
&& !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
ctrl_reg[SPMI_COMMON_IDX_MODE] &=
~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
ctrl_reg[SPMI_COMMON_IDX_MODE] |=
data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
}
if ((type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO)
&& !(data->pin_ctrl_hpm
& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
ctrl_reg[SPMI_COMMON_IDX_MODE] &=
~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
ctrl_reg[SPMI_COMMON_IDX_MODE] |=
data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
}
/* Write back any control register values that were modified. */
ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
if (ret)
return ret;
/* Set soft start strength and over current protection for VS. */
if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) {
if (data->vs_soft_start_strength
!= SPMI_VS_SOFT_START_STR_HW_DEFAULT) {
reg = data->vs_soft_start_strength
& SPMI_VS_SOFT_START_SEL_MASK;
mask = SPMI_VS_SOFT_START_SEL_MASK;
return spmi_vreg_update_bits(vreg,
SPMI_VS_REG_SOFT_START,
reg, mask);
}
}
return 0;
}
static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg,
struct device_node *node, struct spmi_regulator_init_data *data)
{
/*
* Initialize configuration parameters to use hardware default in case
* no value is specified via device tree.
*/
data->pin_ctrl_enable = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
data->pin_ctrl_hpm = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
data->vs_soft_start_strength = SPMI_VS_SOFT_START_STR_HW_DEFAULT;
/* These bindings are optional, so it is okay if they aren't found. */
of_property_read_u32(node, "qcom,ocp-max-retries",
&vreg->ocp_max_retries);
of_property_read_u32(node, "qcom,ocp-retry-delay",
&vreg->ocp_retry_delay_ms);
of_property_read_u32(node, "qcom,pin-ctrl-enable",
&data->pin_ctrl_enable);
of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm);
of_property_read_u32(node, "qcom,vs-soft-start-strength",
&data->vs_soft_start_strength);
}
static unsigned int spmi_regulator_of_map_mode(unsigned int mode)
{
if (mode == 1)
return REGULATOR_MODE_NORMAL;
if (mode == 2)
return REGULATOR_MODE_FAST;
return REGULATOR_MODE_IDLE;
}
static int spmi_regulator_of_parse(struct device_node *node,
const struct regulator_desc *desc,
struct regulator_config *config)
{
struct spmi_regulator_init_data data = { };
struct spmi_regulator *vreg = config->driver_data;
struct device *dev = config->dev;
int ret;
spmi_regulator_get_dt_config(vreg, node, &data);
if (!vreg->ocp_max_retries)
vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES;
if (!vreg->ocp_retry_delay_ms)
vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS;
ret = spmi_regulator_init_registers(vreg, &data);
if (ret) {
dev_err(dev, "common initialization failed, ret=%d\n", ret);
return ret;
}
switch (vreg->logical_type) {
case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
ret = spmi_regulator_init_slew_rate(vreg);
if (ret)
return ret;
break;
case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426:
ret = spmi_regulator_init_slew_rate_ftsmps426(vreg,
SPMI_FTSMPS426_CLOCK_RATE);
if (ret)
return ret;
break;
case SPMI_REGULATOR_LOGICAL_TYPE_HFS430:
ret = spmi_regulator_init_slew_rate_ftsmps426(vreg,
SPMI_HFS430_CLOCK_RATE);
if (ret)
return ret;
break;
default:
break;
}
if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS)
vreg->ocp_irq = 0;
if (vreg->ocp_irq) {
ret = devm_request_irq(dev, vreg->ocp_irq,
spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
vreg);
if (ret < 0) {
dev_err(dev, "failed to request irq %d, ret=%d\n",
vreg->ocp_irq, ret);
return ret;
}
INIT_DELAYED_WORK(&vreg->ocp_work, spmi_regulator_vs_ocp_work);
}
return 0;
}
static const struct spmi_regulator_data pm8941_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", },
{ "s3", 0x1a00, "vdd_s3", },
{ "s4", 0xa000, },
{ "l1", 0x4000, "vdd_l1_l3", },
{ "l2", 0x4100, "vdd_l2_lvs_1_2_3", },
{ "l3", 0x4200, "vdd_l1_l3", },
{ "l4", 0x4300, "vdd_l4_l11", },
{ "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 },
{ "l6", 0x4500, "vdd_l6_l12_l14_l15", },
{ "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 },
{ "l8", 0x4700, "vdd_l8_l16_l18_19", },
{ "l9", 0x4800, "vdd_l9_l10_l17_l22", },
{ "l10", 0x4900, "vdd_l9_l10_l17_l22", },
{ "l11", 0x4a00, "vdd_l4_l11", },
{ "l12", 0x4b00, "vdd_l6_l12_l14_l15", },
{ "l13", 0x4c00, "vdd_l13_l20_l23_l24", },
{ "l14", 0x4d00, "vdd_l6_l12_l14_l15", },
{ "l15", 0x4e00, "vdd_l6_l12_l14_l15", },
{ "l16", 0x4f00, "vdd_l8_l16_l18_19", },
{ "l17", 0x5000, "vdd_l9_l10_l17_l22", },
{ "l18", 0x5100, "vdd_l8_l16_l18_19", },
{ "l19", 0x5200, "vdd_l8_l16_l18_19", },
{ "l20", 0x5300, "vdd_l13_l20_l23_l24", },
{ "l21", 0x5400, "vdd_l21", },
{ "l22", 0x5500, "vdd_l9_l10_l17_l22", },
{ "l23", 0x5600, "vdd_l13_l20_l23_l24", },
{ "l24", 0x5700, "vdd_l13_l20_l23_l24", },
{ "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", },
{ "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", },
{ "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", },
{ "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", },
{ "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", },
{ }
};
static const struct spmi_regulator_data pm8841_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", NULL, 0x1c08 },
{ "s3", 0x1a00, "vdd_s3", },
{ "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 },
{ "s5", 0x2000, "vdd_s5", NULL, 0x1c08 },
{ "s6", 0x2300, "vdd_s6", NULL, 0x1c08 },
{ "s7", 0x2600, "vdd_s7", NULL, 0x1c08 },
{ "s8", 0x2900, "vdd_s8", NULL, 0x1c08 },
{ }
};
static const struct spmi_regulator_data pm8916_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", },
{ "s3", 0x1a00, "vdd_s3", },
{ "s4", 0x1d00, "vdd_s4", },
{ "l1", 0x4000, "vdd_l1_l3", },
{ "l2", 0x4100, "vdd_l2", },
{ "l3", 0x4200, "vdd_l1_l3", },
{ "l4", 0x4300, "vdd_l4_l5_l6", },
{ "l5", 0x4400, "vdd_l4_l5_l6", },
{ "l6", 0x4500, "vdd_l4_l5_l6", },
{ "l7", 0x4600, "vdd_l7", },
{ "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", },
{ "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", },
{ "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", },
{ "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", },
{ "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", },
{ "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", },
{ "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", },
{ "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", },
{ "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", },
{ "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", },
{ "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", },
{ }
};
static const struct spmi_regulator_data pm8950_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", },
{ "s3", 0x1a00, "vdd_s3", },
{ "s4", 0x1d00, "vdd_s4", },
{ "s5", 0x2000, "vdd_s5", },
{ "s6", 0x2300, "vdd_s6", },
{ "l1", 0x4000, "vdd_l1_l19", },
{ "l2", 0x4100, "vdd_l2_l23", },
{ "l3", 0x4200, "vdd_l3", },
{ "l4", 0x4300, "vdd_l4_l5_l6_l7_l16", },
{ "l5", 0x4400, "vdd_l4_l5_l6_l7_l16", },
{ "l6", 0x4500, "vdd_l4_l5_l6_l7_l16", },
{ "l7", 0x4600, "vdd_l4_l5_l6_l7_l16", },
{ "l8", 0x4700, "vdd_l8_l11_l12_l17_l22", },
{ "l9", 0x4800, "vdd_l9_l10_l13_l14_l15_l18", },
{ "l10", 0x4900, "vdd_l9_l10_l13_l14_l15_l18", },
{ "l11", 0x4a00, "vdd_l8_l11_l12_l17_l22", },
{ "l12", 0x4b00, "vdd_l8_l11_l12_l17_l22", },
{ "l13", 0x4c00, "vdd_l9_l10_l13_l14_l15_l18", },
{ "l14", 0x4d00, "vdd_l9_l10_l13_l14_l15_l18", },
{ "l15", 0x4e00, "vdd_l9_l10_l13_l14_l15_l18", },
{ "l16", 0x4f00, "vdd_l4_l5_l6_l7_l16", },
{ "l17", 0x5000, "vdd_l8_l11_l12_l17_l22", },
{ "l18", 0x5100, "vdd_l9_l10_l13_l14_l15_l18", },
{ "l19", 0x5200, "vdd_l1_l19", },
{ "l20", 0x5300, "vdd_l20", },
{ "l21", 0x5400, "vdd_l21", },
{ "l22", 0x5500, "vdd_l8_l11_l12_l17_l22", },
{ "l23", 0x5600, "vdd_l2_l23", },
{ }
};
static const struct spmi_regulator_data pm8994_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", },
{ "s3", 0x1a00, "vdd_s3", },
{ "s4", 0x1d00, "vdd_s4", },
{ "s5", 0x2000, "vdd_s5", },
{ "s6", 0x2300, "vdd_s6", },
{ "s7", 0x2600, "vdd_s7", },
{ "s8", 0x2900, "vdd_s8", },
{ "s9", 0x2c00, "vdd_s9", },
{ "s10", 0x2f00, "vdd_s10", },
{ "s11", 0x3200, "vdd_s11", },
{ "s12", 0x3500, "vdd_s12", },
{ "l1", 0x4000, "vdd_l1", },
{ "l2", 0x4100, "vdd_l2_l26_l28", },
{ "l3", 0x4200, "vdd_l3_l11", },
{ "l4", 0x4300, "vdd_l4_l27_l31", },
{ "l5", 0x4400, "vdd_l5_l7", },
{ "l6", 0x4500, "vdd_l6_l12_l32", },
{ "l7", 0x4600, "vdd_l5_l7", },
{ "l8", 0x4700, "vdd_l8_l16_l30", },
{ "l9", 0x4800, "vdd_l9_l10_l18_l22", },
{ "l10", 0x4900, "vdd_l9_l10_l18_l22", },
{ "l11", 0x4a00, "vdd_l3_l11", },
{ "l12", 0x4b00, "vdd_l6_l12_l32", },
{ "l13", 0x4c00, "vdd_l13_l19_l23_l24", },
{ "l14", 0x4d00, "vdd_l14_l15", },
{ "l15", 0x4e00, "vdd_l14_l15", },
{ "l16", 0x4f00, "vdd_l8_l16_l30", },
{ "l17", 0x5000, "vdd_l17_l29", },
{ "l18", 0x5100, "vdd_l9_l10_l18_l22", },
{ "l19", 0x5200, "vdd_l13_l19_l23_l24", },
{ "l20", 0x5300, "vdd_l20_l21", },
{ "l21", 0x5400, "vdd_l20_l21", },
{ "l22", 0x5500, "vdd_l9_l10_l18_l22", },
{ "l23", 0x5600, "vdd_l13_l19_l23_l24", },
{ "l24", 0x5700, "vdd_l13_l19_l23_l24", },
{ "l25", 0x5800, "vdd_l25", },
{ "l26", 0x5900, "vdd_l2_l26_l28", },
{ "l27", 0x5a00, "vdd_l4_l27_l31", },
{ "l28", 0x5b00, "vdd_l2_l26_l28", },
{ "l29", 0x5c00, "vdd_l17_l29", },
{ "l30", 0x5d00, "vdd_l8_l16_l30", },
{ "l31", 0x5e00, "vdd_l4_l27_l31", },
{ "l32", 0x5f00, "vdd_l6_l12_l32", },
{ "lvs1", 0x8000, "vdd_lvs_1_2", },
{ "lvs2", 0x8100, "vdd_lvs_1_2", },
{ }
};
static const struct spmi_regulator_data pmi8994_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", },
{ "s3", 0x1a00, "vdd_s3", },
{ "l1", 0x4000, "vdd_l1", },
{ }
};
static const struct spmi_regulator_data pm8004_regulators[] = {
{ "s2", 0x1700, "vdd_s2", },
{ "s5", 0x2000, "vdd_s5", },
{ }
};
static const struct spmi_regulator_data pm8005_regulators[] = {
{ "s1", 0x1400, "vdd_s1", },
{ "s2", 0x1700, "vdd_s2", },
{ "s3", 0x1a00, "vdd_s3", },
{ "s4", 0x1d00, "vdd_s4", },
{ }
};
static const struct spmi_regulator_data pms405_regulators[] = {
{ "s3", 0x1a00, "vdd_s3"},
{ }
};
static const struct of_device_id qcom_spmi_regulator_match[] = {
{ .compatible = "qcom,pm8004-regulators", .data = &pm8004_regulators },
{ .compatible = "qcom,pm8005-regulators", .data = &pm8005_regulators },
{ .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators },
{ .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators },
{ .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators },
{ .compatible = "qcom,pm8950-regulators", .data = &pm8950_regulators },
{ .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators },
{ .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators },
{ .compatible = "qcom,pms405-regulators", .data = &pms405_regulators },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match);
static int qcom_spmi_regulator_probe(struct platform_device *pdev)
{
const struct spmi_regulator_data *reg;
const struct spmi_voltage_range *range;
const struct of_device_id *match;
struct regulator_config config = { };
struct regulator_dev *rdev;
struct spmi_regulator *vreg;
struct regmap *regmap;
const char *name;
struct device *dev = &pdev->dev;
struct device_node *node = pdev->dev.of_node;
struct device_node *syscon, *reg_node;
struct property *reg_prop;
int ret, lenp;
struct list_head *vreg_list;
vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL);
if (!vreg_list)
return -ENOMEM;
INIT_LIST_HEAD(vreg_list);
platform_set_drvdata(pdev, vreg_list);
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
match = of_match_device(qcom_spmi_regulator_match, &pdev->dev);
if (!match)
return -ENODEV;
if (of_find_property(node, "qcom,saw-reg", &lenp)) {
syscon = of_parse_phandle(node, "qcom,saw-reg", 0);
saw_regmap = syscon_node_to_regmap(syscon);
of_node_put(syscon);
if (IS_ERR(saw_regmap))
dev_err(dev, "ERROR reading SAW regmap\n");
}
for (reg = match->data; reg->name; reg++) {
if (saw_regmap) {
reg_node = of_get_child_by_name(node, reg->name);
reg_prop = of_find_property(reg_node, "qcom,saw-slave",
&lenp);
of_node_put(reg_node);
if (reg_prop)
continue;
}
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg)
return -ENOMEM;
vreg->dev = dev;
vreg->base = reg->base;
vreg->regmap = regmap;
if (reg->ocp) {
vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp);
if (vreg->ocp_irq < 0) {
ret = vreg->ocp_irq;
goto err;
}
}
vreg->desc.id = -1;
vreg->desc.owner = THIS_MODULE;
vreg->desc.type = REGULATOR_VOLTAGE;
vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE;
vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK;
vreg->desc.enable_val = SPMI_COMMON_ENABLE;
vreg->desc.name = name = reg->name;
vreg->desc.supply_name = reg->supply;
vreg->desc.of_match = reg->name;
vreg->desc.of_parse_cb = spmi_regulator_of_parse;
vreg->desc.of_map_mode = spmi_regulator_of_map_mode;
ret = spmi_regulator_match(vreg, reg->force_type);
if (ret)
continue;
if (saw_regmap) {
reg_node = of_get_child_by_name(node, reg->name);
reg_prop = of_find_property(reg_node, "qcom,saw-leader",
&lenp);
of_node_put(reg_node);
if (reg_prop) {
spmi_saw_ops = *(vreg->desc.ops);
spmi_saw_ops.set_voltage_sel =
spmi_regulator_saw_set_voltage;
vreg->desc.ops = &spmi_saw_ops;
}
}
if (vreg->set_points && vreg->set_points->count == 1) {
/* since there is only one range */
range = vreg->set_points->range;
vreg->desc.uV_step = range->step_uV;
}
config.dev = dev;
config.driver_data = vreg;
config.regmap = regmap;
rdev = devm_regulator_register(dev, &vreg->desc, &config);
if (IS_ERR(rdev)) {
dev_err(dev, "failed to register %s\n", name);
ret = PTR_ERR(rdev);
goto err;
}
INIT_LIST_HEAD(&vreg->node);
list_add(&vreg->node, vreg_list);
}
return 0;
err:
list_for_each_entry(vreg, vreg_list, node)
if (vreg->ocp_irq)
cancel_delayed_work_sync(&vreg->ocp_work);
return ret;
}
static int qcom_spmi_regulator_remove(struct platform_device *pdev)
{
struct spmi_regulator *vreg;
struct list_head *vreg_list = platform_get_drvdata(pdev);
list_for_each_entry(vreg, vreg_list, node)
if (vreg->ocp_irq)
cancel_delayed_work_sync(&vreg->ocp_work);
return 0;
}
static struct platform_driver qcom_spmi_regulator_driver = {
.driver = {
.name = "qcom-spmi-regulator",
.of_match_table = qcom_spmi_regulator_match,
},
.probe = qcom_spmi_regulator_probe,
.remove = qcom_spmi_regulator_remove,
};
module_platform_driver(qcom_spmi_regulator_driver);
MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:qcom-spmi-regulator");