// SPDX-License-Identifier: GPL-2.0-only
/*
* Common code for Intel Running Average Power Limit (RAPL) support.
* Copyright (c) 2019, Intel Corporation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
#include <linux/powercap.h>
#include <linux/suspend.h>
#include <linux/intel_rapl.h>
#include <linux/processor.h>
#include <linux/platform_device.h>
#include <asm/iosf_mbi.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
/* bitmasks for RAPL MSRs, used by primitive access functions */
#define ENERGY_STATUS_MASK 0xffffffff
#define POWER_LIMIT1_MASK 0x7FFF
#define POWER_LIMIT1_ENABLE BIT(15)
#define POWER_LIMIT1_CLAMP BIT(16)
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
#define POWER_HIGH_LOCK BIT_ULL(63)
#define POWER_LOW_LOCK BIT(31)
#define POWER_LIMIT4_MASK 0x1FFF
#define TIME_WINDOW1_MASK (0x7FULL<<17)
#define TIME_WINDOW2_MASK (0x7FULL<<49)
#define POWER_UNIT_OFFSET 0
#define POWER_UNIT_MASK 0x0F
#define ENERGY_UNIT_OFFSET 0x08
#define ENERGY_UNIT_MASK 0x1F00
#define TIME_UNIT_OFFSET 0x10
#define TIME_UNIT_MASK 0xF0000
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
#define PP_POLICY_MASK 0x1F
/*
* SPR has different layout for Psys Domain PowerLimit registers.
* There are 17 bits of PL1 and PL2 instead of 15 bits.
* The Enable bits and TimeWindow bits are also shifted as a result.
*/
#define PSYS_POWER_LIMIT1_MASK 0x1FFFF
#define PSYS_POWER_LIMIT1_ENABLE BIT(17)
#define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
#define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
#define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
#define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
/* bitmasks for RAPL TPMI, used by primitive access functions */
#define TPMI_POWER_LIMIT_MASK 0x3FFFF
#define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62)
#define TPMI_TIME_WINDOW_MASK (0x7FULL<<18)
#define TPMI_INFO_SPEC_MASK 0x3FFFF
#define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18)
#define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36)
#define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54)
/* Non HW constants */
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
#define RAPL_PRIMITIVE_DUMMY BIT(2)
#define TIME_WINDOW_MAX_MSEC 40000
#define TIME_WINDOW_MIN_MSEC 250
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
enum unit_type {
ARBITRARY_UNIT, /* no translation */
POWER_UNIT,
ENERGY_UNIT,
TIME_UNIT,
};
/* per domain data, some are optional */
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
#define DOMAIN_STATE_INACTIVE BIT(0)
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
static const char *pl_names[NR_POWER_LIMITS] = {
[POWER_LIMIT1] = "long_term",
[POWER_LIMIT2] = "short_term",
[POWER_LIMIT4] = "peak_power",
};
enum pl_prims {
PL_ENABLE,
PL_CLAMP,
PL_LIMIT,
PL_TIME_WINDOW,
PL_MAX_POWER,
PL_LOCK,
};
static bool is_pl_valid(struct rapl_domain *rd, int pl)
{
if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
return false;
return rd->rpl[pl].name ? true : false;
}
static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
{
if (rd->rp->priv->type == RAPL_IF_TPMI) {
if (pl == POWER_LIMIT1)
return PL1_LOCK;
if (pl == POWER_LIMIT2)
return PL2_LOCK;
if (pl == POWER_LIMIT4)
return PL4_LOCK;
}
/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
if (pl == POWER_LIMIT4)
return -EINVAL;
/*
* Power Limit register that supports two power limits has a different
* bit position for the Lock bit.
*/
if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
return FW_HIGH_LOCK;
return FW_LOCK;
}
static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
{
switch (pl) {
case POWER_LIMIT1:
if (prim == PL_ENABLE)
return PL1_ENABLE;
if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
return PL1_CLAMP;
if (prim == PL_LIMIT)
return POWER_LIMIT1;
if (prim == PL_TIME_WINDOW)
return TIME_WINDOW1;
if (prim == PL_MAX_POWER)
return THERMAL_SPEC_POWER;
if (prim == PL_LOCK)
return get_pl_lock_prim(rd, pl);
return -EINVAL;
case POWER_LIMIT2:
if (prim == PL_ENABLE)
return PL2_ENABLE;
if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
return PL2_CLAMP;
if (prim == PL_LIMIT)
return POWER_LIMIT2;
if (prim == PL_TIME_WINDOW)
return TIME_WINDOW2;
if (prim == PL_MAX_POWER)
return MAX_POWER;
if (prim == PL_LOCK)
return get_pl_lock_prim(rd, pl);
return -EINVAL;
case POWER_LIMIT4:
if (prim == PL_LIMIT)
return POWER_LIMIT4;
if (prim == PL_ENABLE)
return PL4_ENABLE;
/* PL4 would be around two times PL2, use same prim as PL2. */
if (prim == PL_MAX_POWER)
return MAX_POWER;
if (prim == PL_LOCK)
return get_pl_lock_prim(rd, pl);
return -EINVAL;
default:
return -EINVAL;
}
}
#define power_zone_to_rapl_domain(_zone) \
container_of(_zone, struct rapl_domain, power_zone)
struct rapl_defaults {
u8 floor_freq_reg_addr;
int (*check_unit)(struct rapl_domain *rd);
void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
bool to_raw);
unsigned int dram_domain_energy_unit;
unsigned int psys_domain_energy_unit;
bool spr_psys_bits;
};
static struct rapl_defaults *defaults_msr;
static const struct rapl_defaults defaults_tpmi;
static struct rapl_defaults *get_defaults(struct rapl_package *rp)
{
return rp->priv->defaults;
}
/* Sideband MBI registers */
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
#define PACKAGE_PLN_INT_SAVED BIT(0)
#define MAX_PRIM_NAME (32)
/* per domain data. used to describe individual knobs such that access function
* can be consolidated into one instead of many inline functions.
*/
struct rapl_primitive_info {
const char *name;
u64 mask;
int shift;
enum rapl_domain_reg_id id;
enum unit_type unit;
u32 flag;
};
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
.name = #p, \
.mask = m, \
.shift = s, \
.id = i, \
.unit = u, \
.flag = f \
}
static void rapl_init_domains(struct rapl_package *rp);
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
bool xlate, u64 *data);
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value);
static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
enum pl_prims pl_prim,
bool xlate, u64 *data);
static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
enum pl_prims pl_prim,
unsigned long long value);
static u64 rapl_unit_xlate(struct rapl_domain *rd,
enum unit_type type, u64 value, int to_raw);
static void package_power_limit_irq_save(struct rapl_package *rp);
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
static const char *const rapl_domain_names[] = {
"package",
"core",
"uncore",
"dram",
"psys",
};
static int get_energy_counter(struct powercap_zone *power_zone,
u64 *energy_raw)
{
struct rapl_domain *rd;
u64 energy_now;
/* prevent CPU hotplug, make sure the RAPL domain does not go
* away while reading the counter.
*/
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
*energy_raw = energy_now;
cpus_read_unlock();
return 0;
}
cpus_read_unlock();
return -EIO;
}
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
return 0;
}
static int release_zone(struct powercap_zone *power_zone)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
struct rapl_package *rp = rd->rp;
/* package zone is the last zone of a package, we can free
* memory here since all children has been unregistered.
*/
if (rd->id == RAPL_DOMAIN_PACKAGE) {
kfree(rd);
rp->domains = NULL;
}
return 0;
}
static int find_nr_power_limit(struct rapl_domain *rd)
{
int i, nr_pl = 0;
for (i = 0; i < NR_POWER_LIMITS; i++) {
if (is_pl_valid(rd, i))
nr_pl++;
}
return nr_pl;
}
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
struct rapl_defaults *defaults = get_defaults(rd->rp);
int ret;
cpus_read_lock();
ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
if (!ret && defaults->set_floor_freq)
defaults->set_floor_freq(rd, mode);
cpus_read_unlock();
return ret;
}
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
u64 val;
int ret;
if (rd->rpl[POWER_LIMIT1].locked) {
*mode = false;
return 0;
}
cpus_read_lock();
ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
if (!ret)
*mode = val;
cpus_read_unlock();
return ret;
}
/* per RAPL domain ops, in the order of rapl_domain_type */
static const struct powercap_zone_ops zone_ops[] = {
/* RAPL_DOMAIN_PACKAGE */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP0 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP1 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_DRAM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PLATFORM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
};
/*
* Constraint index used by powercap can be different than power limit (PL)
* index in that some PLs maybe missing due to non-existent MSRs. So we
* need to convert here by finding the valid PLs only (name populated).
*/
static int contraint_to_pl(struct rapl_domain *rd, int cid)
{
int i, j;
for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
if (is_pl_valid(rd, i) && j++ == cid) {
pr_debug("%s: index %d\n", __func__, i);
return i;
}
}
pr_err("Cannot find matching power limit for constraint %d\n", cid);
return -EINVAL;
}
static int set_power_limit(struct powercap_zone *power_zone, int cid,
u64 power_limit)
{
struct rapl_domain *rd;
struct rapl_package *rp;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
rp = rd->rp;
ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
if (!ret)
package_power_limit_irq_save(rp);
cpus_read_unlock();
return ret;
}
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
if (!ret)
*data = val;
cpus_read_unlock();
return ret;
}
static int set_time_window(struct powercap_zone *power_zone, int cid,
u64 window)
{
struct rapl_domain *rd;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
cpus_read_unlock();
return ret;
}
static int get_time_window(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
if (!ret)
*data = val;
cpus_read_unlock();
return ret;
}
static const char *get_constraint_name(struct powercap_zone *power_zone,
int cid)
{
struct rapl_domain *rd;
int id;
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id >= 0)
return rd->rpl[id].name;
return NULL;
}
static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
{
struct rapl_domain *rd;
u64 val;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
if (!ret)
*data = val;
/* As a generalization rule, PL4 would be around two times PL2. */
if (id == POWER_LIMIT4)
*data = *data * 2;
cpus_read_unlock();
return ret;
}
static const struct powercap_zone_constraint_ops constraint_ops = {
.set_power_limit_uw = set_power_limit,
.get_power_limit_uw = get_current_power_limit,
.set_time_window_us = set_time_window,
.get_time_window_us = get_time_window,
.get_max_power_uw = get_max_power,
.get_name = get_constraint_name,
};
/* Return the id used for read_raw/write_raw callback */
static int get_rid(struct rapl_package *rp)
{
return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
}
/* called after domain detection and package level data are set */
static void rapl_init_domains(struct rapl_package *rp)
{
enum rapl_domain_type i;
enum rapl_domain_reg_id j;
struct rapl_domain *rd = rp->domains;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
unsigned int mask = rp->domain_map & (1 << i);
int t;
if (!mask)
continue;
rd->rp = rp;
if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
rp->id);
} else {
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
rapl_domain_names[i]);
}
rd->id = i;
/* PL1 is supported by default */
rp->priv->limits[i] |= BIT(POWER_LIMIT1);
for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
if (rp->priv->limits[i] & BIT(t))
rd->rpl[t].name = pl_names[t];
}
for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
rd->regs[j] = rp->priv->regs[i][j];
rd++;
}
}
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
u64 value, int to_raw)
{
u64 units = 1;
struct rapl_defaults *defaults = get_defaults(rd->rp);
u64 scale = 1;
switch (type) {
case POWER_UNIT:
units = rd->power_unit;
break;
case ENERGY_UNIT:
scale = ENERGY_UNIT_SCALE;
units = rd->energy_unit;
break;
case TIME_UNIT:
return defaults->compute_time_window(rd, value, to_raw);
case ARBITRARY_UNIT:
default:
return value;
}
if (to_raw)
return div64_u64(value, units) * scale;
value *= units;
return div64_u64(value, scale);
}
/* RAPL primitives for MSR and MMIO I/F */
static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
/* name, mask, shift, msr index, unit divisor */
[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
/* non-hardware */
[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
RAPL_PRIMITIVE_DERIVED),
};
/* RAPL primitives for TPMI I/F */
static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
/* name, mask, shift, msr index, unit divisor */
[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
/* non-hardware */
[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
};
static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
{
struct rapl_primitive_info *rpi = rp->priv->rpi;
if (prim < 0 || prim > NR_RAPL_PRIMITIVES || !rpi)
return NULL;
return &rpi[prim];
}
static int rapl_config(struct rapl_package *rp)
{
switch (rp->priv->type) {
/* MMIO I/F shares the same register layout as MSR registers */
case RAPL_IF_MMIO:
case RAPL_IF_MSR:
rp->priv->defaults = (void *)defaults_msr;
rp->priv->rpi = (void *)rpi_msr;
break;
case RAPL_IF_TPMI:
rp->priv->defaults = (void *)&defaults_tpmi;
rp->priv->rpi = (void *)rpi_tpmi;
break;
default:
return -EINVAL;
}
return 0;
}
static enum rapl_primitives
prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
{
struct rapl_defaults *defaults = get_defaults(rd->rp);
if (!defaults->spr_psys_bits)
return prim;
if (rd->id != RAPL_DOMAIN_PLATFORM)
return prim;
switch (prim) {
case POWER_LIMIT1:
return PSYS_POWER_LIMIT1;
case POWER_LIMIT2:
return PSYS_POWER_LIMIT2;
case PL1_ENABLE:
return PSYS_PL1_ENABLE;
case PL2_ENABLE:
return PSYS_PL2_ENABLE;
case TIME_WINDOW1:
return PSYS_TIME_WINDOW1;
case TIME_WINDOW2:
return PSYS_TIME_WINDOW2;
default:
return prim;
}
}
/* Read primitive data based on its related struct rapl_primitive_info.
* if xlate flag is set, return translated data based on data units, i.e.
* time, energy, and power.
* RAPL MSRs are non-architectual and are laid out not consistently across
* domains. Here we use primitive info to allow writing consolidated access
* functions.
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
* is pre-assigned based on RAPL unit MSRs read at init time.
* 63-------------------------- 31--------------------------- 0
* | xxxxx (mask) |
* | |<- shift ----------------|
* 63-------------------------- 31--------------------------- 0
*/
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim, bool xlate, u64 *data)
{
u64 value;
enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
struct reg_action ra;
if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
return -EINVAL;
ra.reg = rd->regs[rpi->id];
if (!ra.reg)
return -EINVAL;
/* non-hardware data are collected by the polling thread */
if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
*data = rd->rdd.primitives[prim];
return 0;
}
ra.mask = rpi->mask;
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg, rd->rp->name, rd->name);
return -EIO;
}
value = ra.value >> rpi->shift;
if (xlate)
*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
else
*data = value;
return 0;
}
/* Similar use of primitive info in the read counterpart */
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value)
{
enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
u64 bits;
struct reg_action ra;
int ret;
if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
return -EINVAL;
bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
bits <<= rpi->shift;
bits &= rpi->mask;
memset(&ra, 0, sizeof(ra));
ra.reg = rd->regs[rpi->id];
ra.mask = rpi->mask;
ra.value = bits;
ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
return ret;
}
static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
enum pl_prims pl_prim, bool xlate, u64 *data)
{
enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
if (!is_pl_valid(rd, pl))
return -EINVAL;
return rapl_read_data_raw(rd, prim, xlate, data);
}
static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
enum pl_prims pl_prim,
unsigned long long value)
{
enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
if (!is_pl_valid(rd, pl))
return -EINVAL;
if (rd->rpl[pl].locked) {
pr_warn("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
return -EACCES;
}
return rapl_write_data_raw(rd, prim, value);
}
/*
* Raw RAPL data stored in MSRs are in certain scales. We need to
* convert them into standard units based on the units reported in
* the RAPL unit MSRs. This is specific to CPUs as the method to
* calculate units differ on different CPUs.
* We convert the units to below format based on CPUs.
* i.e.
* energy unit: picoJoules : Represented in picoJoules by default
* power unit : microWatts : Represented in milliWatts by default
* time unit : microseconds: Represented in seconds by default
*/
static int rapl_check_unit_core(struct rapl_domain *rd)
{
struct reg_action ra;
u32 value;
ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
ra.mask = ~0;
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
ra.reg, rd->rp->name, rd->name);
return -ENODEV;
}
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rd->power_unit = 1000000 / (1 << value);
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rd->time_unit = 1000000 / (1 << value);
pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
return 0;
}
static int rapl_check_unit_atom(struct rapl_domain *rd)
{
struct reg_action ra;
u32 value;
ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
ra.mask = ~0;
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
ra.reg, rd->rp->name, rd->name);
return -ENODEV;
}
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rd->power_unit = (1 << value) * 1000;
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rd->time_unit = 1000000 / (1 << value);
pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
return 0;
}
static void power_limit_irq_save_cpu(void *info)
{
u32 l, h = 0;
struct rapl_package *rp = (struct rapl_package *)info;
/* save the state of PLN irq mask bit before disabling it */
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
}
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* REVISIT:
* When package power limit is set artificially low by RAPL, LVT
* thermal interrupt for package power limit should be ignored
* since we are not really exceeding the real limit. The intention
* is to avoid excessive interrupts while we are trying to save power.
* A useful feature might be routing the package_power_limit interrupt
* to userspace via eventfd. once we have a usecase, this is simple
* to do by adding an atomic notifier.
*/
static void package_power_limit_irq_save(struct rapl_package *rp)
{
if (rp->lead_cpu < 0)
return;
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
}
/*
* Restore per package power limit interrupt enable state. Called from cpu
* hotplug code on package removal.
*/
static void package_power_limit_irq_restore(struct rapl_package *rp)
{
u32 l, h;
if (rp->lead_cpu < 0)
return;
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
/* irq enable state not saved, nothing to restore */
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
return;
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
l |= PACKAGE_THERM_INT_PLN_ENABLE;
else
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
{
int i;
/* always enable clamp such that p-state can go below OS requested
* range. power capping priority over guranteed frequency.
*/
rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
rapl_write_pl_data(rd, i, PL_ENABLE, mode);
rapl_write_pl_data(rd, i, PL_CLAMP, mode);
}
}
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
{
static u32 power_ctrl_orig_val;
struct rapl_defaults *defaults = get_defaults(rd->rp);
u32 mdata;
if (!defaults->floor_freq_reg_addr) {
pr_err("Invalid floor frequency config register\n");
return;
}
if (!power_ctrl_orig_val)
iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
defaults->floor_freq_reg_addr,
&power_ctrl_orig_val);
mdata = power_ctrl_orig_val;
if (enable) {
mdata &= ~(0x7f << 8);
mdata |= 1 << 8;
}
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
defaults->floor_freq_reg_addr, mdata);
}
static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
bool to_raw)
{
u64 f, y; /* fraction and exp. used for time unit */
/*
* Special processing based on 2^Y*(1+F/4), refer
* to Intel Software Developer's manual Vol.3B: CH 14.9.3.
*/
if (!to_raw) {
f = (value & 0x60) >> 5;
y = value & 0x1f;
value = (1 << y) * (4 + f) * rd->time_unit / 4;
} else {
if (value < rd->time_unit)
return 0;
do_div(value, rd->time_unit);
y = ilog2(value);
/*
* The target hardware field is 7 bits wide, so return all ones
* if the exponent is too large.
*/
if (y > 0x1f)
return 0x7f;
f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
value = (y & 0x1f) | ((f & 0x3) << 5);
}
return value;
}
static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
bool to_raw)
{
/*
* Atom time unit encoding is straight forward val * time_unit,
* where time_unit is default to 1 sec. Never 0.
*/
if (!to_raw)
return (value) ? value * rd->time_unit : rd->time_unit;
value = div64_u64(value, rd->time_unit);
return value;
}
/* TPMI Unit register has different layout */
#define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET
#define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK
#define TPMI_ENERGY_UNIT_OFFSET 0x06
#define TPMI_ENERGY_UNIT_MASK 0x7C0
#define TPMI_TIME_UNIT_OFFSET 0x0C
#define TPMI_TIME_UNIT_MASK 0xF000
static int rapl_check_unit_tpmi(struct rapl_domain *rd)
{
struct reg_action ra;
u32 value;
ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
ra.mask = ~0;
if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
ra.reg, rd->rp->name, rd->name);
return -ENODEV;
}
value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
rd->power_unit = 1000000 / (1 << value);
value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
rd->time_unit = 1000000 / (1 << value);
pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
return 0;
}
static const struct rapl_defaults defaults_tpmi = {
.check_unit = rapl_check_unit_tpmi,
/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
};
static const struct rapl_defaults rapl_defaults_core = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
};
static const struct rapl_defaults rapl_defaults_hsw_server = {
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
.dram_domain_energy_unit = 15300,
};
static const struct rapl_defaults rapl_defaults_spr_server = {
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
.psys_domain_energy_unit = 1000000000,
.spr_psys_bits = true,
};
static const struct rapl_defaults rapl_defaults_byt = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_tng = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_ann = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_cht = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_amd = {
.check_unit = rapl_check_unit_core,
};
static const struct x86_cpu_id rapl_ids[] __initconst = {
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &rapl_defaults_spr_server),
X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
{}
};
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
/* Read once for all raw primitive data for domains */
static void rapl_update_domain_data(struct rapl_package *rp)
{
int dmn, prim;
u64 val;
for (dmn = 0; dmn < rp->nr_domains; dmn++) {
pr_debug("update %s domain %s data\n", rp->name,
rp->domains[dmn].name);
/* exclude non-raw primitives */
for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
struct rapl_primitive_info *rpi = get_rpi(rp, prim);
if (!rapl_read_data_raw(&rp->domains[dmn], prim,
rpi->unit, &val))
rp->domains[dmn].rdd.primitives[prim] = val;
}
}
}
static int rapl_package_register_powercap(struct rapl_package *rp)
{
struct rapl_domain *rd;
struct powercap_zone *power_zone = NULL;
int nr_pl, ret;
/* Update the domain data of the new package */
rapl_update_domain_data(rp);
/* first we register package domain as the parent zone */
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
if (rd->id == RAPL_DOMAIN_PACKAGE) {
nr_pl = find_nr_power_limit(rd);
pr_debug("register package domain %s\n", rp->name);
power_zone = powercap_register_zone(&rd->power_zone,
rp->priv->control_type, rp->name,
NULL, &zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power zone %s\n",
rp->name);
return PTR_ERR(power_zone);
}
/* track parent zone in per package/socket data */
rp->power_zone = power_zone;
/* done, only one package domain per socket */
break;
}
}
if (!power_zone) {
pr_err("no package domain found, unknown topology!\n");
return -ENODEV;
}
/* now register domains as children of the socket/package */
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
struct powercap_zone *parent = rp->power_zone;
if (rd->id == RAPL_DOMAIN_PACKAGE)
continue;
if (rd->id == RAPL_DOMAIN_PLATFORM)
parent = NULL;
/* number of power limits per domain varies */
nr_pl = find_nr_power_limit(rd);
power_zone = powercap_register_zone(&rd->power_zone,
rp->priv->control_type,
rd->name, parent,
&zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power_zone, %s:%s\n",
rp->name, rd->name);
ret = PTR_ERR(power_zone);
goto err_cleanup;
}
}
return 0;
err_cleanup:
/*
* Clean up previously initialized domains within the package if we
* failed after the first domain setup.
*/
while (--rd >= rp->domains) {
pr_debug("unregister %s domain %s\n", rp->name, rd->name);
powercap_unregister_zone(rp->priv->control_type,
&rd->power_zone);
}
return ret;
}
static int rapl_check_domain(int domain, struct rapl_package *rp)
{
struct reg_action ra;
switch (domain) {
case RAPL_DOMAIN_PACKAGE:
case RAPL_DOMAIN_PP0:
case RAPL_DOMAIN_PP1:
case RAPL_DOMAIN_DRAM:
case RAPL_DOMAIN_PLATFORM:
ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
break;
default:
pr_err("invalid domain id %d\n", domain);
return -EINVAL;
}
/* make sure domain counters are available and contains non-zero
* values, otherwise skip it.
*/
ra.mask = ENERGY_STATUS_MASK;
if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
return -ENODEV;
return 0;
}
/*
* Get per domain energy/power/time unit.
* RAPL Interfaces without per domain unit register will use the package
* scope unit register to set per domain units.
*/
static int rapl_get_domain_unit(struct rapl_domain *rd)
{
struct rapl_defaults *defaults = get_defaults(rd->rp);
int ret;
if (!rd->regs[RAPL_DOMAIN_REG_UNIT]) {
if (!rd->rp->priv->reg_unit) {
pr_err("No valid Unit register found\n");
return -ENODEV;
}
rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
}
if (!defaults->check_unit) {
pr_err("missing .check_unit() callback\n");
return -ENODEV;
}
ret = defaults->check_unit(rd);
if (ret)
return ret;
if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
rd->energy_unit = defaults->dram_domain_energy_unit;
if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
rd->energy_unit = defaults->psys_domain_energy_unit;
return 0;
}
/*
* Check if power limits are available. Two cases when they are not available:
* 1. Locked by BIOS, in this case we still provide read-only access so that
* users can see what limit is set by the BIOS.
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
* exist at all. In this case, we do not show the constraints in powercap.
*
* Called after domains are detected and initialized.
*/
static void rapl_detect_powerlimit(struct rapl_domain *rd)
{
u64 val64;
int i;
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
if (val64) {
rd->rpl[i].locked = true;
pr_info("%s:%s:%s locked by BIOS\n",
rd->rp->name, rd->name, pl_names[i]);
}
}
if (rapl_read_pl_data(rd, i, PL_ENABLE, false, &val64))
rd->rpl[i].name = NULL;
}
}
/* Detect active and valid domains for the given CPU, caller must
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
*/
static int rapl_detect_domains(struct rapl_package *rp)
{
struct rapl_domain *rd;
int i;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
/* use physical package id to read counters */
if (!rapl_check_domain(i, rp)) {
rp->domain_map |= 1 << i;
pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
}
}
rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
if (!rp->nr_domains) {
pr_debug("no valid rapl domains found in %s\n", rp->name);
return -ENODEV;
}
pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
GFP_KERNEL);
if (!rp->domains)
return -ENOMEM;
rapl_init_domains(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
rapl_get_domain_unit(rd);
rapl_detect_powerlimit(rd);
}
return 0;
}
/* called from CPU hotplug notifier, hotplug lock held */
void rapl_remove_package(struct rapl_package *rp)
{
struct rapl_domain *rd, *rd_package = NULL;
package_power_limit_irq_restore(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
int i;
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
rapl_write_pl_data(rd, i, PL_ENABLE, 0);
rapl_write_pl_data(rd, i, PL_CLAMP, 0);
}
if (rd->id == RAPL_DOMAIN_PACKAGE) {
rd_package = rd;
continue;
}
pr_debug("remove package, undo power limit on %s: %s\n",
rp->name, rd->name);
powercap_unregister_zone(rp->priv->control_type,
&rd->power_zone);
}
/* do parent zone last */
powercap_unregister_zone(rp->priv->control_type,
&rd_package->power_zone);
list_del(&rp->plist);
kfree(rp);
}
EXPORT_SYMBOL_GPL(rapl_remove_package);
/* caller to ensure CPU hotplug lock is held */
struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
{
struct rapl_package *rp;
int uid;
if (id_is_cpu)
uid = topology_logical_die_id(id);
else
uid = id;
list_for_each_entry(rp, &rapl_packages, plist) {
if (rp->id == uid
&& rp->priv->control_type == priv->control_type)
return rp;
}
return NULL;
}
EXPORT_SYMBOL_GPL(rapl_find_package_domain);
/* called from CPU hotplug notifier, hotplug lock held */
struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
{
struct rapl_package *rp;
int ret;
rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
if (!rp)
return ERR_PTR(-ENOMEM);
if (id_is_cpu) {
rp->id = topology_logical_die_id(id);
rp->lead_cpu = id;
if (topology_max_die_per_package() > 1)
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
topology_physical_package_id(id), topology_die_id(id));
else
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
topology_physical_package_id(id));
} else {
rp->id = id;
rp->lead_cpu = -1;
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
}
rp->priv = priv;
ret = rapl_config(rp);
if (ret)
goto err_free_package;
/* check if the package contains valid domains */
if (rapl_detect_domains(rp)) {
ret = -ENODEV;
goto err_free_package;
}
ret = rapl_package_register_powercap(rp);
if (!ret) {
INIT_LIST_HEAD(&rp->plist);
list_add(&rp->plist, &rapl_packages);
return rp;
}
err_free_package:
kfree(rp->domains);
kfree(rp);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(rapl_add_package);
static void power_limit_state_save(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int ret, i;
cpus_read_lock();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
}
}
cpus_read_unlock();
}
static void power_limit_state_restore(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int i;
cpus_read_lock();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
if (rd->rpl[i].last_power_limit)
rapl_write_pl_data(rd, i, PL_LIMIT,
rd->rpl[i].last_power_limit);
}
cpus_read_unlock();
}
static int rapl_pm_callback(struct notifier_block *nb,
unsigned long mode, void *_unused)
{
switch (mode) {
case PM_SUSPEND_PREPARE:
power_limit_state_save();
break;
case PM_POST_SUSPEND:
power_limit_state_restore();
break;
}
return NOTIFY_OK;
}
static struct notifier_block rapl_pm_notifier = {
.notifier_call = rapl_pm_callback,
};
static struct platform_device *rapl_msr_platdev;
static int __init rapl_init(void)
{
const struct x86_cpu_id *id;
int ret;
id = x86_match_cpu(rapl_ids);
if (id) {
defaults_msr = (struct rapl_defaults *)id->driver_data;
rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
if (!rapl_msr_platdev)
return -ENOMEM;
ret = platform_device_add(rapl_msr_platdev);
if (ret) {
platform_device_put(rapl_msr_platdev);
return ret;
}
}
ret = register_pm_notifier(&rapl_pm_notifier);
if (ret && rapl_msr_platdev) {
platform_device_del(rapl_msr_platdev);
platform_device_put(rapl_msr_platdev);
}
return ret;
}
static void __exit rapl_exit(void)
{
platform_device_unregister(rapl_msr_platdev);
unregister_pm_notifier(&rapl_pm_notifier);
}
fs_initcall(rapl_init);
module_exit(rapl_exit);
MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
MODULE_LICENSE("GPL v2");