summaryrefslogblamecommitdiff
path: root/drivers/phy/xilinx/phy-zynqmp.c
blob: f478d8a17115b13e998692a2840e5bdca00e29ad (plain) (tree)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

















































































































































































































                                                                               
                         










                                                        
                                   




















































































































































































































































































































































































































                                                                                  


                                                  






























































































































































































                                                                                
                                                            

                                                          
                       




                                                                 


                                                       


                 
                                                           




                                                          






                                                          



















                                                                    





                                                       
 











                                                              
                








                                                                               





                                                                                 



                                 





                                              
















                                                                              

                                         



                 





                                                            







                                                     
                       






































                                                                                

                                           









                                                                           

                                        

                 





                                                       






















                                                                   
// SPDX-License-Identifier: GPL-2.0
/*
 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
 *
 * Copyright (C) 2018-2020 Xilinx Inc.
 *
 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
 *
 * This driver is tested for USB, SATA and Display Port currently.
 * Other controllers PCIe and SGMII should also work but that is
 * experimental as of now.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#include <dt-bindings/phy/phy.h>

/*
 * Lane Registers
 */

/* TX De-emphasis parameters */
#define L0_TX_ANA_TM_18			0x0048
#define L0_TX_ANA_TM_118		0x01d8
#define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)

/* DN Resistor calibration code parameters */
#define L0_TXPMA_ST_3			0x0b0c
#define L0_DN_CALIB_CODE		0x3f

/* PMA control parameters */
#define L0_TXPMD_TM_45			0x0cb4
#define L0_TXPMD_TM_48			0x0cc0
#define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
#define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
#define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
#define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
#define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
#define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)

/* PCS control parameters */
#define L0_TM_DIG_6			0x106c
#define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
#define L0_TX_DIG_61			0x00f4
#define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f

/* PLL Test Mode register parameters */
#define L0_TM_PLL_DIG_37		0x2094
#define L0_TM_COARSE_CODE_LIMIT		0x10

/* PLL SSC step size offsets */
#define L0_PLL_SS_STEPS_0_LSB		0x2368
#define L0_PLL_SS_STEPS_1_MSB		0x236c
#define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
#define L0_PLL_SS_STEP_SIZE_1		0x2374
#define L0_PLL_SS_STEP_SIZE_2		0x2378
#define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
#define L0_PLL_STATUS_READ_1		0x23e4

/* SSC step size parameters */
#define STEP_SIZE_0_MASK		0xff
#define STEP_SIZE_1_MASK		0xff
#define STEP_SIZE_2_MASK		0xff
#define STEP_SIZE_3_MASK		0x3
#define STEP_SIZE_SHIFT			8
#define FORCE_STEP_SIZE			0x10
#define FORCE_STEPS			0x20
#define STEPS_0_MASK			0xff
#define STEPS_1_MASK			0x07

/* Reference clock selection parameters */
#define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
#define L0_REF_CLK_SEL_MASK		0x8f

/* Calibration digital logic parameters */
#define L3_TM_CALIB_DIG19		0xec4c
#define L3_CALIB_DONE_STATUS		0xef14
#define L3_TM_CALIB_DIG18		0xec48
#define L3_TM_CALIB_DIG19_NSW		0x07
#define L3_TM_CALIB_DIG18_NSW		0xe0
#define L3_TM_OVERRIDE_NSW_CODE         0x20
#define L3_CALIB_DONE			0x02
#define L3_NSW_SHIFT			5
#define L3_NSW_PIPE_SHIFT		4
#define L3_NSW_CALIB_SHIFT		3

#define PHY_REG_OFFSET			0x4000

/*
 * Global Registers
 */

/* Refclk selection parameters */
#define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
#define PLL_FREQ_MASK			0x1f
#define PLL_STATUS_LOCKED		0x10

/* Inter Connect Matrix parameters */
#define ICM_CFG0			0x10010
#define ICM_CFG1			0x10014
#define ICM_CFG0_L0_MASK		0x07
#define ICM_CFG0_L1_MASK		0x70
#define ICM_CFG1_L2_MASK		0x07
#define ICM_CFG2_L3_MASK		0x70
#define ICM_CFG_SHIFT			4

/* Inter Connect Matrix allowed protocols */
#define ICM_PROTOCOL_PD			0x0
#define ICM_PROTOCOL_PCIE		0x1
#define ICM_PROTOCOL_SATA		0x2
#define ICM_PROTOCOL_USB		0x3
#define ICM_PROTOCOL_DP			0x4
#define ICM_PROTOCOL_SGMII		0x5

/* Test Mode common reset control  parameters */
#define TM_CMN_RST			0x10018
#define TM_CMN_RST_EN			0x1
#define TM_CMN_RST_SET			0x2
#define TM_CMN_RST_MASK			0x3

/* Bus width parameters */
#define TX_PROT_BUS_WIDTH		0x10040
#define RX_PROT_BUS_WIDTH		0x10044
#define PROT_BUS_WIDTH_10		0x0
#define PROT_BUS_WIDTH_20		0x1
#define PROT_BUS_WIDTH_40		0x2
#define PROT_BUS_WIDTH_SHIFT		2

/* Number of GT lanes */
#define NUM_LANES			4

/* SIOU SATA control register */
#define SATA_CONTROL_OFFSET		0x0100

/* Total number of controllers */
#define CONTROLLERS_PER_LANE		5

/* Protocol Type parameters */
#define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
#define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
#define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
#define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
#define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
#define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
#define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
#define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
#define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
#define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
#define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
#define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
#define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
#define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */

/* Timeout values */
#define TIMEOUT_US			1000

struct xpsgtr_dev;

/**
 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
 * @refclk_rate: PLL reference clock frequency
 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
 * @steps: number of steps of SSC (Spread Spectrum Clock)
 * @step_size: step size of each step
 */
struct xpsgtr_ssc {
	u32 refclk_rate;
	u8  pll_ref_clk;
	u32 steps;
	u32 step_size;
};

/**
 * struct xpsgtr_phy - representation of a lane
 * @phy: pointer to the kernel PHY device
 * @type: controller which uses this lane
 * @lane: lane number
 * @protocol: protocol in which the lane operates
 * @skip_phy_init: skip phy_init() if true
 * @dev: pointer to the xpsgtr_dev instance
 * @refclk: reference clock index
 */
struct xpsgtr_phy {
	struct phy *phy;
	u8 type;
	u8 lane;
	u8 protocol;
	bool skip_phy_init;
	struct xpsgtr_dev *dev;
	unsigned int refclk;
};

/**
 * struct xpsgtr_dev - representation of a ZynMP GT device
 * @dev: pointer to device
 * @serdes: serdes base address
 * @siou: siou base address
 * @gtr_mutex: mutex for locking
 * @phys: PHY lanes
 * @refclk_sscs: spread spectrum settings for the reference clocks
 * @clk: reference clocks
 * @tx_term_fix: fix for GT issue
 * @saved_icm_cfg0: stored value of ICM CFG0 register
 * @saved_icm_cfg1: stored value of ICM CFG1 register
 */
struct xpsgtr_dev {
	struct device *dev;
	void __iomem *serdes;
	void __iomem *siou;
	struct mutex gtr_mutex; /* mutex for locking */
	struct xpsgtr_phy phys[NUM_LANES];
	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
	struct clk *clk[NUM_LANES];
	bool tx_term_fix;
	unsigned int saved_icm_cfg0;
	unsigned int saved_icm_cfg1;
};

/*
 * Configuration Data
 */

/* lookup table to hold all settings needed for a ref clock frequency */
static const struct xpsgtr_ssc ssc_lookup[] = {
	{  19200000, 0x05,  608, 264020 },
	{  20000000, 0x06,  634, 243454 },
	{  24000000, 0x07,  760, 168973 },
	{  26000000, 0x08,  824, 143860 },
	{  27000000, 0x09,  856,  86551 },
	{  38400000, 0x0a, 1218,  65896 },
	{  40000000, 0x0b,  634, 243454 },
	{  52000000, 0x0c,  824, 143860 },
	{ 100000000, 0x0d, 1058,  87533 },
	{ 108000000, 0x0e,  856,  86551 },
	{ 125000000, 0x0f,  992, 119497 },
	{ 135000000, 0x10, 1070,  55393 },
	{ 150000000, 0x11,  792, 187091 }
};

/*
 * I/O Accessors
 */

static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
{
	return readl(gtr_dev->serdes + reg);
}

static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
{
	writel(value, gtr_dev->serdes + reg);
}

static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
				  u32 clr, u32 set)
{
	u32 value = xpsgtr_read(gtr_dev, reg);

	value &= ~clr;
	value |= set;
	xpsgtr_write(gtr_dev, reg, value);
}

static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
{
	void __iomem *addr = gtr_phy->dev->serdes
			   + gtr_phy->lane * PHY_REG_OFFSET + reg;

	return readl(addr);
}

static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
				    u32 reg, u32 value)
{
	void __iomem *addr = gtr_phy->dev->serdes
			   + gtr_phy->lane * PHY_REG_OFFSET + reg;

	writel(value, addr);
}

static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
				      u32 reg, u32 clr, u32 set)
{
	void __iomem *addr = gtr_phy->dev->serdes
			   + gtr_phy->lane * PHY_REG_OFFSET + reg;

	writel((readl(addr) & ~clr) | set, addr);
}

/*
 * Hardware Configuration
 */

/* Wait for the PLL to lock (with a timeout). */
static int xpsgtr_wait_pll_lock(struct phy *phy)
{
	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
	unsigned int timeout = TIMEOUT_US;
	int ret;

	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");

	while (1) {
		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);

		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
			ret = 0;
			break;
		}

		if (--timeout == 0) {
			ret = -ETIMEDOUT;
			break;
		}

		udelay(1);
	}

	if (ret == -ETIMEDOUT)
		dev_err(gtr_dev->dev,
			"lane %u (type %u, protocol %u): PLL lock timeout\n",
			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);

	return ret;
}

/* Configure PLL and spread-sprectrum clock. */
static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
{
	const struct xpsgtr_ssc *ssc;
	u32 step_size;

	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
	step_size = ssc->step_size;

	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
		       PLL_FREQ_MASK, ssc->pll_ref_clk);

	/* Enable lane clock sharing, if required */
	if (gtr_phy->refclk != gtr_phy->lane) {
		/* Lane3 Ref Clock Selection Register */
		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
	}

	/* SSC step size [7:0] */
	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);

	/* SSC step size [15:8] */
	step_size >>= STEP_SIZE_SHIFT;
	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);

	/* SSC step size [23:16] */
	step_size >>= STEP_SIZE_SHIFT;
	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);

	/* SSC steps [7:0] */
	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);

	/* SSC steps [10:8] */
	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
			   STEPS_1_MASK,
			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);

	/* SSC step size [24:25] */
	step_size >>= STEP_SIZE_SHIFT;
	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
			   FORCE_STEP_SIZE | FORCE_STEPS);
}

/* Configure the lane protocol. */
static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
{
	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
	u8 protocol = gtr_phy->protocol;

	switch (gtr_phy->lane) {
	case 0:
		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
		break;
	case 1:
		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
			       protocol << ICM_CFG_SHIFT);
		break;
	case 2:
		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
		break;
	case 3:
		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
			       protocol << ICM_CFG_SHIFT);
		break;
	default:
		/* We already checked 0 <= lane <= 3 */
		break;
	}
}

/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
{
	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
}

/* DP-specific initialization. */
static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
{
	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
			 L0_TXPMD_TM_45_OVER_DP_MAIN |
			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
			 L0_TXPMD_TM_45_OVER_DP_POST1 |
			 L0_TXPMD_TM_45_OVER_DP_POST2 |
			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
			 L0_TX_ANA_TM_118_FORCE_17_0);
}

/* SATA-specific initialization. */
static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
{
	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;

	xpsgtr_bypass_scrambler_8b10b(gtr_phy);

	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
}

/* SGMII-specific initialization. */
static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
{
	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;

	/* Set SGMII protocol TX and RX bus width to 10 bits. */
	xpsgtr_write(gtr_dev, TX_PROT_BUS_WIDTH,
		     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
	xpsgtr_write(gtr_dev, RX_PROT_BUS_WIDTH,
		     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));

	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
}

/* Configure TX de-emphasis and margining for DP. */
static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
				    unsigned int voltage)
{
	static const u8 voltage_swing[4][4] = {
		{ 0x2a, 0x27, 0x24, 0x20 },
		{ 0x27, 0x23, 0x20, 0xff },
		{ 0x24, 0x20, 0xff, 0xff },
		{ 0xff, 0xff, 0xff, 0xff }
	};
	static const u8 pre_emphasis[4][4] = {
		{ 0x02, 0x02, 0x02, 0x02 },
		{ 0x01, 0x01, 0x01, 0xff },
		{ 0x00, 0x00, 0xff, 0xff },
		{ 0xff, 0xff, 0xff, 0xff }
	};

	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
}

/*
 * PHY Operations
 */

static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
{
	/*
	 * As USB may save the snapshot of the states during hibernation, doing
	 * phy_init() will put the USB controller into reset, resulting in the
	 * losing of the saved snapshot. So try to avoid phy_init() for USB
	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
	 * shutdown during suspend or when gt lane is changed from current one)
	 */
	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
		return false;
	else
		return true;
}

/*
 * There is a functional issue in the GT. The TX termination resistance can be
 * out of spec due to a issue in the calibration logic. This is the workaround
 * to fix it, required for XCZU9EG silicon.
 */
static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
{
	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
	u32 timeout = TIMEOUT_US;
	u32 nsw;

	/* Enabling Test Mode control for CMN Rest */
	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);

	/* Set Test Mode reset */
	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);

	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);

	/*
	 * As a part of work around sequence for PMOS calibration fix,
	 * we need to configure any lane ICM_CFG to valid protocol. This
	 * will deassert the CMN_Resetn signal.
	 */
	xpsgtr_lane_set_protocol(gtr_phy);

	/* Clear Test Mode reset */
	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);

	dev_dbg(gtr_dev->dev, "calibrating...\n");

	do {
		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);

		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
			break;

		if (!--timeout) {
			dev_err(gtr_dev->dev, "calibration time out\n");
			return -ETIMEDOUT;
		}

		udelay(1);
	} while (timeout > 0);

	dev_dbg(gtr_dev->dev, "calibration done\n");

	/* Reading NMOS Register Code */
	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;

	/* Set Test Mode reset */
	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);

	/* Writing NMOS register values back [5:3] */
	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);

	/* Writing NMOS register value [2:0] */
	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
		     (1 << L3_NSW_PIPE_SHIFT));

	/* Clear Test Mode reset */
	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);

	return 0;
}

static int xpsgtr_phy_init(struct phy *phy)
{
	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
	int ret = 0;

	mutex_lock(&gtr_dev->gtr_mutex);

	/* Skip initialization if not required. */
	if (!xpsgtr_phy_init_required(gtr_phy))
		goto out;

	if (gtr_dev->tx_term_fix) {
		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
		if (ret < 0)
			goto out;

		gtr_dev->tx_term_fix = false;
	}

	/* Enable coarse code saturation limiting logic. */
	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);

	/*
	 * Configure the PLL, the lane protocol, and perform protocol-specific
	 * initialization.
	 */
	xpsgtr_configure_pll(gtr_phy);
	xpsgtr_lane_set_protocol(gtr_phy);

	switch (gtr_phy->protocol) {
	case ICM_PROTOCOL_DP:
		xpsgtr_phy_init_dp(gtr_phy);
		break;

	case ICM_PROTOCOL_SATA:
		xpsgtr_phy_init_sata(gtr_phy);
		break;

	case ICM_PROTOCOL_SGMII:
		xpsgtr_phy_init_sgmii(gtr_phy);
		break;
	}

out:
	mutex_unlock(&gtr_dev->gtr_mutex);
	return ret;
}

static int xpsgtr_phy_exit(struct phy *phy)
{
	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);

	gtr_phy->skip_phy_init = false;

	return 0;
}

static int xpsgtr_phy_power_on(struct phy *phy)
{
	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
	int ret = 0;

	/* Skip initialization if not required. */
	if (!xpsgtr_phy_init_required(gtr_phy))
		return ret;
	/*
	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
	 * cumulating waits for both lanes. The user is expected to initialize
	 * lane 0 last.
	 */
	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
	    gtr_phy->type == XPSGTR_TYPE_DP_0)
		ret = xpsgtr_wait_pll_lock(phy);

	return ret;
}

static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
{
	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);

	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
		return 0;

	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);

	return 0;
}

static const struct phy_ops xpsgtr_phyops = {
	.init		= xpsgtr_phy_init,
	.exit		= xpsgtr_phy_exit,
	.power_on	= xpsgtr_phy_power_on,
	.configure	= xpsgtr_phy_configure,
	.owner		= THIS_MODULE,
};

/*
 * OF Xlate Support
 */

/* Set the lane type and protocol based on the PHY type and instance number. */
static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
				unsigned int phy_instance)
{
	unsigned int num_phy_types;
	const int *phy_types;

	switch (phy_type) {
	case PHY_TYPE_SATA: {
		static const int types[] = {
			XPSGTR_TYPE_SATA_0,
			XPSGTR_TYPE_SATA_1,
		};

		phy_types = types;
		num_phy_types = ARRAY_SIZE(types);
		gtr_phy->protocol = ICM_PROTOCOL_SATA;
		break;
	}
	case PHY_TYPE_USB3: {
		static const int types[] = {
			XPSGTR_TYPE_USB0,
			XPSGTR_TYPE_USB1,
		};

		phy_types = types;
		num_phy_types = ARRAY_SIZE(types);
		gtr_phy->protocol = ICM_PROTOCOL_USB;
		break;
	}
	case PHY_TYPE_DP: {
		static const int types[] = {
			XPSGTR_TYPE_DP_0,
			XPSGTR_TYPE_DP_1,
		};

		phy_types = types;
		num_phy_types = ARRAY_SIZE(types);
		gtr_phy->protocol = ICM_PROTOCOL_DP;
		break;
	}
	case PHY_TYPE_PCIE: {
		static const int types[] = {
			XPSGTR_TYPE_PCIE_0,
			XPSGTR_TYPE_PCIE_1,
			XPSGTR_TYPE_PCIE_2,
			XPSGTR_TYPE_PCIE_3,
		};

		phy_types = types;
		num_phy_types = ARRAY_SIZE(types);
		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
		break;
	}
	case PHY_TYPE_SGMII: {
		static const int types[] = {
			XPSGTR_TYPE_SGMII0,
			XPSGTR_TYPE_SGMII1,
			XPSGTR_TYPE_SGMII2,
			XPSGTR_TYPE_SGMII3,
		};

		phy_types = types;
		num_phy_types = ARRAY_SIZE(types);
		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
		break;
	}
	default:
		return -EINVAL;
	}

	if (phy_instance >= num_phy_types)
		return -EINVAL;

	gtr_phy->type = phy_types[phy_instance];
	return 0;
}

/*
 * Valid combinations of controllers and lanes (Interconnect Matrix).
 */
static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
};

/* Translate OF phandle and args to PHY instance. */
static struct phy *xpsgtr_xlate(struct device *dev,
				struct of_phandle_args *args)
{
	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
	struct xpsgtr_phy *gtr_phy;
	unsigned int phy_instance;
	unsigned int phy_lane;
	unsigned int phy_type;
	unsigned int refclk;
	unsigned int i;
	int ret;

	if (args->args_count != 4) {
		dev_err(dev, "Invalid number of cells in 'phy' property\n");
		return ERR_PTR(-EINVAL);
	}

	/*
	 * Get the PHY parameters from the OF arguments and derive the lane
	 * type.
	 */
	phy_lane = args->args[0];
	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
		dev_err(dev, "Invalid lane number %u\n", phy_lane);
		return ERR_PTR(-ENODEV);
	}

	gtr_phy = &gtr_dev->phys[phy_lane];
	phy_type = args->args[1];
	phy_instance = args->args[2];

	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
	if (ret < 0) {
		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
		return ERR_PTR(ret);
	}

	refclk = args->args[3];
	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
	    !gtr_dev->refclk_sscs[refclk]) {
		dev_err(dev, "Invalid reference clock number %u\n", refclk);
		return ERR_PTR(-EINVAL);
	}

	gtr_phy->refclk = refclk;

	/*
	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
	 * is allowed to operate on the lane.
	 */
	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
		if (icm_matrix[phy_lane][i] == gtr_phy->type)
			return gtr_phy->phy;
	}

	return ERR_PTR(-EINVAL);
}

/*
 * Power Management
 */

static int __maybe_unused xpsgtr_suspend(struct device *dev)
{
	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
	unsigned int i;

	/* Save the snapshot ICM_CFG registers. */
	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);

	for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++)
		clk_disable_unprepare(gtr_dev->clk[i]);

	return 0;
}

static int __maybe_unused xpsgtr_resume(struct device *dev)
{
	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
	unsigned int icm_cfg0, icm_cfg1;
	unsigned int i;
	bool skip_phy_init;
	int err;

	for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++) {
		err = clk_prepare_enable(gtr_dev->clk[i]);
		if (err)
			goto err_clk_put;
	}

	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);

	/* Return if no GT lanes got configured before suspend. */
	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
		return 0;

	/* Check if the ICM configurations changed after suspend. */
	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
		skip_phy_init = true;
	else
		skip_phy_init = false;

	/* Update the skip_phy_init for all gtr_phy instances. */
	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
		gtr_dev->phys[i].skip_phy_init = skip_phy_init;

	return 0;

err_clk_put:
	while (i--)
		clk_disable_unprepare(gtr_dev->clk[i]);

	return err;
}

static const struct dev_pm_ops xpsgtr_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
};

/*
 * Probe & Platform Driver
 */

static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
{
	unsigned int refclk;
	int ret;

	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
		unsigned long rate;
		unsigned int i;
		struct clk *clk;
		char name[8];

		snprintf(name, sizeof(name), "ref%u", refclk);
		clk = devm_clk_get_optional(gtr_dev->dev, name);
		if (IS_ERR(clk)) {
			ret = dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
					    "Failed to get reference clock %u\n",
					    refclk);
			goto err_clk_put;
		}

		if (!clk)
			continue;

		ret = clk_prepare_enable(clk);
		if (ret)
			goto err_clk_put;

		gtr_dev->clk[refclk] = clk;

		/*
		 * Get the spread spectrum (SSC) settings for the reference
		 * clock rate.
		 */
		rate = clk_get_rate(clk);

		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
			if (rate == ssc_lookup[i].refclk_rate) {
				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
				break;
			}
		}

		if (i == ARRAY_SIZE(ssc_lookup)) {
			dev_err(gtr_dev->dev,
				"Invalid rate %lu for reference clock %u\n",
				rate, refclk);
			ret = -EINVAL;
			goto err_clk_put;
		}
	}

	return 0;

err_clk_put:
	while (refclk--)
		clk_disable_unprepare(gtr_dev->clk[refclk]);

	return ret;
}

static int xpsgtr_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct xpsgtr_dev *gtr_dev;
	struct phy_provider *provider;
	unsigned int port;
	unsigned int i;
	int ret;

	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
	if (!gtr_dev)
		return -ENOMEM;

	gtr_dev->dev = &pdev->dev;
	platform_set_drvdata(pdev, gtr_dev);

	mutex_init(&gtr_dev->gtr_mutex);

	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
		gtr_dev->tx_term_fix =
			of_property_read_bool(np, "xlnx,tx-termination-fix");

	/* Acquire resources. */
	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
	if (IS_ERR(gtr_dev->serdes))
		return PTR_ERR(gtr_dev->serdes);

	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
	if (IS_ERR(gtr_dev->siou))
		return PTR_ERR(gtr_dev->siou);

	ret = xpsgtr_get_ref_clocks(gtr_dev);
	if (ret)
		return ret;

	/* Create PHYs. */
	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
		struct phy *phy;

		gtr_phy->lane = port;
		gtr_phy->dev = gtr_dev;

		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
		if (IS_ERR(phy)) {
			dev_err(&pdev->dev, "failed to create PHY\n");
			ret = PTR_ERR(phy);
			goto err_clk_put;
		}

		gtr_phy->phy = phy;
		phy_set_drvdata(phy, gtr_phy);
	}

	/* Register the PHY provider. */
	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
	if (IS_ERR(provider)) {
		dev_err(&pdev->dev, "registering provider failed\n");
		ret = PTR_ERR(provider);
		goto err_clk_put;
	}
	return 0;

err_clk_put:
	for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++)
		clk_disable_unprepare(gtr_dev->clk[i]);

	return ret;
}

static const struct of_device_id xpsgtr_of_match[] = {
	{ .compatible = "xlnx,zynqmp-psgtr", },
	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
	{},
};
MODULE_DEVICE_TABLE(of, xpsgtr_of_match);

static struct platform_driver xpsgtr_driver = {
	.probe = xpsgtr_probe,
	.driver = {
		.name = "xilinx-psgtr",
		.of_match_table	= xpsgtr_of_match,
		.pm =  &xpsgtr_pm_ops,
	},
};

module_platform_driver(xpsgtr_driver);

MODULE_AUTHOR("Xilinx Inc.");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");