// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2017 NXP
* Copyright 2016 Freescale Semiconductor, Inc.
*/
#include <linux/bitfield.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/perf_event.h>
#include <linux/slab.h>
#define COUNTER_CNTL 0x0
#define COUNTER_READ 0x20
#define COUNTER_DPCR1 0x30
#define CNTL_OVER 0x1
#define CNTL_CLEAR 0x2
#define CNTL_EN 0x4
#define CNTL_EN_MASK 0xFFFFFFFB
#define CNTL_CLEAR_MASK 0xFFFFFFFD
#define CNTL_OVER_MASK 0xFFFFFFFE
#define CNTL_CSV_SHIFT 24
#define CNTL_CSV_MASK (0xFF << CNTL_CSV_SHIFT)
#define EVENT_CYCLES_ID 0
#define EVENT_CYCLES_COUNTER 0
#define NUM_COUNTERS 4
#define AXI_MASKING_REVERT 0xffff0000 /* AXI_MASKING(MSB 16bits) + AXI_ID(LSB 16bits) */
#define to_ddr_pmu(p) container_of(p, struct ddr_pmu, pmu)
#define DDR_PERF_DEV_NAME "imx8_ddr"
#define DDR_CPUHP_CB_NAME DDR_PERF_DEV_NAME "_perf_pmu"
static DEFINE_IDA(ddr_ida);
/* DDR Perf hardware feature */
#define DDR_CAP_AXI_ID_FILTER 0x1 /* support AXI ID filter */
#define DDR_CAP_AXI_ID_FILTER_ENHANCED 0x3 /* support enhanced AXI ID filter */
struct fsl_ddr_devtype_data {
unsigned int quirks; /* quirks needed for different DDR Perf core */
const char *identifier; /* system PMU identifier for userspace */
};
static const struct fsl_ddr_devtype_data imx8_devtype_data;
static const struct fsl_ddr_devtype_data imx8m_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER,
};
static const struct fsl_ddr_devtype_data imx8mq_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER,
.identifier = "i.MX8MQ",
};
static const struct fsl_ddr_devtype_data imx8mm_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER,
.identifier = "i.MX8MM",
};
static const struct fsl_ddr_devtype_data imx8mn_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER,
.identifier = "i.MX8MN",
};
static const struct fsl_ddr_devtype_data imx8mp_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER_ENHANCED,
.identifier = "i.MX8MP",
};
static const struct of_device_id imx_ddr_pmu_dt_ids[] = {
{ .compatible = "fsl,imx8-ddr-pmu", .data = &imx8_devtype_data},
{ .compatible = "fsl,imx8m-ddr-pmu", .data = &imx8m_devtype_data},
{ .compatible = "fsl,imx8mq-ddr-pmu", .data = &imx8mq_devtype_data},
{ .compatible = "fsl,imx8mm-ddr-pmu", .data = &imx8mm_devtype_data},
{ .compatible = "fsl,imx8mn-ddr-pmu", .data = &imx8mn_devtype_data},
{ .compatible = "fsl,imx8mp-ddr-pmu", .data = &imx8mp_devtype_data},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_ddr_pmu_dt_ids);
struct ddr_pmu {
struct pmu pmu;
void __iomem *base;
unsigned int cpu;
struct hlist_node node;
struct device *dev;
struct perf_event *events[NUM_COUNTERS];
int active_events;
enum cpuhp_state cpuhp_state;
const struct fsl_ddr_devtype_data *devtype_data;
int irq;
int id;
};
static ssize_t ddr_perf_identifier_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct ddr_pmu *pmu = dev_get_drvdata(dev);
return sprintf(page, "%s\n", pmu->devtype_data->identifier);
}
static umode_t ddr_perf_identifier_attr_visible(struct kobject *kobj,
struct attribute *attr,
int n)
{
struct device *dev = kobj_to_dev(kobj);
struct ddr_pmu *pmu = dev_get_drvdata(dev);
if (!pmu->devtype_data->identifier)
return 0;
return attr->mode;
};
static struct device_attribute ddr_perf_identifier_attr =
__ATTR(identifier, 0444, ddr_perf_identifier_show, NULL);
static struct attribute *ddr_perf_identifier_attrs[] = {
&ddr_perf_identifier_attr.attr,
NULL,
};
static const struct attribute_group ddr_perf_identifier_attr_group = {
.attrs = ddr_perf_identifier_attrs,
.is_visible = ddr_perf_identifier_attr_visible,
};
enum ddr_perf_filter_capabilities {
PERF_CAP_AXI_ID_FILTER = 0,
PERF_CAP_AXI_ID_FILTER_ENHANCED,
PERF_CAP_AXI_ID_FEAT_MAX,
};
static u32 ddr_perf_filter_cap_get(struct ddr_pmu *pmu, int cap)
{
u32 quirks = pmu->devtype_data->quirks;
switch (cap) {
case PERF_CAP_AXI_ID_FILTER:
return !!(quirks & DDR_CAP_AXI_ID_FILTER);
case PERF_CAP_AXI_ID_FILTER_ENHANCED:
quirks &= DDR_CAP_AXI_ID_FILTER_ENHANCED;
return quirks == DDR_CAP_AXI_ID_FILTER_ENHANCED;
default:
WARN(1, "unknown filter cap %d\n", cap);
}
return 0;
}
static ssize_t ddr_perf_filter_cap_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ddr_pmu *pmu = dev_get_drvdata(dev);
struct dev_ext_attribute *ea =
container_of(attr, struct dev_ext_attribute, attr);
int cap = (long)ea->var;
return snprintf(buf, PAGE_SIZE, "%u\n",
ddr_perf_filter_cap_get(pmu, cap));
}
#define PERF_EXT_ATTR_ENTRY(_name, _func, _var) \
(&((struct dev_ext_attribute) { \
__ATTR(_name, 0444, _func, NULL), (void *)_var \
}).attr.attr)
#define PERF_FILTER_EXT_ATTR_ENTRY(_name, _var) \
PERF_EXT_ATTR_ENTRY(_name, ddr_perf_filter_cap_show, _var)
static struct attribute *ddr_perf_filter_cap_attr[] = {
PERF_FILTER_EXT_ATTR_ENTRY(filter, PERF_CAP_AXI_ID_FILTER),
PERF_FILTER_EXT_ATTR_ENTRY(enhanced_filter, PERF_CAP_AXI_ID_FILTER_ENHANCED),
NULL,
};
static const struct attribute_group ddr_perf_filter_cap_attr_group = {
.name = "caps",
.attrs = ddr_perf_filter_cap_attr,
};
static ssize_t ddr_perf_cpumask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ddr_pmu *pmu = dev_get_drvdata(dev);
return cpumap_print_to_pagebuf(true, buf, cpumask_of(pmu->cpu));
}
static struct device_attribute ddr_perf_cpumask_attr =
__ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL);
static struct attribute *ddr_perf_cpumask_attrs[] = {
&ddr_perf_cpumask_attr.attr,
NULL,
};
static const struct attribute_group ddr_perf_cpumask_attr_group = {
.attrs = ddr_perf_cpumask_attrs,
};
static ssize_t
ddr_pmu_event_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}
#define IMX8_DDR_PMU_EVENT_ATTR(_name, _id) \
(&((struct perf_pmu_events_attr[]) { \
{ .attr = __ATTR(_name, 0444, ddr_pmu_event_show, NULL),\
.id = _id, } \
})[0].attr.attr)
static struct attribute *ddr_perf_events_attrs[] = {
IMX8_DDR_PMU_EVENT_ATTR(cycles, EVENT_CYCLES_ID),
IMX8_DDR_PMU_EVENT_ATTR(selfresh, 0x01),
IMX8_DDR_PMU_EVENT_ATTR(read-accesses, 0x04),
IMX8_DDR_PMU_EVENT_ATTR(write-accesses, 0x05),
IMX8_DDR_PMU_EVENT_ATTR(read-queue-depth, 0x08),
IMX8_DDR_PMU_EVENT_ATTR(write-queue-depth, 0x09),
IMX8_DDR_PMU_EVENT_ATTR(lp-read-credit-cnt, 0x10),
IMX8_DDR_PMU_EVENT_ATTR(hp-read-credit-cnt, 0x11),
IMX8_DDR_PMU_EVENT_ATTR(write-credit-cnt, 0x12),
IMX8_DDR_PMU_EVENT_ATTR(read-command, 0x20),
IMX8_DDR_PMU_EVENT_ATTR(write-command, 0x21),
IMX8_DDR_PMU_EVENT_ATTR(read-modify-write-command, 0x22),
IMX8_DDR_PMU_EVENT_ATTR(hp-read, 0x23),
IMX8_DDR_PMU_EVENT_ATTR(hp-req-nocredit, 0x24),
IMX8_DDR_PMU_EVENT_ATTR(hp-xact-credit, 0x25),
IMX8_DDR_PMU_EVENT_ATTR(lp-req-nocredit, 0x26),
IMX8_DDR_PMU_EVENT_ATTR(lp-xact-credit, 0x27),
IMX8_DDR_PMU_EVENT_ATTR(wr-xact-credit, 0x29),
IMX8_DDR_PMU_EVENT_ATTR(read-cycles, 0x2a),
IMX8_DDR_PMU_EVENT_ATTR(write-cycles, 0x2b),
IMX8_DDR_PMU_EVENT_ATTR(read-write-transition, 0x30),
IMX8_DDR_PMU_EVENT_ATTR(precharge, 0x31),
IMX8_DDR_PMU_EVENT_ATTR(activate, 0x32),
IMX8_DDR_PMU_EVENT_ATTR(load-mode, 0x33),
IMX8_DDR_PMU_EVENT_ATTR(perf-mwr, 0x34),
IMX8_DDR_PMU_EVENT_ATTR(read, 0x35),
IMX8_DDR_PMU_EVENT_ATTR(read-activate, 0x36),
IMX8_DDR_PMU_EVENT_ATTR(refresh, 0x37),
IMX8_DDR_PMU_EVENT_ATTR(write, 0x38),
IMX8_DDR_PMU_EVENT_ATTR(raw-hazard, 0x39),
IMX8_DDR_PMU_EVENT_ATTR(axid-read, 0x41),
IMX8_DDR_PMU_EVENT_ATTR(axid-write, 0x42),
NULL,
};
static const struct attribute_group ddr_perf_events_attr_group = {
.name = "events",
.attrs = ddr_perf_events_attrs,
};
PMU_FORMAT_ATTR(event, "config:0-7");
PMU_FORMAT_ATTR(axi_id, "config1:0-15");
PMU_FORMAT_ATTR(axi_mask, "config1:16-31");
static struct attribute *ddr_perf_format_attrs[] = {
&format_attr_event.attr,
&format_attr_axi_id.attr,
&format_attr_axi_mask.attr,
NULL,
};
static const struct attribute_group ddr_perf_format_attr_group = {
.name = "format",
.attrs = ddr_perf_format_attrs,
};
static const struct attribute_group *attr_groups[] = {
&ddr_perf_events_attr_group,
&ddr_perf_format_attr_group,
&ddr_perf_cpumask_attr_group,
&ddr_perf_filter_cap_attr_group,
&ddr_perf_identifier_attr_group,
NULL,
};
static bool ddr_perf_is_filtered(struct perf_event *event)
{
return event->attr.config == 0x41 || event->attr.config == 0x42;
}
static u32 ddr_perf_filter_val(struct perf_event *event)
{
return event->attr.config1;
}
static bool ddr_perf_filters_compatible(struct perf_event *a,
struct perf_event *b)
{
if (!ddr_perf_is_filtered(a))
return true;
if (!ddr_perf_is_filtered(b))
return true;
return ddr_perf_filter_val(a) == ddr_perf_filter_val(b);
}
static bool ddr_perf_is_enhanced_filtered(struct perf_event *event)
{
unsigned int filt;
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
filt = pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER_ENHANCED;
return (filt == DDR_CAP_AXI_ID_FILTER_ENHANCED) &&
ddr_perf_is_filtered(event);
}
static u32 ddr_perf_alloc_counter(struct ddr_pmu *pmu, int event)
{
int i;
/*
* Always map cycle event to counter 0
* Cycles counter is dedicated for cycle event
* can't used for the other events
*/
if (event == EVENT_CYCLES_ID) {
if (pmu->events[EVENT_CYCLES_COUNTER] == NULL)
return EVENT_CYCLES_COUNTER;
else
return -ENOENT;
}
for (i = 1; i < NUM_COUNTERS; i++) {
if (pmu->events[i] == NULL)
return i;
}
return -ENOENT;
}
static void ddr_perf_free_counter(struct ddr_pmu *pmu, int counter)
{
pmu->events[counter] = NULL;
}
static u32 ddr_perf_read_counter(struct ddr_pmu *pmu, int counter)
{
struct perf_event *event = pmu->events[counter];
void __iomem *base = pmu->base;
/*
* return bytes instead of bursts from ddr transaction for
* axid-read and axid-write event if PMU core supports enhanced
* filter.
*/
base += ddr_perf_is_enhanced_filtered(event) ? COUNTER_DPCR1 :
COUNTER_READ;
return readl_relaxed(base + counter * 4);
}
static int ddr_perf_event_init(struct perf_event *event)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
struct perf_event *sibling;
if (event->attr.type != event->pmu->type)
return -ENOENT;
if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
return -EOPNOTSUPP;
if (event->cpu < 0) {
dev_warn(pmu->dev, "Can't provide per-task data!\n");
return -EOPNOTSUPP;
}
/*
* We must NOT create groups containing mixed PMUs, although software
* events are acceptable (for example to create a CCN group
* periodically read when a hrtimer aka cpu-clock leader triggers).
*/
if (event->group_leader->pmu != event->pmu &&
!is_software_event(event->group_leader))
return -EINVAL;
if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER) {
if (!ddr_perf_filters_compatible(event, event->group_leader))
return -EINVAL;
for_each_sibling_event(sibling, event->group_leader) {
if (!ddr_perf_filters_compatible(event, sibling))
return -EINVAL;
}
}
for_each_sibling_event(sibling, event->group_leader) {
if (sibling->pmu != event->pmu &&
!is_software_event(sibling))
return -EINVAL;
}
event->cpu = pmu->cpu;
hwc->idx = -1;
return 0;
}
static void ddr_perf_counter_enable(struct ddr_pmu *pmu, int config,
int counter, bool enable)
{
u8 reg = counter * 4 + COUNTER_CNTL;
int val;
if (enable) {
/*
* cycle counter is special which should firstly write 0 then
* write 1 into CLEAR bit to clear it. Other counters only
* need write 0 into CLEAR bit and it turns out to be 1 by
* hardware. Below enable flow is harmless for all counters.
*/
writel(0, pmu->base + reg);
val = CNTL_EN | CNTL_CLEAR;
val |= FIELD_PREP(CNTL_CSV_MASK, config);
writel(val, pmu->base + reg);
} else {
/* Disable counter */
val = readl_relaxed(pmu->base + reg) & CNTL_EN_MASK;
writel(val, pmu->base + reg);
}
}
static bool ddr_perf_counter_overflow(struct ddr_pmu *pmu, int counter)
{
int val;
val = readl_relaxed(pmu->base + counter * 4 + COUNTER_CNTL);
return val & CNTL_OVER;
}
static void ddr_perf_counter_clear(struct ddr_pmu *pmu, int counter)
{
u8 reg = counter * 4 + COUNTER_CNTL;
int val;
val = readl_relaxed(pmu->base + reg);
val &= ~CNTL_CLEAR;
writel(val, pmu->base + reg);
val |= CNTL_CLEAR;
writel(val, pmu->base + reg);
}
static void ddr_perf_event_update(struct perf_event *event)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 new_raw_count;
int counter = hwc->idx;
int ret;
new_raw_count = ddr_perf_read_counter(pmu, counter);
local64_add(new_raw_count, &event->count);
/*
* For legacy SoCs: event counter continue counting when overflow,
* no need to clear the counter.
* For new SoCs: event counter stop counting when overflow, need
* clear counter to let it count again.
*/
if (counter != EVENT_CYCLES_COUNTER) {
ret = ddr_perf_counter_overflow(pmu, counter);
if (ret)
dev_warn_ratelimited(pmu->dev, "events lost due to counter overflow (config 0x%llx)\n",
event->attr.config);
}
/* clear counter every time for both cycle counter and event counter */
ddr_perf_counter_clear(pmu, counter);
}
static void ddr_perf_event_start(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
local64_set(&hwc->prev_count, 0);
ddr_perf_counter_enable(pmu, event->attr.config, counter, true);
hwc->state = 0;
}
static int ddr_perf_event_add(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter;
int cfg = event->attr.config;
int cfg1 = event->attr.config1;
if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER) {
int i;
for (i = 1; i < NUM_COUNTERS; i++) {
if (pmu->events[i] &&
!ddr_perf_filters_compatible(event, pmu->events[i]))
return -EINVAL;
}
if (ddr_perf_is_filtered(event)) {
/* revert axi id masking(axi_mask) value */
cfg1 ^= AXI_MASKING_REVERT;
writel(cfg1, pmu->base + COUNTER_DPCR1);
}
}
counter = ddr_perf_alloc_counter(pmu, cfg);
if (counter < 0) {
dev_dbg(pmu->dev, "There are not enough counters\n");
return -EOPNOTSUPP;
}
pmu->events[counter] = event;
pmu->active_events++;
hwc->idx = counter;
hwc->state |= PERF_HES_STOPPED;
if (flags & PERF_EF_START)
ddr_perf_event_start(event, flags);
return 0;
}
static void ddr_perf_event_stop(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
ddr_perf_counter_enable(pmu, event->attr.config, counter, false);
ddr_perf_event_update(event);
hwc->state |= PERF_HES_STOPPED;
}
static void ddr_perf_event_del(struct perf_event *event, int flags)
{
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
ddr_perf_event_stop(event, PERF_EF_UPDATE);
ddr_perf_free_counter(pmu, counter);
pmu->active_events--;
hwc->idx = -1;
}
static void ddr_perf_pmu_enable(struct pmu *pmu)
{
struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu);
/* enable cycle counter if cycle is not active event list */
if (ddr_pmu->events[EVENT_CYCLES_COUNTER] == NULL)
ddr_perf_counter_enable(ddr_pmu,
EVENT_CYCLES_ID,
EVENT_CYCLES_COUNTER,
true);
}
static void ddr_perf_pmu_disable(struct pmu *pmu)
{
struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu);
if (ddr_pmu->events[EVENT_CYCLES_COUNTER] == NULL)
ddr_perf_counter_enable(ddr_pmu,
EVENT_CYCLES_ID,
EVENT_CYCLES_COUNTER,
false);
}
static int ddr_perf_init(struct ddr_pmu *pmu, void __iomem *base,
struct device *dev)
{
*pmu = (struct ddr_pmu) {
.pmu = (struct pmu) {
.module = THIS_MODULE,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
.task_ctx_nr = perf_invalid_context,
.attr_groups = attr_groups,
.event_init = ddr_perf_event_init,
.add = ddr_perf_event_add,
.del = ddr_perf_event_del,
.start = ddr_perf_event_start,
.stop = ddr_perf_event_stop,
.read = ddr_perf_event_update,
.pmu_enable = ddr_perf_pmu_enable,
.pmu_disable = ddr_perf_pmu_disable,
},
.base = base,
.dev = dev,
};
pmu->id = ida_simple_get(&ddr_ida, 0, 0, GFP_KERNEL);
return pmu->id;
}
static irqreturn_t ddr_perf_irq_handler(int irq, void *p)
{
int i;
struct ddr_pmu *pmu = (struct ddr_pmu *) p;
struct perf_event *event;
/* all counter will stop if cycle counter disabled */
ddr_perf_counter_enable(pmu,
EVENT_CYCLES_ID,
EVENT_CYCLES_COUNTER,
false);
/*
* When the cycle counter overflows, all counters are stopped,
* and an IRQ is raised. If any other counter overflows, it
* continues counting, and no IRQ is raised. But for new SoCs,
* such as i.MX8MP, event counter would stop when overflow, so
* we need use cycle counter to stop overflow of event counter.
*
* Cycles occur at least 4 times as often as other events, so we
* can update all events on a cycle counter overflow and not
* lose events.
*
*/
for (i = 0; i < NUM_COUNTERS; i++) {
if (!pmu->events[i])
continue;
event = pmu->events[i];
ddr_perf_event_update(event);
}
ddr_perf_counter_enable(pmu,
EVENT_CYCLES_ID,
EVENT_CYCLES_COUNTER,
true);
return IRQ_HANDLED;
}
static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node)
{
struct ddr_pmu *pmu = hlist_entry_safe(node, struct ddr_pmu, node);
int target;
if (cpu != pmu->cpu)
return 0;
target = cpumask_any_but(cpu_online_mask, cpu);
if (target >= nr_cpu_ids)
return 0;
perf_pmu_migrate_context(&pmu->pmu, cpu, target);
pmu->cpu = target;
WARN_ON(irq_set_affinity_hint(pmu->irq, cpumask_of(pmu->cpu)));
return 0;
}
static int ddr_perf_probe(struct platform_device *pdev)
{
struct ddr_pmu *pmu;
struct device_node *np;
void __iomem *base;
char *name;
int num;
int ret;
int irq;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
np = pdev->dev.of_node;
pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
if (!pmu)
return -ENOMEM;
num = ddr_perf_init(pmu, base, &pdev->dev);
platform_set_drvdata(pdev, pmu);
name = devm_kasprintf(&pdev->dev, GFP_KERNEL, DDR_PERF_DEV_NAME "%d",
num);
if (!name)
return -ENOMEM;
pmu->devtype_data = of_device_get_match_data(&pdev->dev);
pmu->cpu = raw_smp_processor_id();
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
DDR_CPUHP_CB_NAME,
NULL,
ddr_perf_offline_cpu);
if (ret < 0) {
dev_err(&pdev->dev, "cpuhp_setup_state_multi failed\n");
goto cpuhp_state_err;
}
pmu->cpuhp_state = ret;
/* Register the pmu instance for cpu hotplug */
ret = cpuhp_state_add_instance_nocalls(pmu->cpuhp_state, &pmu->node);
if (ret) {
dev_err(&pdev->dev, "Error %d registering hotplug\n", ret);
goto cpuhp_instance_err;
}
/* Request irq */
irq = of_irq_get(np, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Failed to get irq: %d", irq);
ret = irq;
goto ddr_perf_err;
}
ret = devm_request_irq(&pdev->dev, irq,
ddr_perf_irq_handler,
IRQF_NOBALANCING | IRQF_NO_THREAD,
DDR_CPUHP_CB_NAME,
pmu);
if (ret < 0) {
dev_err(&pdev->dev, "Request irq failed: %d", ret);
goto ddr_perf_err;
}
pmu->irq = irq;
ret = irq_set_affinity_hint(pmu->irq, cpumask_of(pmu->cpu));
if (ret) {
dev_err(pmu->dev, "Failed to set interrupt affinity!\n");
goto ddr_perf_err;
}
ret = perf_pmu_register(&pmu->pmu, name, -1);
if (ret)
goto ddr_perf_err;
return 0;
ddr_perf_err:
cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node);
cpuhp_instance_err:
cpuhp_remove_multi_state(pmu->cpuhp_state);
cpuhp_state_err:
ida_simple_remove(&ddr_ida, pmu->id);
dev_warn(&pdev->dev, "i.MX8 DDR Perf PMU failed (%d), disabled\n", ret);
return ret;
}
static int ddr_perf_remove(struct platform_device *pdev)
{
struct ddr_pmu *pmu = platform_get_drvdata(pdev);
cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node);
cpuhp_remove_multi_state(pmu->cpuhp_state);
irq_set_affinity_hint(pmu->irq, NULL);
perf_pmu_unregister(&pmu->pmu);
ida_simple_remove(&ddr_ida, pmu->id);
return 0;
}
static struct platform_driver imx_ddr_pmu_driver = {
.driver = {
.name = "imx-ddr-pmu",
.of_match_table = imx_ddr_pmu_dt_ids,
.suppress_bind_attrs = true,
},
.probe = ddr_perf_probe,
.remove = ddr_perf_remove,
};
module_platform_driver(imx_ddr_pmu_driver);
MODULE_LICENSE("GPL v2");