summaryrefslogblamecommitdiff
path: root/drivers/pci/intel-iommu.c
blob: 8f372c8f3d87866308bcb95f2053c1a17c861e43 (plain) (tree)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350























































                                                                               
                         
















                                                                             



                                                                              













                                              













                                                                     

                                            








                                                    








                                                 
                                                          








                                                   
                                                           








                                                    
                                                        







































































































































































































































































































































































































































































































































                                                                                


                                                                    
                          












                                                                                
                                                  
                                                                   
                                                 


                                                        
                                                          




































                                                                    





























































































































































































                                                                          















































































































































































































































































































































































































































                                                                                
                                                             











                                                                            
                                                                  






                                                                 
                                        




















































































































































                                                                             
                                        


























































                                                                               
                                                                 




                                                                   









                                                              
                                                                           


















                                                                           
























                                                                         






























































                                                                               

                                    

                            














                                                        



                                                




























                                                          
                                                                  
 


                                     
                                                            
                                                    


                                          
                                                                 


                     


                                                                  
 
                                               
                                 
 
                                                                    
                                                                      





                                                                       
                                                                      
                          
                                                                              



                                                                                
















                                                                           





                                                             





                                                                   

         













                                                                    
                                                                 














                                                       














                                                                              

                                                        




                                                                           








                                                              
 
      

                                                  




                                                                         
                                                                       

                             
                                               

                                   

                          
                                                                 
                       



                                                             
                  
                       
 

                                                   
 

                                                       
 






                                                                        
                                                        


                                          



































                                                                              
                                                                         





                                                                        



                                 
 
                                                                 


                                   
 
















                                                                        
                                                        


                                          

 


















                                                                     

                                                 






                                         

                                
                                                                 

                                                                         



                                                

                                               






































                                                                      

                                 

                                                              
                                            
                               

         
                                                   

                                                                














































































































































                                                                           
                                                                                        
































                                                                          
 
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Copyright (C) Ashok Raj <ashok.raj@intel.com>
 * Copyright (C) Shaohua Li <shaohua.li@intel.com>
 * Copyright (C) Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
 */

#include <linux/init.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/sysdev.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
#include "iova.h"
#include "intel-iommu.h"
#include <asm/proto.h> /* force_iommu in this header in x86-64*/
#include <asm/cacheflush.h>
#include <asm/iommu.h>
#include "pci.h"

#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48

#define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */

#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)

static void domain_remove_dev_info(struct dmar_domain *domain);

static int dmar_disabled;
static int __initdata dmar_map_gfx = 1;
static int dmar_forcedac;

#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
		if (!strncmp(str, "off", 3)) {
			dmar_disabled = 1;
			printk(KERN_INFO"Intel-IOMMU: disabled\n");
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
			printk(KERN_INFO
				"Intel-IOMMU: disable GFX device mapping\n");
		} else if (!strncmp(str, "forcedac", 8)) {
			printk (KERN_INFO
				"Intel-IOMMU: Forcing DAC for PCI devices\n");
			dmar_forcedac = 1;
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;
static struct kmem_cache *iommu_iova_cache;

static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
{
	unsigned int flags;
	void *vaddr;

	/* trying to avoid low memory issues */
	flags = current->flags & PF_MEMALLOC;
	current->flags |= PF_MEMALLOC;
	vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
	current->flags &= (~PF_MEMALLOC | flags);
	return vaddr;
}


static inline void *alloc_pgtable_page(void)
{
	unsigned int flags;
	void *vaddr;

	/* trying to avoid low memory issues */
	flags = current->flags & PF_MEMALLOC;
	current->flags |= PF_MEMALLOC;
	vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
	current->flags &= (~PF_MEMALLOC | flags);
	return vaddr;
}

static inline void free_pgtable_page(void *vaddr)
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
	return iommu_kmem_cache_alloc(iommu_domain_cache);
}

static inline void free_domain_mem(void *vaddr)
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
	return iommu_kmem_cache_alloc(iommu_devinfo_cache);
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

struct iova *alloc_iova_mem(void)
{
	return iommu_kmem_cache_alloc(iommu_iova_cache);
}

void free_iova_mem(struct iova *iova)
{
	kmem_cache_free(iommu_iova_cache, iova);
}

static inline void __iommu_flush_cache(
	struct intel_iommu *iommu, void *addr, int size)
{
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(addr, size);
}

/* Gets context entry for a given bus and devfn */
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
		u8 bus, u8 devfn)
{
	struct root_entry *root;
	struct context_entry *context;
	unsigned long phy_addr;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
	root = &iommu->root_entry[bus];
	context = get_context_addr_from_root(root);
	if (!context) {
		context = (struct context_entry *)alloc_pgtable_page();
		if (!context) {
			spin_unlock_irqrestore(&iommu->lock, flags);
			return NULL;
		}
		__iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
		phy_addr = virt_to_phys((void *)context);
		set_root_value(root, phy_addr);
		set_root_present(root);
		__iommu_flush_cache(iommu, root, sizeof(*root));
	}
	spin_unlock_irqrestore(&iommu->lock, flags);
	return &context[devfn];
}

static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct root_entry *root;
	struct context_entry *context;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
	root = &iommu->root_entry[bus];
	context = get_context_addr_from_root(root);
	if (!context) {
		ret = 0;
		goto out;
	}
	ret = context_present(context[devfn]);
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct root_entry *root;
	struct context_entry *context;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
	root = &iommu->root_entry[bus];
	context = get_context_addr_from_root(root);
	if (context) {
		context_clear_entry(context[devfn]);
		__iommu_flush_cache(iommu, &context[devfn], \
			sizeof(*context));
	}
	spin_unlock_irqrestore(&iommu->lock, flags);
}

static void free_context_table(struct intel_iommu *iommu)
{
	struct root_entry *root;
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
		root = &iommu->root_entry[i];
		context = get_context_addr_from_root(root);
		if (context)
			free_pgtable_page(context);
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
	return 30 + agaw * LEVEL_STRIDE;

}

static inline int width_to_agaw(int width)
{
	return (width - 30) / LEVEL_STRIDE;
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (12 + (level - 1) * LEVEL_STRIDE);
}

static inline int address_level_offset(u64 addr, int level)
{
	return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
}

static inline u64 level_mask(int level)
{
	return ((u64)-1 << level_to_offset_bits(level));
}

static inline u64 level_size(int level)
{
	return ((u64)1 << level_to_offset_bits(level));
}

static inline u64 align_to_level(u64 addr, int level)
{
	return ((addr + level_size(level) - 1) & level_mask(level));
}

static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
{
	int addr_width = agaw_to_width(domain->agaw);
	struct dma_pte *parent, *pte = NULL;
	int level = agaw_to_level(domain->agaw);
	int offset;
	unsigned long flags;

	BUG_ON(!domain->pgd);

	addr &= (((u64)1) << addr_width) - 1;
	parent = domain->pgd;

	spin_lock_irqsave(&domain->mapping_lock, flags);
	while (level > 0) {
		void *tmp_page;

		offset = address_level_offset(addr, level);
		pte = &parent[offset];
		if (level == 1)
			break;

		if (!dma_pte_present(*pte)) {
			tmp_page = alloc_pgtable_page();

			if (!tmp_page) {
				spin_unlock_irqrestore(&domain->mapping_lock,
					flags);
				return NULL;
			}
			__iommu_flush_cache(domain->iommu, tmp_page,
					PAGE_SIZE_4K);
			dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
			/*
			 * high level table always sets r/w, last level page
			 * table control read/write
			 */
			dma_set_pte_readable(*pte);
			dma_set_pte_writable(*pte);
			__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
		}
		parent = phys_to_virt(dma_pte_addr(*pte));
		level--;
	}

	spin_unlock_irqrestore(&domain->mapping_lock, flags);
	return pte;
}

/* return address's pte at specific level */
static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
		int level)
{
	struct dma_pte *parent, *pte = NULL;
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
		offset = address_level_offset(addr, total);
		pte = &parent[offset];
		if (level == total)
			return pte;

		if (!dma_pte_present(*pte))
			break;
		parent = phys_to_virt(dma_pte_addr(*pte));
		total--;
	}
	return NULL;
}

/* clear one page's page table */
static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
{
	struct dma_pte *pte = NULL;

	/* get last level pte */
	pte = dma_addr_level_pte(domain, addr, 1);

	if (pte) {
		dma_clear_pte(*pte);
		__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
	}
}

/* clear last level pte, a tlb flush should be followed */
static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
{
	int addr_width = agaw_to_width(domain->agaw);

	start &= (((u64)1) << addr_width) - 1;
	end &= (((u64)1) << addr_width) - 1;
	/* in case it's partial page */
	start = PAGE_ALIGN_4K(start);
	end &= PAGE_MASK_4K;

	/* we don't need lock here, nobody else touches the iova range */
	while (start < end) {
		dma_pte_clear_one(domain, start);
		start += PAGE_SIZE_4K;
	}
}

/* free page table pages. last level pte should already be cleared */
static void dma_pte_free_pagetable(struct dmar_domain *domain,
	u64 start, u64 end)
{
	int addr_width = agaw_to_width(domain->agaw);
	struct dma_pte *pte;
	int total = agaw_to_level(domain->agaw);
	int level;
	u64 tmp;

	start &= (((u64)1) << addr_width) - 1;
	end &= (((u64)1) << addr_width) - 1;

	/* we don't need lock here, nobody else touches the iova range */
	level = 2;
	while (level <= total) {
		tmp = align_to_level(start, level);
		if (tmp >= end || (tmp + level_size(level) > end))
			return;

		while (tmp < end) {
			pte = dma_addr_level_pte(domain, tmp, level);
			if (pte) {
				free_pgtable_page(
					phys_to_virt(dma_pte_addr(*pte)));
				dma_clear_pte(*pte);
				__iommu_flush_cache(domain->iommu,
						pte, sizeof(*pte));
			}
			tmp += level_size(level);
		}
		level++;
	}
	/* free pgd */
	if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

	root = (struct root_entry *)alloc_pgtable_page();
	if (!root)
		return -ENOMEM;

	__iommu_flush_cache(iommu, root, PAGE_SIZE_4K);

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
{\
	unsigned long start_time = jiffies;\
	while (1) {\
		sts = op (iommu->reg + offset);\
		if (cond)\
			break;\
		if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\
			panic("DMAR hardware is malfunctioning\n");\
		cpu_relax();\
	}\
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
	void *addr;
	u32 cmd, sts;
	unsigned long flag;

	addr = iommu->root_entry;

	spin_lock_irqsave(&iommu->register_lock, flag);
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));

	cmd = iommu->gcmd | DMA_GCMD_SRTP;
	writel(cmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		readl, (sts & DMA_GSTS_RTPS), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static void iommu_flush_write_buffer(struct intel_iommu *iommu)
{
	u32 val;
	unsigned long flag;

	if (!cap_rwbf(iommu->cap))
		return;
	val = iommu->gcmd | DMA_GCMD_WBF;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(val, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
			readl, (!(val & DMA_GSTS_WBFS)), val);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

/* return value determine if we need a write buffer flush */
static int __iommu_flush_context(struct intel_iommu *iommu,
	u16 did, u16 source_id, u8 function_mask, u64 type,
	int non_present_entry_flush)
{
	u64 val = 0;
	unsigned long flag;

	/*
	 * In the non-present entry flush case, if hardware doesn't cache
	 * non-present entry we do nothing and if hardware cache non-present
	 * entry, we flush entries of domain 0 (the domain id is used to cache
	 * any non-present entries)
	 */
	if (non_present_entry_flush) {
		if (!cap_caching_mode(iommu->cap))
			return 1;
		else
			did = 0;
	}

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

	spin_lock_irqsave(&iommu->register_lock, flag);
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

	spin_unlock_irqrestore(&iommu->register_lock, flag);

	/* flush context entry will implictly flush write buffer */
	return 0;
}

static int inline iommu_flush_context_global(struct intel_iommu *iommu,
	int non_present_entry_flush)
{
	return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
		non_present_entry_flush);
}

static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
	int non_present_entry_flush)
{
	return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
		non_present_entry_flush);
}

static int inline iommu_flush_context_device(struct intel_iommu *iommu,
	u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
{
	return __iommu_flush_context(iommu, did, source_id, function_mask,
		DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
}

/* return value determine if we need a write buffer flush */
static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
	u64 addr, unsigned int size_order, u64 type,
	int non_present_entry_flush)
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	/*
	 * In the non-present entry flush case, if hardware doesn't cache
	 * non-present entry we do nothing and if hardware cache non-present
	 * entry, we flush entries of domain 0 (the domain id is used to cache
	 * any non-present entries)
	 */
	if (non_present_entry_flush) {
		if (!cap_caching_mode(iommu->cap))
			return 1;
		else
			did = 0;
	}

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		/* Note: always flush non-leaf currently */
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

	spin_lock_irqsave(&iommu->register_lock, flag);
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

	spin_unlock_irqrestore(&iommu->register_lock, flag);

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
		printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
		pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
			DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
	/* flush context entry will implictly flush write buffer */
	return 0;
}

static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
	int non_present_entry_flush)
{
	return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
		non_present_entry_flush);
}

static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
	int non_present_entry_flush)
{
	return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
		non_present_entry_flush);
}

static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
	u64 addr, unsigned int pages, int non_present_entry_flush)
{
	unsigned int mask;

	BUG_ON(addr & (~PAGE_MASK_4K));
	BUG_ON(pages == 0);

	/* Fallback to domain selective flush if no PSI support */
	if (!cap_pgsel_inv(iommu->cap))
		return iommu_flush_iotlb_dsi(iommu, did,
			non_present_entry_flush);

	/*
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
	mask = ilog2(__roundup_pow_of_two(pages));
	/* Fallback to domain selective flush if size is too big */
	if (mask > cap_max_amask_val(iommu->cap))
		return iommu_flush_iotlb_dsi(iommu, did,
			non_present_entry_flush);

	return __iommu_flush_iotlb(iommu, did, addr, mask,
		DMA_TLB_PSI_FLUSH, non_present_entry_flush);
}

static int iommu_enable_translation(struct intel_iommu *iommu)
{
	u32 sts;
	unsigned long flags;

	spin_lock_irqsave(&iommu->register_lock, flags);
	writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		readl, (sts & DMA_GSTS_TES), sts);

	iommu->gcmd |= DMA_GCMD_TE;
	spin_unlock_irqrestore(&iommu->register_lock, flags);
	return 0;
}

static int iommu_disable_translation(struct intel_iommu *iommu)
{
	u32 sts;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		readl, (!(sts & DMA_GSTS_TES)), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return 0;
}

/* iommu interrupt handling. Most stuff are MSI-like. */

static char *fault_reason_strings[] =
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
	"Unknown"
};
#define MAX_FAULT_REASON_IDX 	ARRAY_SIZE(fault_reason_strings)

char *dmar_get_fault_reason(u8 fault_reason)
{
	if (fault_reason > MAX_FAULT_REASON_IDX)
		return fault_reason_strings[MAX_FAULT_REASON_IDX];
	else
		return fault_reason_strings[fault_reason];
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, u64 addr)
{
	char *reason;

	reason = dmar_get_fault_reason(fault_reason);

	printk(KERN_ERR
		"DMAR:[%s] Request device [%02x:%02x.%d] "
		"fault addr %llx \n"
		"DMAR:[fault reason %02d] %s\n",
		(type ? "DMA Read" : "DMA Write"),
		(source_id >> 8), PCI_SLOT(source_id & 0xFF),
		PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
static irqreturn_t iommu_page_fault(int irq, void *dev_id)
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
		goto clear_overflow;

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		iommu_page_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
		if (fault_index > cap_num_fault_regs(iommu->cap))
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
clear_overflow:
	/* clear primary fault overflow */
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
	if (fault_status & DMA_FSTS_PFO)
		writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
		return 0;
	}

	/* Force fault register is cleared */
	iommu_page_fault(irq, iommu);

	ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
	unsigned long ndomains;
	unsigned long nlongs;

	ndomains = cap_ndoms(iommu->cap);
	pr_debug("Number of Domains supportd <%ld>\n", ndomains);
	nlongs = BITS_TO_LONGS(ndomains);

	/* TBD: there might be 64K domains,
	 * consider other allocation for future chip
	 */
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
		printk(KERN_ERR "Allocating domain id array failed\n");
		return -ENOMEM;
	}
	iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
			GFP_KERNEL);
	if (!iommu->domains) {
		printk(KERN_ERR "Allocating domain array failed\n");
		kfree(iommu->domain_ids);
		return -ENOMEM;
	}

	/*
	 * if Caching mode is set, then invalid translations are tagged
	 * with domainid 0. Hence we need to pre-allocate it.
	 */
	if (cap_caching_mode(iommu->cap))
		set_bit(0, iommu->domain_ids);
	return 0;
}

static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd)
{
	struct intel_iommu *iommu;
	int ret;
	int map_size;
	u32 ver;

	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
		return NULL;
	iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K);
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
	map_size = PAGE_ALIGN_4K(map_size);
	if (map_size > PAGE_SIZE_4K) {
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
	pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
		drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		iommu->cap, iommu->ecap);
	ret = iommu_init_domains(iommu);
	if (ret)
		goto error_unmap;
	spin_lock_init(&iommu->lock);
	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
	return iommu;
error_unmap:
	iounmap(iommu->reg);
	iommu->reg = 0;
error:
	kfree(iommu);
	return NULL;
}

static void domain_exit(struct dmar_domain *domain);
static void free_iommu(struct intel_iommu *iommu)
{
	struct dmar_domain *domain;
	int i;

	if (!iommu)
		return;

	i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
	for (; i < cap_ndoms(iommu->cap); ) {
		domain = iommu->domains[i];
		clear_bit(i, iommu->domain_ids);
		domain_exit(domain);
		i = find_next_bit(iommu->domain_ids,
			cap_ndoms(iommu->cap), i+1);
	}

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	if (iommu->irq) {
		set_irq_data(iommu->irq, NULL);
		/* This will mask the irq */
		free_irq(iommu->irq, iommu);
		destroy_irq(iommu->irq);
	}

	kfree(iommu->domains);
	kfree(iommu->domain_ids);

	/* free context mapping */
	free_context_table(iommu);

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}

static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
{
	unsigned long num;
	unsigned long ndomains;
	struct dmar_domain *domain;
	unsigned long flags;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

	ndomains = cap_ndoms(iommu->cap);

	spin_lock_irqsave(&iommu->lock, flags);
	num = find_first_zero_bit(iommu->domain_ids, ndomains);
	if (num >= ndomains) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		free_domain_mem(domain);
		printk(KERN_ERR "IOMMU: no free domain ids\n");
		return NULL;
	}

	set_bit(num, iommu->domain_ids);
	domain->id = num;
	domain->iommu = iommu;
	iommu->domains[num] = domain;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return domain;
}

static void iommu_free_domain(struct dmar_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&domain->iommu->lock, flags);
	clear_bit(domain->id, domain->iommu->domain_ids);
	spin_unlock_irqrestore(&domain->iommu->lock, flags);
}

static struct iova_domain reserved_iova_list;

static void dmar_init_reserved_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;
	u64 addr, size;

	init_iova_domain(&reserved_iova_list);

	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
	if (!iova)
		printk(KERN_ERR "Reserve IOAPIC range failed\n");

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
			addr = r->start;
			addr &= PAGE_MASK_4K;
			size = r->end - addr;
			size = PAGE_ALIGN_4K(size);
			iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
				IOVA_PFN(size + addr) - 1);
			if (!iova)
				printk(KERN_ERR "Reserve iova failed\n");
		}
	}

}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static int domain_init(struct dmar_domain *domain, int guest_width)
{
	struct intel_iommu *iommu;
	int adjust_width, agaw;
	unsigned long sagaw;

	init_iova_domain(&domain->iovad);
	spin_lock_init(&domain->mapping_lock);

	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	iommu = domain->iommu;
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
		pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;
	INIT_LIST_HEAD(&domain->devices);

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page();
	if (!domain->pgd)
		return -ENOMEM;
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
	return 0;
}

static void domain_exit(struct dmar_domain *domain)
{
	u64 end;

	/* Domain 0 is reserved, so dont process it */
	if (!domain)
		return;

	domain_remove_dev_info(domain);
	/* destroy iovas */
	put_iova_domain(&domain->iovad);
	end = DOMAIN_MAX_ADDR(domain->gaw);
	end = end & (~PAGE_MASK_4K);

	/* clear ptes */
	dma_pte_clear_range(domain, 0, end);

	/* free page tables */
	dma_pte_free_pagetable(domain, 0, end);

	iommu_free_domain(domain);
	free_domain_mem(domain);
}

static int domain_context_mapping_one(struct dmar_domain *domain,
		u8 bus, u8 devfn)
{
	struct context_entry *context;
	struct intel_iommu *iommu = domain->iommu;
	unsigned long flags;

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
	BUG_ON(!domain->pgd);
	context = device_to_context_entry(iommu, bus, devfn);
	if (!context)
		return -ENOMEM;
	spin_lock_irqsave(&iommu->lock, flags);
	if (context_present(*context)) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return 0;
	}

	context_set_domain_id(*context, domain->id);
	context_set_address_width(*context, domain->agaw);
	context_set_address_root(*context, virt_to_phys(domain->pgd));
	context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
	context_set_fault_enable(*context);
	context_set_present(*context);
	__iommu_flush_cache(iommu, context, sizeof(*context));

	/* it's a non-present to present mapping */
	if (iommu_flush_context_device(iommu, domain->id,
			(((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
		iommu_flush_write_buffer(iommu);
	else
		iommu_flush_iotlb_dsi(iommu, 0, 0);
	spin_unlock_irqrestore(&iommu->lock, flags);
	return 0;
}

static int
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
{
	int ret;
	struct pci_dev *tmp, *parent;

	ret = domain_context_mapping_one(domain, pdev->bus->number,
		pdev->devfn);
	if (ret)
		return ret;

	/* dependent device mapping */
	tmp = pci_find_upstream_pcie_bridge(pdev);
	if (!tmp)
		return 0;
	/* Secondary interface's bus number and devfn 0 */
	parent = pdev->bus->self;
	while (parent != tmp) {
		ret = domain_context_mapping_one(domain, parent->bus->number,
			parent->devfn);
		if (ret)
			return ret;
		parent = parent->bus->self;
	}
	if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
		return domain_context_mapping_one(domain,
			tmp->subordinate->number, 0);
	else /* this is a legacy PCI bridge */
		return domain_context_mapping_one(domain,
			tmp->bus->number, tmp->devfn);
}

static int domain_context_mapped(struct dmar_domain *domain,
	struct pci_dev *pdev)
{
	int ret;
	struct pci_dev *tmp, *parent;

	ret = device_context_mapped(domain->iommu,
		pdev->bus->number, pdev->devfn);
	if (!ret)
		return ret;
	/* dependent device mapping */
	tmp = pci_find_upstream_pcie_bridge(pdev);
	if (!tmp)
		return ret;
	/* Secondary interface's bus number and devfn 0 */
	parent = pdev->bus->self;
	while (parent != tmp) {
		ret = device_context_mapped(domain->iommu, parent->bus->number,
			parent->devfn);
		if (!ret)
			return ret;
		parent = parent->bus->self;
	}
	if (tmp->is_pcie)
		return device_context_mapped(domain->iommu,
			tmp->subordinate->number, 0);
	else
		return device_context_mapped(domain->iommu,
			tmp->bus->number, tmp->devfn);
}

static int
domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
			u64 hpa, size_t size, int prot)
{
	u64 start_pfn, end_pfn;
	struct dma_pte *pte;
	int index;

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;
	iova &= PAGE_MASK_4K;
	start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
	end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
	index = 0;
	while (start_pfn < end_pfn) {
		pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
		if (!pte)
			return -ENOMEM;
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
		BUG_ON(dma_pte_addr(*pte));
		dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
		dma_set_pte_prot(*pte, prot);
		__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
		start_pfn++;
		index++;
	}
	return 0;
}

static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
{
	clear_context_table(domain->iommu, bus, devfn);
	iommu_flush_context_global(domain->iommu, 0);
	iommu_flush_iotlb_global(domain->iommu, 0);
}

static void domain_remove_dev_info(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	while (!list_empty(&domain->devices)) {
		info = list_entry(domain->devices.next,
			struct device_domain_info, link);
		list_del(&info->link);
		list_del(&info->global);
		if (info->dev)
			info->dev->dev.archdata.iommu = NULL;
		spin_unlock_irqrestore(&device_domain_lock, flags);

		detach_domain_for_dev(info->domain, info->bus, info->devfn);
		free_devinfo_mem(info);

		spin_lock_irqsave(&device_domain_lock, flags);
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

/*
 * find_domain
 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
 */
struct dmar_domain *
find_domain(struct pci_dev *pdev)
{
	struct device_domain_info *info;

	/* No lock here, assumes no domain exit in normal case */
	info = pdev->dev.archdata.iommu;
	if (info)
		return info->domain;
	return NULL;
}

static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
     struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index ++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

static struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
	struct dmar_drhd_unit *drhd = NULL;

	list_for_each_entry(drhd, &dmar_drhd_units, list) {
		if (drhd->include_all || dmar_pci_device_match(drhd->devices,
						drhd->devices_cnt, dev))
			return drhd;
	}

	return NULL;
}

/* domain is initialized */
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
{
	struct dmar_domain *domain, *found = NULL;
	struct intel_iommu *iommu;
	struct dmar_drhd_unit *drhd;
	struct device_domain_info *info, *tmp;
	struct pci_dev *dev_tmp;
	unsigned long flags;
	int bus = 0, devfn = 0;

	domain = find_domain(pdev);
	if (domain)
		return domain;

	dev_tmp = pci_find_upstream_pcie_bridge(pdev);
	if (dev_tmp) {
		if (dev_tmp->is_pcie) {
			bus = dev_tmp->subordinate->number;
			devfn = 0;
		} else {
			bus = dev_tmp->bus->number;
			devfn = dev_tmp->devfn;
		}
		spin_lock_irqsave(&device_domain_lock, flags);
		list_for_each_entry(info, &device_domain_list, global) {
			if (info->bus == bus && info->devfn == devfn) {
				found = info->domain;
				break;
			}
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		/* pcie-pci bridge already has a domain, uses it */
		if (found) {
			domain = found;
			goto found_domain;
		}
	}

	/* Allocate new domain for the device */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd) {
		printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
			pci_name(pdev));
		return NULL;
	}
	iommu = drhd->iommu;

	domain = iommu_alloc_domain(iommu);
	if (!domain)
		goto error;

	if (domain_init(domain, gaw)) {
		domain_exit(domain);
		goto error;
	}

	/* register pcie-to-pci device */
	if (dev_tmp) {
		info = alloc_devinfo_mem();
		if (!info) {
			domain_exit(domain);
			goto error;
		}
		info->bus = bus;
		info->devfn = devfn;
		info->dev = NULL;
		info->domain = domain;
		/* This domain is shared by devices under p2p bridge */
		domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;

		/* pcie-to-pci bridge already has a domain, uses it */
		found = NULL;
		spin_lock_irqsave(&device_domain_lock, flags);
		list_for_each_entry(tmp, &device_domain_list, global) {
			if (tmp->bus == bus && tmp->devfn == devfn) {
				found = tmp->domain;
				break;
			}
		}
		if (found) {
			free_devinfo_mem(info);
			domain_exit(domain);
			domain = found;
		} else {
			list_add(&info->link, &domain->devices);
			list_add(&info->global, &device_domain_list);
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
	}

found_domain:
	info = alloc_devinfo_mem();
	if (!info)
		goto error;
	info->bus = pdev->bus->number;
	info->devfn = pdev->devfn;
	info->dev = pdev;
	info->domain = domain;
	spin_lock_irqsave(&device_domain_lock, flags);
	/* somebody is fast */
	found = find_domain(pdev);
	if (found != NULL) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		if (found != domain) {
			domain_exit(domain);
			domain = found;
		}
		free_devinfo_mem(info);
		return domain;
	}
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	pdev->dev.archdata.iommu = info;
	spin_unlock_irqrestore(&device_domain_lock, flags);
	return domain;
error:
	/* recheck it here, maybe others set it */
	return find_domain(pdev);
}

static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
{
	struct dmar_domain *domain;
	unsigned long size;
	u64 base;
	int ret;

	printk(KERN_INFO
		"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
		pci_name(pdev), start, end);
	/* page table init */
	domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		return -ENOMEM;

	/* The address might not be aligned */
	base = start & PAGE_MASK_4K;
	size = end - base;
	size = PAGE_ALIGN_4K(size);
	if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
			IOVA_PFN(base + size) - 1)) {
		printk(KERN_ERR "IOMMU: reserve iova failed\n");
		ret = -ENOMEM;
		goto error;
	}

	pr_debug("Mapping reserved region %lx@%llx for %s\n",
		size, base, pci_name(pdev));
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
	dma_pte_clear_range(domain, base, base + size);

	ret = domain_page_mapping(domain, base, base, size,
		DMA_PTE_READ|DMA_PTE_WRITE);
	if (ret)
		goto error;

	/* context entry init */
	ret = domain_context_mapping(domain, pdev);
	if (!ret)
		return 0;
error:
	domain_exit(domain);
	return ret;

}

static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
	struct pci_dev *pdev)
{
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
		return 0;
	return iommu_prepare_identity_map(pdev, rmrr->base_address,
		rmrr->end_address + 1);
}

#ifdef CONFIG_DMAR_GFX_WA
extern int arch_get_ram_range(int slot, u64 *addr, u64 *size);
static void __init iommu_prepare_gfx_mapping(void)
{
	struct pci_dev *pdev = NULL;
	u64 base, size;
	int slot;
	int ret;

	for_each_pci_dev(pdev) {
		if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
				!IS_GFX_DEVICE(pdev))
			continue;
		printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
			pci_name(pdev));
		slot = arch_get_ram_range(0, &base, &size);
		while (slot >= 0) {
			ret = iommu_prepare_identity_map(pdev,
					base, base + size);
			if (ret)
				goto error;
			slot = arch_get_ram_range(slot, &base, &size);
		}
		continue;
error:
		printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
	}
}
#endif

#ifdef CONFIG_DMAR_FLOPPY_WA
static inline void iommu_prepare_isa(void)
{
	struct pci_dev *pdev;
	int ret;

	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
	if (!pdev)
		return;

	printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
	ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);

	if (ret)
		printk("IOMMU: Failed to create 0-64M identity map, "
			"floppy might not work\n");

}
#else
static inline void iommu_prepare_isa(void)
{
	return;
}
#endif /* !CONFIG_DMAR_FLPY_WA */

int __init init_dmars(void)
{
	struct dmar_drhd_unit *drhd;
	struct dmar_rmrr_unit *rmrr;
	struct pci_dev *pdev;
	struct intel_iommu *iommu;
	int ret, unit = 0;

	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
		if (drhd->ignored)
			continue;
		iommu = alloc_iommu(drhd);
		if (!iommu) {
			ret = -ENOMEM;
			goto error;
		}

		/*
		 * TBD:
		 * we could share the same root & context tables
		 * amoung all IOMMU's. Need to Split it later.
		 */
		ret = iommu_alloc_root_entry(iommu);
		if (ret) {
			printk(KERN_ERR "IOMMU: allocate root entry failed\n");
			goto error;
		}
	}

	/*
	 * For each rmrr
	 *   for each dev attached to rmrr
	 *   do
	 *     locate drhd for dev, alloc domain for dev
	 *     allocate free domain
	 *     allocate page table entries for rmrr
	 *     if context not allocated for bus
	 *           allocate and init context
	 *           set present in root table for this bus
	 *     init context with domain, translation etc
	 *    endfor
	 * endfor
	 */
	for_each_rmrr_units(rmrr) {
		int i;
		for (i = 0; i < rmrr->devices_cnt; i++) {
			pdev = rmrr->devices[i];
			/* some BIOS lists non-exist devices in DMAR table */
			if (!pdev)
				continue;
			ret = iommu_prepare_rmrr_dev(rmrr, pdev);
			if (ret)
				printk(KERN_ERR
				 "IOMMU: mapping reserved region failed\n");
		}
	}

	iommu_prepare_gfx_mapping();

	iommu_prepare_isa();

	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
	for_each_drhd_unit(drhd) {
		if (drhd->ignored)
			continue;
		iommu = drhd->iommu;
		sprintf (iommu->name, "dmar%d", unit++);

		iommu_flush_write_buffer(iommu);

		ret = dmar_set_interrupt(iommu);
		if (ret)
			goto error;

		iommu_set_root_entry(iommu);

		iommu_flush_context_global(iommu, 0);
		iommu_flush_iotlb_global(iommu, 0);

		ret = iommu_enable_translation(iommu);
		if (ret)
			goto error;
	}

	return 0;
error:
	for_each_drhd_unit(drhd) {
		if (drhd->ignored)
			continue;
		iommu = drhd->iommu;
		free_iommu(iommu);
	}
	return ret;
}

static inline u64 aligned_size(u64 host_addr, size_t size)
{
	u64 addr;
	addr = (host_addr & (~PAGE_MASK_4K)) + size;
	return PAGE_ALIGN_4K(addr);
}

struct iova *
iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
{
	struct iova *piova;

	/* Make sure it's in range */
	end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
	if (!size || (IOVA_START_ADDR + size > end))
		return NULL;

	piova = alloc_iova(&domain->iovad,
			size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1);
	return piova;
}

static struct iova *
__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
		size_t size)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iova *iova = NULL;

	if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) {
		iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
	} else  {
		/*
		 * First try to allocate an io virtual address in
		 * DMA_32BIT_MASK and if that fails then try allocating
		 * from higer range
		 */
		iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
		if (!iova)
			iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
	}

	if (!iova) {
		printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
		return NULL;
	}

	return iova;
}

static struct dmar_domain *
get_valid_domain_for_dev(struct pci_dev *pdev)
{
	struct dmar_domain *domain;
	int ret;

	domain = get_domain_for_dev(pdev,
			DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain) {
		printk(KERN_ERR
			"Allocating domain for %s failed", pci_name(pdev));
		return 0;
	}

	/* make sure context mapping is ok */
	if (unlikely(!domain_context_mapped(domain, pdev))) {
		ret = domain_context_mapping(domain, pdev);
		if (ret) {
			printk(KERN_ERR
				"Domain context map for %s failed",
				pci_name(pdev));
			return 0;
		}
	}

	return domain;
}

static dma_addr_t intel_map_single(struct device *hwdev, void *addr,
	size_t size, int dir)
{
	struct pci_dev *pdev = to_pci_dev(hwdev);
	int ret;
	struct dmar_domain *domain;
	unsigned long start_addr;
	struct iova *iova;
	int prot = 0;

	BUG_ON(dir == DMA_NONE);
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
		return virt_to_bus(addr);

	domain = get_valid_domain_for_dev(pdev);
	if (!domain)
		return 0;

	addr = (void *)virt_to_phys(addr);
	size = aligned_size((u64)addr, size);

	iova = __intel_alloc_iova(hwdev, domain, size);
	if (!iova)
		goto error;

	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
			!cap_zlr(domain->iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
	 * addr - (addr + size) might be partial page, we should map the whole
	 * page.  Note: if two part of one page are separately mapped, we
	 * might have two guest_addr mapping to the same host addr, but this
	 * is not a big problem
	 */
	ret = domain_page_mapping(domain, start_addr,
		((u64)addr) & PAGE_MASK_4K, size, prot);
	if (ret)
		goto error;

	pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
		pci_name(pdev), size, (u64)addr,
		size, (u64)start_addr, dir);

	/* it's a non-present to present mapping */
	ret = iommu_flush_iotlb_psi(domain->iommu, domain->id,
			start_addr, size >> PAGE_SHIFT_4K, 1);
	if (ret)
		iommu_flush_write_buffer(domain->iommu);

	return (start_addr + ((u64)addr & (~PAGE_MASK_4K)));

error:
	if (iova)
		__free_iova(&domain->iovad, iova);
	printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
		pci_name(pdev), size, (u64)addr, dir);
	return 0;
}

static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
	size_t size, int dir)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct dmar_domain *domain;
	unsigned long start_addr;
	struct iova *iova;

	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
		return;
	domain = find_domain(pdev);
	BUG_ON(!domain);

	iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
	if (!iova)
		return;

	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
	size = aligned_size((u64)dev_addr, size);

	pr_debug("Device %s unmapping: %lx@%llx\n",
		pci_name(pdev), size, (u64)start_addr);

	/*  clear the whole page */
	dma_pte_clear_range(domain, start_addr, start_addr + size);
	/* free page tables */
	dma_pte_free_pagetable(domain, start_addr, start_addr + size);

	if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
			size >> PAGE_SHIFT_4K, 0))
		iommu_flush_write_buffer(domain->iommu);

	/* free iova */
	__free_iova(&domain->iovad, iova);
}

static void * intel_alloc_coherent(struct device *hwdev, size_t size,
		       dma_addr_t *dma_handle, gfp_t flags)
{
	void *vaddr;
	int order;

	size = PAGE_ALIGN_4K(size);
	order = get_order(size);
	flags &= ~(GFP_DMA | GFP_DMA32);

	vaddr = (void *)__get_free_pages(flags, order);
	if (!vaddr)
		return NULL;
	memset(vaddr, 0, size);

	*dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL);
	if (*dma_handle)
		return vaddr;
	free_pages((unsigned long)vaddr, order);
	return NULL;
}

static void intel_free_coherent(struct device *hwdev, size_t size,
	void *vaddr, dma_addr_t dma_handle)
{
	int order;

	size = PAGE_ALIGN_4K(size);
	order = get_order(size);

	intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
	free_pages((unsigned long)vaddr, order);
}

#define SG_ENT_VIRT_ADDRESS(sg)	(page_address((sg)->page) + (sg)->offset)
static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sg,
	int nelems, int dir)
{
	int i;
	struct pci_dev *pdev = to_pci_dev(hwdev);
	struct dmar_domain *domain;
	unsigned long start_addr;
	struct iova *iova;
	size_t size = 0;
	void *addr;

	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
		return;

	domain = find_domain(pdev);

	iova = find_iova(&domain->iovad, IOVA_PFN(sg[0].dma_address));
	if (!iova)
		return;
	for (i = 0; i < nelems; i++, sg++) {
		addr = SG_ENT_VIRT_ADDRESS(sg);
		size += aligned_size((u64)addr, sg->length);
	}

	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;

	/*  clear the whole page */
	dma_pte_clear_range(domain, start_addr, start_addr + size);
	/* free page tables */
	dma_pte_free_pagetable(domain, start_addr, start_addr + size);

	if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
			size >> PAGE_SHIFT_4K, 0))
		iommu_flush_write_buffer(domain->iommu);

	/* free iova */
	__free_iova(&domain->iovad, iova);
}

static int intel_nontranslate_map_sg(struct device *hddev,
	struct scatterlist *sg, int nelems, int dir)
{
	int i;

	for (i = 0; i < nelems; i++) {
		struct scatterlist *s = &sg[i];
		BUG_ON(!s->page);
		s->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(s));
		s->dma_length = s->length;
	}
	return nelems;
}

static int intel_map_sg(struct device *hwdev, struct scatterlist *sg,
	int nelems, int dir)
{
	void *addr;
	int i;
	struct pci_dev *pdev = to_pci_dev(hwdev);
	struct dmar_domain *domain;
	size_t size = 0;
	int prot = 0;
	size_t offset = 0;
	struct iova *iova = NULL;
	int ret;
	struct scatterlist *orig_sg = sg;
	unsigned long start_addr;

	BUG_ON(dir == DMA_NONE);
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
		return intel_nontranslate_map_sg(hwdev, sg, nelems, dir);

	domain = get_valid_domain_for_dev(pdev);
	if (!domain)
		return 0;

	for (i = 0; i < nelems; i++, sg++) {
		addr = SG_ENT_VIRT_ADDRESS(sg);
		addr = (void *)virt_to_phys(addr);
		size += aligned_size((u64)addr, sg->length);
	}

	iova = __intel_alloc_iova(hwdev, domain, size);
	if (!iova) {
		orig_sg->dma_length = 0;
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
			!cap_zlr(domain->iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
	offset = 0;
	sg = orig_sg;
	for (i = 0; i < nelems; i++, sg++) {
		addr = SG_ENT_VIRT_ADDRESS(sg);
		addr = (void *)virt_to_phys(addr);
		size = aligned_size((u64)addr, sg->length);
		ret = domain_page_mapping(domain, start_addr + offset,
			((u64)addr) & PAGE_MASK_4K,
			size, prot);
		if (ret) {
			/*  clear the page */
			dma_pte_clear_range(domain, start_addr,
				  start_addr + offset);
			/* free page tables */
			dma_pte_free_pagetable(domain, start_addr,
				  start_addr + offset);
			/* free iova */
			__free_iova(&domain->iovad, iova);
			return 0;
		}
		sg->dma_address = start_addr + offset +
				((u64)addr & (~PAGE_MASK_4K));
		sg->dma_length = sg->length;
		offset += size;
	}

	/* it's a non-present to present mapping */
	if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
			start_addr, offset >> PAGE_SHIFT_4K, 1))
		iommu_flush_write_buffer(domain->iommu);
	return nelems;
}

static struct dma_mapping_ops intel_dma_ops = {
	.alloc_coherent = intel_alloc_coherent,
	.free_coherent = intel_free_coherent,
	.map_single = intel_map_single,
	.unmap_single = intel_unmap_single,
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
};

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
		printk(KERN_ERR "Couldn't create iommu_domain cache\n");
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_devinfo_cache) {
		printk(KERN_ERR "Couldn't create devinfo cache\n");
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_iova_cache_init(void)
{
	int ret = 0;

	iommu_iova_cache = kmem_cache_create("iommu_iova",
					 sizeof(struct iova),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_iova_cache) {
		printk(KERN_ERR "Couldn't create iova cache\n");
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
	ret = iommu_iova_cache_init();
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
	kmem_cache_destroy(iommu_iova_cache);

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
	kmem_cache_destroy(iommu_iova_cache);

}

void __init detect_intel_iommu(void)
{
	if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
		return;
	if (early_dmar_detect()) {
		iommu_detected = 1;
	}
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
			int i;
			for (i = 0; i < drhd->devices_cnt; i++)
				if (drhd->devices[i] != NULL)
					break;
			/* ignore DMAR unit if no pci devices exist */
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

	if (dmar_map_gfx)
		return;

	for_each_drhd_unit(drhd) {
		int i;
		if (drhd->ignored || drhd->include_all)
			continue;

		for (i = 0; i < drhd->devices_cnt; i++)
			if (drhd->devices[i] &&
				!IS_GFX_DEVICE(drhd->devices[i]))
				break;

		if (i < drhd->devices_cnt)
			continue;

		/* bypass IOMMU if it is just for gfx devices */
		drhd->ignored = 1;
		for (i = 0; i < drhd->devices_cnt; i++) {
			if (!drhd->devices[i])
				continue;
			drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
		}
	}
}

int __init intel_iommu_init(void)
{
	int ret = 0;

	if (no_iommu || swiotlb || dmar_disabled)
		return -ENODEV;

	if (dmar_table_init())
		return 	-ENODEV;

	iommu_init_mempool();
	dmar_init_reserved_ranges();

	init_no_remapping_devices();

	ret = init_dmars();
	if (ret) {
		printk(KERN_ERR "IOMMU: dmar init failed\n");
		put_iova_domain(&reserved_iova_list);
		iommu_exit_mempool();
		return ret;
	}
	printk(KERN_INFO
	"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");

	force_iommu = 1;
	dma_ops = &intel_dma_ops;
	return 0;
}