// SPDX-License-Identifier: GPL-2.0
/*
* Volume Management Device driver
* Copyright (c) 2015, Intel Corporation.
*/
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/pci.h>
#include <linux/pci-acpi.h>
#include <linux/pci-ecam.h>
#include <linux/srcu.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <asm/irqdomain.h>
#define VMD_CFGBAR 0
#define VMD_MEMBAR1 2
#define VMD_MEMBAR2 4
#define PCI_REG_VMCAP 0x40
#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
#define PCI_REG_VMCONFIG 0x44
#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
#define VMCONFIG_MSI_REMAP 0x2
#define PCI_REG_VMLOCK 0x70
#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
#define MB2_SHADOW_OFFSET 0x2000
#define MB2_SHADOW_SIZE 16
enum vmd_features {
/*
* Device may contain registers which hint the physical location of the
* membars, in order to allow proper address translation during
* resource assignment to enable guest virtualization
*/
VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
/*
* Device may provide root port configuration information which limits
* bus numbering
*/
VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
/*
* Device contains physical location shadow registers in
* vendor-specific capability space
*/
VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
/*
* Device may use MSI-X vector 0 for software triggering and will not
* be used for MSI remapping
*/
VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
/*
* Device can bypass remapping MSI-X transactions into its MSI-X table,
* avoiding the requirement of a VMD MSI domain for child device
* interrupt handling.
*/
VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
/*
* Enable ASPM on the PCIE root ports and set the default LTR of the
* storage devices on platforms where these values are not configured by
* BIOS. This is needed for laptops, which require these settings for
* proper power management of the SoC.
*/
VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
};
#define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
#define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
VMD_FEAT_HAS_BUS_RESTRICTIONS | \
VMD_FEAT_OFFSET_FIRST_VECTOR | \
VMD_FEAT_BIOS_PM_QUIRK)
static DEFINE_IDA(vmd_instance_ida);
/*
* Lock for manipulating VMD IRQ lists.
*/
static DEFINE_RAW_SPINLOCK(list_lock);
/**
* struct vmd_irq - private data to map driver IRQ to the VMD shared vector
* @node: list item for parent traversal.
* @irq: back pointer to parent.
* @enabled: true if driver enabled IRQ
* @virq: the virtual IRQ value provided to the requesting driver.
*
* Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
* a VMD IRQ using this structure.
*/
struct vmd_irq {
struct list_head node;
struct vmd_irq_list *irq;
bool enabled;
unsigned int virq;
};
/**
* struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
* @irq_list: the list of irq's the VMD one demuxes to.
* @srcu: SRCU struct for local synchronization.
* @count: number of child IRQs assigned to this vector; used to track
* sharing.
* @virq: The underlying VMD Linux interrupt number
*/
struct vmd_irq_list {
struct list_head irq_list;
struct srcu_struct srcu;
unsigned int count;
unsigned int virq;
};
struct vmd_dev {
struct pci_dev *dev;
spinlock_t cfg_lock;
void __iomem *cfgbar;
int msix_count;
struct vmd_irq_list *irqs;
struct pci_sysdata sysdata;
struct resource resources[3];
struct irq_domain *irq_domain;
struct pci_bus *bus;
u8 busn_start;
u8 first_vec;
char *name;
int instance;
};
static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
{
return container_of(bus->sysdata, struct vmd_dev, sysdata);
}
static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
struct vmd_irq_list *irqs)
{
return irqs - vmd->irqs;
}
/*
* Drivers managing a device in a VMD domain allocate their own IRQs as before,
* but the MSI entry for the hardware it's driving will be programmed with a
* destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
* domain into one of its own, and the VMD driver de-muxes these for the
* handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
* and irq_chip to set this up.
*/
static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct vmd_irq *vmdirq = data->chip_data;
struct vmd_irq_list *irq = vmdirq->irq;
struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
memset(msg, 0, sizeof(*msg));
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
}
/*
* We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
*/
static void vmd_irq_enable(struct irq_data *data)
{
struct vmd_irq *vmdirq = data->chip_data;
unsigned long flags;
raw_spin_lock_irqsave(&list_lock, flags);
WARN_ON(vmdirq->enabled);
list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
vmdirq->enabled = true;
raw_spin_unlock_irqrestore(&list_lock, flags);
data->chip->irq_unmask(data);
}
static void vmd_irq_disable(struct irq_data *data)
{
struct vmd_irq *vmdirq = data->chip_data;
unsigned long flags;
data->chip->irq_mask(data);
raw_spin_lock_irqsave(&list_lock, flags);
if (vmdirq->enabled) {
list_del_rcu(&vmdirq->node);
vmdirq->enabled = false;
}
raw_spin_unlock_irqrestore(&list_lock, flags);
}
/*
* XXX: Stubbed until we develop acceptable way to not create conflicts with
* other devices sharing the same vector.
*/
static int vmd_irq_set_affinity(struct irq_data *data,
const struct cpumask *dest, bool force)
{
return -EINVAL;
}
static struct irq_chip vmd_msi_controller = {
.name = "VMD-MSI",
.irq_enable = vmd_irq_enable,
.irq_disable = vmd_irq_disable,
.irq_compose_msi_msg = vmd_compose_msi_msg,
.irq_set_affinity = vmd_irq_set_affinity,
};
static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
msi_alloc_info_t *arg)
{
return 0;
}
/*
* XXX: We can be even smarter selecting the best IRQ once we solve the
* affinity problem.
*/
static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
{
unsigned long flags;
int i, best;
if (vmd->msix_count == 1 + vmd->first_vec)
return &vmd->irqs[vmd->first_vec];
/*
* White list for fast-interrupt handlers. All others will share the
* "slow" interrupt vector.
*/
switch (msi_desc_to_pci_dev(desc)->class) {
case PCI_CLASS_STORAGE_EXPRESS:
break;
default:
return &vmd->irqs[vmd->first_vec];
}
raw_spin_lock_irqsave(&list_lock, flags);
best = vmd->first_vec + 1;
for (i = best; i < vmd->msix_count; i++)
if (vmd->irqs[i].count < vmd->irqs[best].count)
best = i;
vmd->irqs[best].count++;
raw_spin_unlock_irqrestore(&list_lock, flags);
return &vmd->irqs[best];
}
static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
unsigned int virq, irq_hw_number_t hwirq,
msi_alloc_info_t *arg)
{
struct msi_desc *desc = arg->desc;
struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
if (!vmdirq)
return -ENOMEM;
INIT_LIST_HEAD(&vmdirq->node);
vmdirq->irq = vmd_next_irq(vmd, desc);
vmdirq->virq = virq;
irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
handle_untracked_irq, vmd, NULL);
return 0;
}
static void vmd_msi_free(struct irq_domain *domain,
struct msi_domain_info *info, unsigned int virq)
{
struct vmd_irq *vmdirq = irq_get_chip_data(virq);
unsigned long flags;
synchronize_srcu(&vmdirq->irq->srcu);
/* XXX: Potential optimization to rebalance */
raw_spin_lock_irqsave(&list_lock, flags);
vmdirq->irq->count--;
raw_spin_unlock_irqrestore(&list_lock, flags);
kfree(vmdirq);
}
static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *arg)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
if (nvec > vmd->msix_count)
return vmd->msix_count;
memset(arg, 0, sizeof(*arg));
return 0;
}
static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
{
arg->desc = desc;
}
static struct msi_domain_ops vmd_msi_domain_ops = {
.get_hwirq = vmd_get_hwirq,
.msi_init = vmd_msi_init,
.msi_free = vmd_msi_free,
.msi_prepare = vmd_msi_prepare,
.set_desc = vmd_set_desc,
};
static struct msi_domain_info vmd_msi_domain_info = {
.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX,
.ops = &vmd_msi_domain_ops,
.chip = &vmd_msi_controller,
};
static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
{
u16 reg;
pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
(reg | VMCONFIG_MSI_REMAP);
pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
}
static int vmd_create_irq_domain(struct vmd_dev *vmd)
{
struct fwnode_handle *fn;
fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
if (!fn)
return -ENODEV;
vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
if (!vmd->irq_domain) {
irq_domain_free_fwnode(fn);
return -ENODEV;
}
return 0;
}
static void vmd_remove_irq_domain(struct vmd_dev *vmd)
{
/*
* Some production BIOS won't enable remapping between soft reboots.
* Ensure remapping is restored before unloading the driver.
*/
if (!vmd->msix_count)
vmd_set_msi_remapping(vmd, true);
if (vmd->irq_domain) {
struct fwnode_handle *fn = vmd->irq_domain->fwnode;
irq_domain_remove(vmd->irq_domain);
irq_domain_free_fwnode(fn);
}
}
static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
unsigned int devfn, int reg, int len)
{
unsigned int busnr_ecam = bus->number - vmd->busn_start;
u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
return NULL;
return vmd->cfgbar + offset;
}
/*
* CPU may deadlock if config space is not serialized on some versions of this
* hardware, so all config space access is done under a spinlock.
*/
static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
int len, u32 *value)
{
struct vmd_dev *vmd = vmd_from_bus(bus);
void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
unsigned long flags;
int ret = 0;
if (!addr)
return -EFAULT;
spin_lock_irqsave(&vmd->cfg_lock, flags);
switch (len) {
case 1:
*value = readb(addr);
break;
case 2:
*value = readw(addr);
break;
case 4:
*value = readl(addr);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&vmd->cfg_lock, flags);
return ret;
}
/*
* VMD h/w converts non-posted config writes to posted memory writes. The
* read-back in this function forces the completion so it returns only after
* the config space was written, as expected.
*/
static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
int len, u32 value)
{
struct vmd_dev *vmd = vmd_from_bus(bus);
void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
unsigned long flags;
int ret = 0;
if (!addr)
return -EFAULT;
spin_lock_irqsave(&vmd->cfg_lock, flags);
switch (len) {
case 1:
writeb(value, addr);
readb(addr);
break;
case 2:
writew(value, addr);
readw(addr);
break;
case 4:
writel(value, addr);
readl(addr);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&vmd->cfg_lock, flags);
return ret;
}
static struct pci_ops vmd_ops = {
.read = vmd_pci_read,
.write = vmd_pci_write,
};
#ifdef CONFIG_ACPI
static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
{
struct pci_host_bridge *bridge;
u32 busnr, addr;
if (pci_dev->bus->ops != &vmd_ops)
return NULL;
bridge = pci_find_host_bridge(pci_dev->bus);
busnr = pci_dev->bus->number - bridge->bus->number;
/*
* The address computation below is only applicable to relative bus
* numbers below 32.
*/
if (busnr > 31)
return NULL;
addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
addr);
return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
false);
}
static bool hook_installed;
static void vmd_acpi_begin(void)
{
if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
return;
hook_installed = true;
}
static void vmd_acpi_end(void)
{
if (!hook_installed)
return;
pci_acpi_clear_companion_lookup_hook();
hook_installed = false;
}
#else
static inline void vmd_acpi_begin(void) { }
static inline void vmd_acpi_end(void) { }
#endif /* CONFIG_ACPI */
static void vmd_domain_reset(struct vmd_dev *vmd)
{
u16 bus, max_buses = resource_size(&vmd->resources[0]);
u8 dev, functions, fn, hdr_type;
char __iomem *base;
for (bus = 0; bus < max_buses; bus++) {
for (dev = 0; dev < 32; dev++) {
base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
PCI_DEVFN(dev, 0), 0);
hdr_type = readb(base + PCI_HEADER_TYPE);
functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
for (fn = 0; fn < functions; fn++) {
base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
PCI_DEVFN(dev, fn), 0);
hdr_type = readb(base + PCI_HEADER_TYPE) &
PCI_HEADER_TYPE_MASK;
if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
(readw(base + PCI_CLASS_DEVICE) !=
PCI_CLASS_BRIDGE_PCI))
continue;
/*
* Temporarily disable the I/O range before updating
* PCI_IO_BASE.
*/
writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
/* Update lower 16 bits of I/O base/limit */
writew(0x00f0, base + PCI_IO_BASE);
/* Update upper 16 bits of I/O base/limit */
writel(0, base + PCI_IO_BASE_UPPER16);
/* MMIO Base/Limit */
writel(0x0000fff0, base + PCI_MEMORY_BASE);
/* Prefetchable MMIO Base/Limit */
writel(0, base + PCI_PREF_LIMIT_UPPER32);
writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
}
}
}
}
static void vmd_attach_resources(struct vmd_dev *vmd)
{
vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
}
static void vmd_detach_resources(struct vmd_dev *vmd)
{
vmd->dev->resource[VMD_MEMBAR1].child = NULL;
vmd->dev->resource[VMD_MEMBAR2].child = NULL;
}
/*
* VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
* Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
* 16 bits are the PCI Segment Group (domain) number. Other bits are
* currently reserved.
*/
static int vmd_find_free_domain(void)
{
int domain = 0xffff;
struct pci_bus *bus = NULL;
while ((bus = pci_find_next_bus(bus)) != NULL)
domain = max_t(int, domain, pci_domain_nr(bus));
return domain + 1;
}
static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
resource_size_t *offset1,
resource_size_t *offset2)
{
struct pci_dev *dev = vmd->dev;
u64 phys1, phys2;
if (native_hint) {
u32 vmlock;
int ret;
ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
if (ret || PCI_POSSIBLE_ERROR(vmlock))
return -ENODEV;
if (MB2_SHADOW_EN(vmlock)) {
void __iomem *membar2;
membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
if (!membar2)
return -ENOMEM;
phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
pci_iounmap(dev, membar2);
} else
return 0;
} else {
/* Hypervisor-Emulated Vendor-Specific Capability */
int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
u32 reg, regu;
pci_read_config_dword(dev, pos + 4, ®);
/* "SHDW" */
if (pos && reg == 0x53484457) {
pci_read_config_dword(dev, pos + 8, ®);
pci_read_config_dword(dev, pos + 12, ®u);
phys1 = (u64) regu << 32 | reg;
pci_read_config_dword(dev, pos + 16, ®);
pci_read_config_dword(dev, pos + 20, ®u);
phys2 = (u64) regu << 32 | reg;
} else
return 0;
}
*offset1 = dev->resource[VMD_MEMBAR1].start -
(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
*offset2 = dev->resource[VMD_MEMBAR2].start -
(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
return 0;
}
static int vmd_get_bus_number_start(struct vmd_dev *vmd)
{
struct pci_dev *dev = vmd->dev;
u16 reg;
pci_read_config_word(dev, PCI_REG_VMCAP, ®);
if (BUS_RESTRICT_CAP(reg)) {
pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
switch (BUS_RESTRICT_CFG(reg)) {
case 0:
vmd->busn_start = 0;
break;
case 1:
vmd->busn_start = 128;
break;
case 2:
vmd->busn_start = 224;
break;
default:
pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
BUS_RESTRICT_CFG(reg));
return -ENODEV;
}
}
return 0;
}
static irqreturn_t vmd_irq(int irq, void *data)
{
struct vmd_irq_list *irqs = data;
struct vmd_irq *vmdirq;
int idx;
idx = srcu_read_lock(&irqs->srcu);
list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
generic_handle_irq(vmdirq->virq);
srcu_read_unlock(&irqs->srcu, idx);
return IRQ_HANDLED;
}
static int vmd_alloc_irqs(struct vmd_dev *vmd)
{
struct pci_dev *dev = vmd->dev;
int i, err;
vmd->msix_count = pci_msix_vec_count(dev);
if (vmd->msix_count < 0)
return -ENODEV;
vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
vmd->msix_count, PCI_IRQ_MSIX);
if (vmd->msix_count < 0)
return vmd->msix_count;
vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
GFP_KERNEL);
if (!vmd->irqs)
return -ENOMEM;
for (i = 0; i < vmd->msix_count; i++) {
err = init_srcu_struct(&vmd->irqs[i].srcu);
if (err)
return err;
INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
vmd->irqs[i].virq = pci_irq_vector(dev, i);
err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
vmd_irq, IRQF_NO_THREAD,
vmd->name, &vmd->irqs[i]);
if (err)
return err;
}
return 0;
}
/*
* Since VMD is an aperture to regular PCIe root ports, only allow it to
* control features that the OS is allowed to control on the physical PCI bus.
*/
static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
struct pci_host_bridge *vmd_bridge)
{
vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
vmd_bridge->native_aer = root_bridge->native_aer;
vmd_bridge->native_pme = root_bridge->native_pme;
vmd_bridge->native_ltr = root_bridge->native_ltr;
vmd_bridge->native_dpc = root_bridge->native_dpc;
}
/*
* Enable ASPM and LTR settings on devices that aren't configured by BIOS.
*/
static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
{
unsigned long features = *(unsigned long *)userdata;
u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
u32 ltr_reg;
int pos;
if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
return 0;
pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
if (!pos)
return 0;
/*
* Skip if the max snoop LTR is non-zero, indicating BIOS has set it
* so the LTR quirk is not needed.
*/
pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
return 0;
/*
* Set the default values to the maximum required by the platform to
* allow the deepest power management savings. Write as a DWORD where
* the lower word is the max snoop latency and the upper word is the
* max non-snoop latency.
*/
ltr_reg = (ltr << 16) | ltr;
pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
pci_info(pdev, "VMD: Default LTR value set by driver\n");
return 0;
}
static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
{
struct pci_sysdata *sd = &vmd->sysdata;
struct resource *res;
u32 upper_bits;
unsigned long flags;
LIST_HEAD(resources);
resource_size_t offset[2] = {0};
resource_size_t membar2_offset = 0x2000;
struct pci_bus *child;
struct pci_dev *dev;
int ret;
/*
* Shadow registers may exist in certain VMD device ids which allow
* guests to correctly assign host physical addresses to the root ports
* and child devices. These registers will either return the host value
* or 0, depending on an enable bit in the VMD device.
*/
if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
if (ret)
return ret;
} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
if (ret)
return ret;
}
/*
* Certain VMD devices may have a root port configuration option which
* limits the bus range to between 0-127, 128-255, or 224-255
*/
if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
ret = vmd_get_bus_number_start(vmd);
if (ret)
return ret;
}
res = &vmd->dev->resource[VMD_CFGBAR];
vmd->resources[0] = (struct resource) {
.name = "VMD CFGBAR",
.start = vmd->busn_start,
.end = vmd->busn_start + (resource_size(res) >> 20) - 1,
.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
};
/*
* If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
* put 32-bit resources in the window.
*
* There's no hardware reason why a 64-bit window *couldn't*
* contain a 32-bit resource, but pbus_size_mem() computes the
* bridge window size assuming a 64-bit window will contain no
* 32-bit resources. __pci_assign_resource() enforces that
* artificial restriction to make sure everything will fit.
*
* The only way we could use a 64-bit non-prefetchable MEMBAR is
* if its address is <4GB so that we can convert it to a 32-bit
* resource. To be visible to the host OS, all VMD endpoints must
* be initially configured by platform BIOS, which includes setting
* up these resources. We can assume the device is configured
* according to the platform needs.
*/
res = &vmd->dev->resource[VMD_MEMBAR1];
upper_bits = upper_32_bits(res->end);
flags = res->flags & ~IORESOURCE_SIZEALIGN;
if (!upper_bits)
flags &= ~IORESOURCE_MEM_64;
vmd->resources[1] = (struct resource) {
.name = "VMD MEMBAR1",
.start = res->start,
.end = res->end,
.flags = flags,
.parent = res,
};
res = &vmd->dev->resource[VMD_MEMBAR2];
upper_bits = upper_32_bits(res->end);
flags = res->flags & ~IORESOURCE_SIZEALIGN;
if (!upper_bits)
flags &= ~IORESOURCE_MEM_64;
vmd->resources[2] = (struct resource) {
.name = "VMD MEMBAR2",
.start = res->start + membar2_offset,
.end = res->end,
.flags = flags,
.parent = res,
};
sd->vmd_dev = vmd->dev;
sd->domain = vmd_find_free_domain();
if (sd->domain < 0)
return sd->domain;
sd->node = pcibus_to_node(vmd->dev->bus);
/*
* Currently MSI remapping must be enabled in guest passthrough mode
* due to some missing interrupt remapping plumbing. This is probably
* acceptable because the guest is usually CPU-limited and MSI
* remapping doesn't become a performance bottleneck.
*/
if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
offset[0] || offset[1]) {
ret = vmd_alloc_irqs(vmd);
if (ret)
return ret;
vmd_set_msi_remapping(vmd, true);
ret = vmd_create_irq_domain(vmd);
if (ret)
return ret;
/*
* Override the IRQ domain bus token so the domain can be
* distinguished from a regular PCI/MSI domain.
*/
irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
} else {
vmd_set_msi_remapping(vmd, false);
}
pci_add_resource(&resources, &vmd->resources[0]);
pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
&vmd_ops, sd, &resources);
if (!vmd->bus) {
pci_free_resource_list(&resources);
vmd_remove_irq_domain(vmd);
return -ENODEV;
}
vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
to_pci_host_bridge(vmd->bus->bridge));
vmd_attach_resources(vmd);
if (vmd->irq_domain)
dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
else
dev_set_msi_domain(&vmd->bus->dev,
dev_get_msi_domain(&vmd->dev->dev));
WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
"domain"), "Can't create symlink to domain\n");
vmd_acpi_begin();
pci_scan_child_bus(vmd->bus);
vmd_domain_reset(vmd);
/* When Intel VMD is enabled, the OS does not discover the Root Ports
* owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
* a reset to the parent of the PCI device supplied as argument. This
* is why we pass a child device, so the reset can be triggered at
* the Intel bridge level and propagated to all the children in the
* hierarchy.
*/
list_for_each_entry(child, &vmd->bus->children, node) {
if (!list_empty(&child->devices)) {
dev = list_first_entry(&child->devices,
struct pci_dev, bus_list);
ret = pci_reset_bus(dev);
if (ret)
pci_warn(dev, "can't reset device: %d\n", ret);
break;
}
}
pci_assign_unassigned_bus_resources(vmd->bus);
pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
/*
* VMD root buses are virtual and don't return true on pci_is_pcie()
* and will fail pcie_bus_configure_settings() early. It can instead be
* run on each of the real root ports.
*/
list_for_each_entry(child, &vmd->bus->children, node)
pcie_bus_configure_settings(child);
pci_bus_add_devices(vmd->bus);
vmd_acpi_end();
return 0;
}
static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
unsigned long features = (unsigned long) id->driver_data;
struct vmd_dev *vmd;
int err;
if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
return -ENOMEM;
vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
if (!vmd)
return -ENOMEM;
vmd->dev = dev;
vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
if (vmd->instance < 0)
return vmd->instance;
vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
vmd->instance);
if (!vmd->name) {
err = -ENOMEM;
goto out_release_instance;
}
err = pcim_enable_device(dev);
if (err < 0)
goto out_release_instance;
vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
if (!vmd->cfgbar) {
err = -ENOMEM;
goto out_release_instance;
}
pci_set_master(dev);
if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
err = -ENODEV;
goto out_release_instance;
}
if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
vmd->first_vec = 1;
spin_lock_init(&vmd->cfg_lock);
pci_set_drvdata(dev, vmd);
err = vmd_enable_domain(vmd, features);
if (err)
goto out_release_instance;
dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
vmd->sysdata.domain);
return 0;
out_release_instance:
ida_free(&vmd_instance_ida, vmd->instance);
return err;
}
static void vmd_cleanup_srcu(struct vmd_dev *vmd)
{
int i;
for (i = 0; i < vmd->msix_count; i++)
cleanup_srcu_struct(&vmd->irqs[i].srcu);
}
static void vmd_remove(struct pci_dev *dev)
{
struct vmd_dev *vmd = pci_get_drvdata(dev);
pci_stop_root_bus(vmd->bus);
sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
pci_remove_root_bus(vmd->bus);
vmd_cleanup_srcu(vmd);
vmd_detach_resources(vmd);
vmd_remove_irq_domain(vmd);
ida_free(&vmd_instance_ida, vmd->instance);
}
static void vmd_shutdown(struct pci_dev *dev)
{
struct vmd_dev *vmd = pci_get_drvdata(dev);
vmd_remove_irq_domain(vmd);
}
#ifdef CONFIG_PM_SLEEP
static int vmd_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = pci_get_drvdata(pdev);
int i;
for (i = 0; i < vmd->msix_count; i++)
devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
return 0;
}
static int vmd_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = pci_get_drvdata(pdev);
int err, i;
vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
for (i = 0; i < vmd->msix_count; i++) {
err = devm_request_irq(dev, vmd->irqs[i].virq,
vmd_irq, IRQF_NO_THREAD,
vmd->name, &vmd->irqs[i]);
if (err)
return err;
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
static const struct pci_device_id vmd_ids[] = {
{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
VMD_FEAT_HAS_BUS_RESTRICTIONS |
VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
{PCI_VDEVICE(INTEL, 0x467f),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0x4c3d),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xa77f),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0x7d0b),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, 0xad0b),
.driver_data = VMD_FEATS_CLIENT,},
{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
.driver_data = VMD_FEATS_CLIENT,},
{0,}
};
MODULE_DEVICE_TABLE(pci, vmd_ids);
static struct pci_driver vmd_drv = {
.name = "vmd",
.id_table = vmd_ids,
.probe = vmd_probe,
.remove = vmd_remove,
.shutdown = vmd_shutdown,
.driver = {
.pm = &vmd_dev_pm_ops,
},
};
module_pci_driver(vmd_drv);
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.6");