// SPDX-License-Identifier: GPL-2.0
/*
* NVMe over Fabrics common host code.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/parser.h>
#include <linux/seq_file.h>
#include "nvme.h"
#include "fabrics.h"
static LIST_HEAD(nvmf_transports);
static DECLARE_RWSEM(nvmf_transports_rwsem);
static LIST_HEAD(nvmf_hosts);
static DEFINE_MUTEX(nvmf_hosts_mutex);
static struct nvmf_host *nvmf_default_host;
static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id)
{
struct nvmf_host *host;
host = kmalloc(sizeof(*host), GFP_KERNEL);
if (!host)
return NULL;
kref_init(&host->ref);
uuid_copy(&host->id, id);
strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE);
return host;
}
static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id)
{
struct nvmf_host *host;
mutex_lock(&nvmf_hosts_mutex);
/*
* We have defined a host as how it is perceived by the target.
* Therefore, we don't allow different Host NQNs with the same Host ID.
* Similarly, we do not allow the usage of the same Host NQN with
* different Host IDs. This'll maintain unambiguous host identification.
*/
list_for_each_entry(host, &nvmf_hosts, list) {
bool same_hostnqn = !strcmp(host->nqn, hostnqn);
bool same_hostid = uuid_equal(&host->id, id);
if (same_hostnqn && same_hostid) {
kref_get(&host->ref);
goto out_unlock;
}
if (same_hostnqn) {
pr_err("found same hostnqn %s but different hostid %pUb\n",
hostnqn, id);
host = ERR_PTR(-EINVAL);
goto out_unlock;
}
if (same_hostid) {
pr_err("found same hostid %pUb but different hostnqn %s\n",
id, hostnqn);
host = ERR_PTR(-EINVAL);
goto out_unlock;
}
}
host = nvmf_host_alloc(hostnqn, id);
if (!host) {
host = ERR_PTR(-ENOMEM);
goto out_unlock;
}
list_add_tail(&host->list, &nvmf_hosts);
out_unlock:
mutex_unlock(&nvmf_hosts_mutex);
return host;
}
static struct nvmf_host *nvmf_host_default(void)
{
struct nvmf_host *host;
char nqn[NVMF_NQN_SIZE];
uuid_t id;
uuid_gen(&id);
snprintf(nqn, NVMF_NQN_SIZE,
"nqn.2014-08.org.nvmexpress:uuid:%pUb", &id);
host = nvmf_host_alloc(nqn, &id);
if (!host)
return NULL;
mutex_lock(&nvmf_hosts_mutex);
list_add_tail(&host->list, &nvmf_hosts);
mutex_unlock(&nvmf_hosts_mutex);
return host;
}
static void nvmf_host_destroy(struct kref *ref)
{
struct nvmf_host *host = container_of(ref, struct nvmf_host, ref);
mutex_lock(&nvmf_hosts_mutex);
list_del(&host->list);
mutex_unlock(&nvmf_hosts_mutex);
kfree(host);
}
static void nvmf_host_put(struct nvmf_host *host)
{
if (host)
kref_put(&host->ref, nvmf_host_destroy);
}
/**
* nvmf_get_address() - Get address/port
* @ctrl: Host NVMe controller instance which we got the address
* @buf: OUTPUT parameter that will contain the address/port
* @size: buffer size
*/
int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
{
int len = 0;
if (ctrl->opts->mask & NVMF_OPT_TRADDR)
len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr);
if (ctrl->opts->mask & NVMF_OPT_TRSVCID)
len += scnprintf(buf + len, size - len, "%strsvcid=%s",
(len) ? "," : "", ctrl->opts->trsvcid);
if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)
len += scnprintf(buf + len, size - len, "%shost_traddr=%s",
(len) ? "," : "", ctrl->opts->host_traddr);
if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)
len += scnprintf(buf + len, size - len, "%shost_iface=%s",
(len) ? "," : "", ctrl->opts->host_iface);
len += scnprintf(buf + len, size - len, "\n");
return len;
}
EXPORT_SYMBOL_GPL(nvmf_get_address);
/**
* nvmf_reg_read32() - NVMe Fabrics "Property Get" API function.
* @ctrl: Host NVMe controller instance maintaining the admin
* queue used to submit the property read command to
* the allocated NVMe controller resource on the target system.
* @off: Starting offset value of the targeted property
* register (see the fabrics section of the NVMe standard).
* @val: OUTPUT parameter that will contain the value of
* the property after a successful read.
*
* Used by the host system to retrieve a 32-bit capsule property value
* from an NVMe controller on the target system.
*
* ("Capsule property" is an "PCIe register concept" applied to the
* NVMe fabrics space.)
*
* Return:
* 0: successful read
* > 0: NVMe error status code
* < 0: Linux errno error code
*/
int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
{
struct nvme_command cmd = { };
union nvme_result res;
int ret;
cmd.prop_get.opcode = nvme_fabrics_command;
cmd.prop_get.fctype = nvme_fabrics_type_property_get;
cmd.prop_get.offset = cpu_to_le32(off);
ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0,
NVME_QID_ANY, 0, 0);
if (ret >= 0)
*val = le64_to_cpu(res.u64);
if (unlikely(ret != 0))
dev_err(ctrl->device,
"Property Get error: %d, offset %#x\n",
ret > 0 ? ret & ~NVME_SC_DNR : ret, off);
return ret;
}
EXPORT_SYMBOL_GPL(nvmf_reg_read32);
/**
* nvmf_reg_read64() - NVMe Fabrics "Property Get" API function.
* @ctrl: Host NVMe controller instance maintaining the admin
* queue used to submit the property read command to
* the allocated controller resource on the target system.
* @off: Starting offset value of the targeted property
* register (see the fabrics section of the NVMe standard).
* @val: OUTPUT parameter that will contain the value of
* the property after a successful read.
*
* Used by the host system to retrieve a 64-bit capsule property value
* from an NVMe controller on the target system.
*
* ("Capsule property" is an "PCIe register concept" applied to the
* NVMe fabrics space.)
*
* Return:
* 0: successful read
* > 0: NVMe error status code
* < 0: Linux errno error code
*/
int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
{
struct nvme_command cmd = { };
union nvme_result res;
int ret;
cmd.prop_get.opcode = nvme_fabrics_command;
cmd.prop_get.fctype = nvme_fabrics_type_property_get;
cmd.prop_get.attrib = 1;
cmd.prop_get.offset = cpu_to_le32(off);
ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0,
NVME_QID_ANY, 0, 0);
if (ret >= 0)
*val = le64_to_cpu(res.u64);
if (unlikely(ret != 0))
dev_err(ctrl->device,
"Property Get error: %d, offset %#x\n",
ret > 0 ? ret & ~NVME_SC_DNR : ret, off);
return ret;
}
EXPORT_SYMBOL_GPL(nvmf_reg_read64);
/**
* nvmf_reg_write32() - NVMe Fabrics "Property Write" API function.
* @ctrl: Host NVMe controller instance maintaining the admin
* queue used to submit the property read command to
* the allocated NVMe controller resource on the target system.
* @off: Starting offset value of the targeted property
* register (see the fabrics section of the NVMe standard).
* @val: Input parameter that contains the value to be
* written to the property.
*
* Used by the NVMe host system to write a 32-bit capsule property value
* to an NVMe controller on the target system.
*
* ("Capsule property" is an "PCIe register concept" applied to the
* NVMe fabrics space.)
*
* Return:
* 0: successful write
* > 0: NVMe error status code
* < 0: Linux errno error code
*/
int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
{
struct nvme_command cmd = { };
int ret;
cmd.prop_set.opcode = nvme_fabrics_command;
cmd.prop_set.fctype = nvme_fabrics_type_property_set;
cmd.prop_set.attrib = 0;
cmd.prop_set.offset = cpu_to_le32(off);
cmd.prop_set.value = cpu_to_le64(val);
ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0,
NVME_QID_ANY, 0, 0);
if (unlikely(ret))
dev_err(ctrl->device,
"Property Set error: %d, offset %#x\n",
ret > 0 ? ret & ~NVME_SC_DNR : ret, off);
return ret;
}
EXPORT_SYMBOL_GPL(nvmf_reg_write32);
/**
* nvmf_log_connect_error() - Error-parsing-diagnostic print out function for
* connect() errors.
* @ctrl: The specific /dev/nvmeX device that had the error.
* @errval: Error code to be decoded in a more human-friendly
* printout.
* @offset: For use with the NVMe error code
* NVME_SC_CONNECT_INVALID_PARAM.
* @cmd: This is the SQE portion of a submission capsule.
* @data: This is the "Data" portion of a submission capsule.
*/
static void nvmf_log_connect_error(struct nvme_ctrl *ctrl,
int errval, int offset, struct nvme_command *cmd,
struct nvmf_connect_data *data)
{
int err_sctype = errval & ~NVME_SC_DNR;
if (errval < 0) {
dev_err(ctrl->device,
"Connect command failed, errno: %d\n", errval);
return;
}
switch (err_sctype) {
case NVME_SC_CONNECT_INVALID_PARAM:
if (offset >> 16) {
char *inv_data = "Connect Invalid Data Parameter";
switch (offset & 0xffff) {
case (offsetof(struct nvmf_connect_data, cntlid)):
dev_err(ctrl->device,
"%s, cntlid: %d\n",
inv_data, data->cntlid);
break;
case (offsetof(struct nvmf_connect_data, hostnqn)):
dev_err(ctrl->device,
"%s, hostnqn \"%s\"\n",
inv_data, data->hostnqn);
break;
case (offsetof(struct nvmf_connect_data, subsysnqn)):
dev_err(ctrl->device,
"%s, subsysnqn \"%s\"\n",
inv_data, data->subsysnqn);
break;
default:
dev_err(ctrl->device,
"%s, starting byte offset: %d\n",
inv_data, offset & 0xffff);
break;
}
} else {
char *inv_sqe = "Connect Invalid SQE Parameter";
switch (offset) {
case (offsetof(struct nvmf_connect_command, qid)):
dev_err(ctrl->device,
"%s, qid %d\n",
inv_sqe, cmd->connect.qid);
break;
default:
dev_err(ctrl->device,
"%s, starting byte offset: %d\n",
inv_sqe, offset);
}
}
break;
case NVME_SC_CONNECT_INVALID_HOST:
dev_err(ctrl->device,
"Connect for subsystem %s is not allowed, hostnqn: %s\n",
data->subsysnqn, data->hostnqn);
break;
case NVME_SC_CONNECT_CTRL_BUSY:
dev_err(ctrl->device,
"Connect command failed: controller is busy or not available\n");
break;
case NVME_SC_CONNECT_FORMAT:
dev_err(ctrl->device,
"Connect incompatible format: %d",
cmd->connect.recfmt);
break;
case NVME_SC_HOST_PATH_ERROR:
dev_err(ctrl->device,
"Connect command failed: host path error\n");
break;
case NVME_SC_AUTH_REQUIRED:
dev_err(ctrl->device,
"Connect command failed: authentication required\n");
break;
default:
dev_err(ctrl->device,
"Connect command failed, error wo/DNR bit: %d\n",
err_sctype);
break;
}
}
static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl,
u16 cntlid)
{
struct nvmf_connect_data *data;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return NULL;
uuid_copy(&data->hostid, &ctrl->opts->host->id);
data->cntlid = cpu_to_le16(cntlid);
strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE);
strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE);
return data;
}
static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid,
struct nvme_command *cmd)
{
cmd->connect.opcode = nvme_fabrics_command;
cmd->connect.fctype = nvme_fabrics_type_connect;
cmd->connect.qid = cpu_to_le16(qid);
if (qid) {
cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize);
} else {
cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
/*
* set keep-alive timeout in seconds granularity (ms * 1000)
*/
cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000);
}
if (ctrl->opts->disable_sqflow)
cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW;
}
/**
* nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect"
* API function.
* @ctrl: Host nvme controller instance used to request
* a new NVMe controller allocation on the target
* system and establish an NVMe Admin connection to
* that controller.
*
* This function enables an NVMe host device to request a new allocation of
* an NVMe controller resource on a target system as well establish a
* fabrics-protocol connection of the NVMe Admin queue between the
* host system device and the allocated NVMe controller on the
* target system via a NVMe Fabrics "Connect" command.
*
* Return:
* 0: success
* > 0: NVMe error status code
* < 0: Linux errno error code
*
*/
int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl)
{
struct nvme_command cmd = { };
union nvme_result res;
struct nvmf_connect_data *data;
int ret;
u32 result;
nvmf_connect_cmd_prep(ctrl, 0, &cmd);
data = nvmf_connect_data_prep(ctrl, 0xffff);
if (!data)
return -ENOMEM;
ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res,
data, sizeof(*data), NVME_QID_ANY, 1,
BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
if (ret) {
nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32),
&cmd, data);
goto out_free_data;
}
result = le32_to_cpu(res.u32);
ctrl->cntlid = result & 0xFFFF;
if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) {
/* Secure concatenation is not implemented */
if (result & NVME_CONNECT_AUTHREQ_ASCR) {
dev_warn(ctrl->device,
"qid 0: secure concatenation is not supported\n");
ret = NVME_SC_AUTH_REQUIRED;
goto out_free_data;
}
/* Authentication required */
ret = nvme_auth_negotiate(ctrl, 0);
if (ret) {
dev_warn(ctrl->device,
"qid 0: authentication setup failed\n");
ret = NVME_SC_AUTH_REQUIRED;
goto out_free_data;
}
ret = nvme_auth_wait(ctrl, 0);
if (ret)
dev_warn(ctrl->device,
"qid 0: authentication failed\n");
else
dev_info(ctrl->device,
"qid 0: authenticated\n");
}
out_free_data:
kfree(data);
return ret;
}
EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue);
/**
* nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect"
* API function.
* @ctrl: Host nvme controller instance used to establish an
* NVMe I/O queue connection to the already allocated NVMe
* controller on the target system.
* @qid: NVMe I/O queue number for the new I/O connection between
* host and target (note qid == 0 is illegal as this is
* the Admin queue, per NVMe standard).
*
* This function issues a fabrics-protocol connection
* of a NVMe I/O queue (via NVMe Fabrics "Connect" command)
* between the host system device and the allocated NVMe controller
* on the target system.
*
* Return:
* 0: success
* > 0: NVMe error status code
* < 0: Linux errno error code
*/
int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid)
{
struct nvme_command cmd = { };
struct nvmf_connect_data *data;
union nvme_result res;
int ret;
u32 result;
nvmf_connect_cmd_prep(ctrl, qid, &cmd);
data = nvmf_connect_data_prep(ctrl, ctrl->cntlid);
if (!data)
return -ENOMEM;
ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res,
data, sizeof(*data), qid, 1,
BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
if (ret) {
nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32),
&cmd, data);
}
result = le32_to_cpu(res.u32);
if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) {
/* Secure concatenation is not implemented */
if (result & NVME_CONNECT_AUTHREQ_ASCR) {
dev_warn(ctrl->device,
"qid 0: secure concatenation is not supported\n");
ret = NVME_SC_AUTH_REQUIRED;
goto out_free_data;
}
/* Authentication required */
ret = nvme_auth_negotiate(ctrl, qid);
if (ret) {
dev_warn(ctrl->device,
"qid %d: authentication setup failed\n", qid);
ret = NVME_SC_AUTH_REQUIRED;
} else {
ret = nvme_auth_wait(ctrl, qid);
if (ret)
dev_warn(ctrl->device,
"qid %u: authentication failed\n", qid);
}
}
out_free_data:
kfree(data);
return ret;
}
EXPORT_SYMBOL_GPL(nvmf_connect_io_queue);
bool nvmf_should_reconnect(struct nvme_ctrl *ctrl)
{
if (ctrl->opts->max_reconnects == -1 ||
ctrl->nr_reconnects < ctrl->opts->max_reconnects)
return true;
return false;
}
EXPORT_SYMBOL_GPL(nvmf_should_reconnect);
/**
* nvmf_register_transport() - NVMe Fabrics Library registration function.
* @ops: Transport ops instance to be registered to the
* common fabrics library.
*
* API function that registers the type of specific transport fabric
* being implemented to the common NVMe fabrics library. Part of
* the overall init sequence of starting up a fabrics driver.
*/
int nvmf_register_transport(struct nvmf_transport_ops *ops)
{
if (!ops->create_ctrl)
return -EINVAL;
down_write(&nvmf_transports_rwsem);
list_add_tail(&ops->entry, &nvmf_transports);
up_write(&nvmf_transports_rwsem);
return 0;
}
EXPORT_SYMBOL_GPL(nvmf_register_transport);
/**
* nvmf_unregister_transport() - NVMe Fabrics Library unregistration function.
* @ops: Transport ops instance to be unregistered from the
* common fabrics library.
*
* Fabrics API function that unregisters the type of specific transport
* fabric being implemented from the common NVMe fabrics library.
* Part of the overall exit sequence of unloading the implemented driver.
*/
void nvmf_unregister_transport(struct nvmf_transport_ops *ops)
{
down_write(&nvmf_transports_rwsem);
list_del(&ops->entry);
up_write(&nvmf_transports_rwsem);
}
EXPORT_SYMBOL_GPL(nvmf_unregister_transport);
static struct nvmf_transport_ops *nvmf_lookup_transport(
struct nvmf_ctrl_options *opts)
{
struct nvmf_transport_ops *ops;
lockdep_assert_held(&nvmf_transports_rwsem);
list_for_each_entry(ops, &nvmf_transports, entry) {
if (strcmp(ops->name, opts->transport) == 0)
return ops;
}
return NULL;
}
static const match_table_t opt_tokens = {
{ NVMF_OPT_TRANSPORT, "transport=%s" },
{ NVMF_OPT_TRADDR, "traddr=%s" },
{ NVMF_OPT_TRSVCID, "trsvcid=%s" },
{ NVMF_OPT_NQN, "nqn=%s" },
{ NVMF_OPT_QUEUE_SIZE, "queue_size=%d" },
{ NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" },
{ NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" },
{ NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" },
{ NVMF_OPT_KATO, "keep_alive_tmo=%d" },
{ NVMF_OPT_HOSTNQN, "hostnqn=%s" },
{ NVMF_OPT_HOST_TRADDR, "host_traddr=%s" },
{ NVMF_OPT_HOST_IFACE, "host_iface=%s" },
{ NVMF_OPT_HOST_ID, "hostid=%s" },
{ NVMF_OPT_DUP_CONNECT, "duplicate_connect" },
{ NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" },
{ NVMF_OPT_HDR_DIGEST, "hdr_digest" },
{ NVMF_OPT_DATA_DIGEST, "data_digest" },
{ NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" },
{ NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" },
{ NVMF_OPT_TOS, "tos=%d" },
{ NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" },
{ NVMF_OPT_DISCOVERY, "discovery" },
{ NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" },
{ NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" },
{ NVMF_OPT_ERR, NULL }
};
static int nvmf_parse_options(struct nvmf_ctrl_options *opts,
const char *buf)
{
substring_t args[MAX_OPT_ARGS];
char *options, *o, *p;
int token, ret = 0;
size_t nqnlen = 0;
int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO;
uuid_t hostid;
char hostnqn[NVMF_NQN_SIZE];
/* Set defaults */
opts->queue_size = NVMF_DEF_QUEUE_SIZE;
opts->nr_io_queues = num_online_cpus();
opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY;
opts->kato = 0;
opts->duplicate_connect = false;
opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO;
opts->hdr_digest = false;
opts->data_digest = false;
opts->tos = -1; /* < 0 == use transport default */
options = o = kstrdup(buf, GFP_KERNEL);
if (!options)
return -ENOMEM;
/* use default host if not given by user space */
uuid_copy(&hostid, &nvmf_default_host->id);
strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE);
while ((p = strsep(&o, ",\n")) != NULL) {
if (!*p)
continue;
token = match_token(p, opt_tokens, args);
opts->mask |= token;
switch (token) {
case NVMF_OPT_TRANSPORT:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree(opts->transport);
opts->transport = p;
break;
case NVMF_OPT_NQN:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree(opts->subsysnqn);
opts->subsysnqn = p;
nqnlen = strlen(opts->subsysnqn);
if (nqnlen >= NVMF_NQN_SIZE) {
pr_err("%s needs to be < %d bytes\n",
opts->subsysnqn, NVMF_NQN_SIZE);
ret = -EINVAL;
goto out;
}
opts->discovery_nqn =
!(strcmp(opts->subsysnqn,
NVME_DISC_SUBSYS_NAME));
break;
case NVMF_OPT_TRADDR:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree(opts->traddr);
opts->traddr = p;
break;
case NVMF_OPT_TRSVCID:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree(opts->trsvcid);
opts->trsvcid = p;
break;
case NVMF_OPT_QUEUE_SIZE:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token < NVMF_MIN_QUEUE_SIZE ||
token > NVMF_MAX_QUEUE_SIZE) {
pr_err("Invalid queue_size %d\n", token);
ret = -EINVAL;
goto out;
}
opts->queue_size = token;
break;
case NVMF_OPT_NR_IO_QUEUES:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token <= 0) {
pr_err("Invalid number of IOQs %d\n", token);
ret = -EINVAL;
goto out;
}
if (opts->discovery_nqn) {
pr_debug("Ignoring nr_io_queues value for discovery controller\n");
break;
}
opts->nr_io_queues = min_t(unsigned int,
num_online_cpus(), token);
break;
case NVMF_OPT_KATO:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token < 0) {
pr_err("Invalid keep_alive_tmo %d\n", token);
ret = -EINVAL;
goto out;
} else if (token == 0 && !opts->discovery_nqn) {
/* Allowed for debug */
pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n");
}
opts->kato = token;
break;
case NVMF_OPT_CTRL_LOSS_TMO:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token < 0)
pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n");
ctrl_loss_tmo = token;
break;
case NVMF_OPT_FAIL_FAST_TMO:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token >= 0)
pr_warn("I/O fail on reconnect controller after %d sec\n",
token);
else
token = -1;
opts->fast_io_fail_tmo = token;
break;
case NVMF_OPT_HOSTNQN:
if (opts->host) {
pr_err("hostnqn already user-assigned: %s\n",
opts->host->nqn);
ret = -EADDRINUSE;
goto out;
}
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
nqnlen = strlen(p);
if (nqnlen >= NVMF_NQN_SIZE) {
pr_err("%s needs to be < %d bytes\n",
p, NVMF_NQN_SIZE);
kfree(p);
ret = -EINVAL;
goto out;
}
strscpy(hostnqn, p, NVMF_NQN_SIZE);
kfree(p);
break;
case NVMF_OPT_RECONNECT_DELAY:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token <= 0) {
pr_err("Invalid reconnect_delay %d\n", token);
ret = -EINVAL;
goto out;
}
opts->reconnect_delay = token;
break;
case NVMF_OPT_HOST_TRADDR:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree(opts->host_traddr);
opts->host_traddr = p;
break;
case NVMF_OPT_HOST_IFACE:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree(opts->host_iface);
opts->host_iface = p;
break;
case NVMF_OPT_HOST_ID:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
ret = uuid_parse(p, &hostid);
if (ret) {
pr_err("Invalid hostid %s\n", p);
ret = -EINVAL;
kfree(p);
goto out;
}
kfree(p);
break;
case NVMF_OPT_DUP_CONNECT:
opts->duplicate_connect = true;
break;
case NVMF_OPT_DISABLE_SQFLOW:
opts->disable_sqflow = true;
break;
case NVMF_OPT_HDR_DIGEST:
opts->hdr_digest = true;
break;
case NVMF_OPT_DATA_DIGEST:
opts->data_digest = true;
break;
case NVMF_OPT_NR_WRITE_QUEUES:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token <= 0) {
pr_err("Invalid nr_write_queues %d\n", token);
ret = -EINVAL;
goto out;
}
opts->nr_write_queues = token;
break;
case NVMF_OPT_NR_POLL_QUEUES:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token <= 0) {
pr_err("Invalid nr_poll_queues %d\n", token);
ret = -EINVAL;
goto out;
}
opts->nr_poll_queues = token;
break;
case NVMF_OPT_TOS:
if (match_int(args, &token)) {
ret = -EINVAL;
goto out;
}
if (token < 0) {
pr_err("Invalid type of service %d\n", token);
ret = -EINVAL;
goto out;
}
if (token > 255) {
pr_warn("Clamping type of service to 255\n");
token = 255;
}
opts->tos = token;
break;
case NVMF_OPT_DISCOVERY:
opts->discovery_nqn = true;
break;
case NVMF_OPT_DHCHAP_SECRET:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) {
pr_err("Invalid DH-CHAP secret %s\n", p);
ret = -EINVAL;
goto out;
}
kfree(opts->dhchap_secret);
opts->dhchap_secret = p;
break;
case NVMF_OPT_DHCHAP_CTRL_SECRET:
p = match_strdup(args);
if (!p) {
ret = -ENOMEM;
goto out;
}
if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) {
pr_err("Invalid DH-CHAP secret %s\n", p);
ret = -EINVAL;
goto out;
}
kfree(opts->dhchap_ctrl_secret);
opts->dhchap_ctrl_secret = p;
break;
default:
pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n",
p);
ret = -EINVAL;
goto out;
}
}
if (opts->discovery_nqn) {
opts->nr_io_queues = 0;
opts->nr_write_queues = 0;
opts->nr_poll_queues = 0;
opts->duplicate_connect = true;
} else {
if (!opts->kato)
opts->kato = NVME_DEFAULT_KATO;
}
if (ctrl_loss_tmo < 0) {
opts->max_reconnects = -1;
} else {
opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
opts->reconnect_delay);
if (ctrl_loss_tmo < opts->fast_io_fail_tmo)
pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n",
opts->fast_io_fail_tmo, ctrl_loss_tmo);
}
opts->host = nvmf_host_add(hostnqn, &hostid);
if (IS_ERR(opts->host)) {
ret = PTR_ERR(opts->host);
opts->host = NULL;
goto out;
}
out:
kfree(options);
return ret;
}
void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues,
u32 io_queues[HCTX_MAX_TYPES])
{
if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
/*
* separate read/write queues
* hand out dedicated default queues only after we have
* sufficient read queues.
*/
io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
nr_io_queues -= io_queues[HCTX_TYPE_READ];
io_queues[HCTX_TYPE_DEFAULT] =
min(opts->nr_write_queues, nr_io_queues);
nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT];
} else {
/*
* shared read/write queues
* either no write queues were requested, or we don't have
* sufficient queue count to have dedicated default queues.
*/
io_queues[HCTX_TYPE_DEFAULT] =
min(opts->nr_io_queues, nr_io_queues);
nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT];
}
if (opts->nr_poll_queues && nr_io_queues) {
/* map dedicated poll queues only if we have queues left */
io_queues[HCTX_TYPE_POLL] =
min(opts->nr_poll_queues, nr_io_queues);
}
}
EXPORT_SYMBOL_GPL(nvmf_set_io_queues);
void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl,
u32 io_queues[HCTX_MAX_TYPES])
{
struct nvmf_ctrl_options *opts = ctrl->opts;
if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) {
/* separate read/write queues */
set->map[HCTX_TYPE_DEFAULT].nr_queues =
io_queues[HCTX_TYPE_DEFAULT];
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
set->map[HCTX_TYPE_READ].nr_queues =
io_queues[HCTX_TYPE_READ];
set->map[HCTX_TYPE_READ].queue_offset =
io_queues[HCTX_TYPE_DEFAULT];
} else {
/* shared read/write queues */
set->map[HCTX_TYPE_DEFAULT].nr_queues =
io_queues[HCTX_TYPE_DEFAULT];
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
set->map[HCTX_TYPE_READ].nr_queues =
io_queues[HCTX_TYPE_DEFAULT];
set->map[HCTX_TYPE_READ].queue_offset = 0;
}
blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) {
/* map dedicated poll queues only if we have queues left */
set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL];
set->map[HCTX_TYPE_POLL].queue_offset =
io_queues[HCTX_TYPE_DEFAULT] +
io_queues[HCTX_TYPE_READ];
blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
}
dev_info(ctrl->device,
"mapped %d/%d/%d default/read/poll queues.\n",
io_queues[HCTX_TYPE_DEFAULT],
io_queues[HCTX_TYPE_READ],
io_queues[HCTX_TYPE_POLL]);
}
EXPORT_SYMBOL_GPL(nvmf_map_queues);
static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts,
unsigned int required_opts)
{
if ((opts->mask & required_opts) != required_opts) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) {
if ((opt_tokens[i].token & required_opts) &&
!(opt_tokens[i].token & opts->mask)) {
pr_warn("missing parameter '%s'\n",
opt_tokens[i].pattern);
}
}
return -EINVAL;
}
return 0;
}
bool nvmf_ip_options_match(struct nvme_ctrl *ctrl,
struct nvmf_ctrl_options *opts)
{
if (!nvmf_ctlr_matches_baseopts(ctrl, opts) ||
strcmp(opts->traddr, ctrl->opts->traddr) ||
strcmp(opts->trsvcid, ctrl->opts->trsvcid))
return false;
/*
* Checking the local address or host interfaces is rough.
*
* In most cases, none is specified and the host port or
* host interface is selected by the stack.
*
* Assume no match if:
* - local address or host interface is specified and address
* or host interface is not the same
* - local address or host interface is not specified but
* remote is, or vice versa (admin using specific
* host_traddr/host_iface when it matters).
*/
if ((opts->mask & NVMF_OPT_HOST_TRADDR) &&
(ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) {
if (strcmp(opts->host_traddr, ctrl->opts->host_traddr))
return false;
} else if ((opts->mask & NVMF_OPT_HOST_TRADDR) ||
(ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) {
return false;
}
if ((opts->mask & NVMF_OPT_HOST_IFACE) &&
(ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) {
if (strcmp(opts->host_iface, ctrl->opts->host_iface))
return false;
} else if ((opts->mask & NVMF_OPT_HOST_IFACE) ||
(ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) {
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(nvmf_ip_options_match);
static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts,
unsigned int allowed_opts)
{
if (opts->mask & ~allowed_opts) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) {
if ((opt_tokens[i].token & opts->mask) &&
(opt_tokens[i].token & ~allowed_opts)) {
pr_warn("invalid parameter '%s'\n",
opt_tokens[i].pattern);
}
}
return -EINVAL;
}
return 0;
}
void nvmf_free_options(struct nvmf_ctrl_options *opts)
{
nvmf_host_put(opts->host);
kfree(opts->transport);
kfree(opts->traddr);
kfree(opts->trsvcid);
kfree(opts->subsysnqn);
kfree(opts->host_traddr);
kfree(opts->host_iface);
kfree(opts->dhchap_secret);
kfree(opts->dhchap_ctrl_secret);
kfree(opts);
}
EXPORT_SYMBOL_GPL(nvmf_free_options);
#define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN)
#define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \
NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \
NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\
NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\
NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\
NVMF_OPT_DHCHAP_CTRL_SECRET)
static struct nvme_ctrl *
nvmf_create_ctrl(struct device *dev, const char *buf)
{
struct nvmf_ctrl_options *opts;
struct nvmf_transport_ops *ops;
struct nvme_ctrl *ctrl;
int ret;
opts = kzalloc(sizeof(*opts), GFP_KERNEL);
if (!opts)
return ERR_PTR(-ENOMEM);
ret = nvmf_parse_options(opts, buf);
if (ret)
goto out_free_opts;
request_module("nvme-%s", opts->transport);
/*
* Check the generic options first as we need a valid transport for
* the lookup below. Then clear the generic flags so that transport
* drivers don't have to care about them.
*/
ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS);
if (ret)
goto out_free_opts;
opts->mask &= ~NVMF_REQUIRED_OPTS;
down_read(&nvmf_transports_rwsem);
ops = nvmf_lookup_transport(opts);
if (!ops) {
pr_info("no handler found for transport %s.\n",
opts->transport);
ret = -EINVAL;
goto out_unlock;
}
if (!try_module_get(ops->module)) {
ret = -EBUSY;
goto out_unlock;
}
up_read(&nvmf_transports_rwsem);
ret = nvmf_check_required_opts(opts, ops->required_opts);
if (ret)
goto out_module_put;
ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS |
ops->allowed_opts | ops->required_opts);
if (ret)
goto out_module_put;
ctrl = ops->create_ctrl(dev, opts);
if (IS_ERR(ctrl)) {
ret = PTR_ERR(ctrl);
goto out_module_put;
}
module_put(ops->module);
return ctrl;
out_module_put:
module_put(ops->module);
goto out_free_opts;
out_unlock:
up_read(&nvmf_transports_rwsem);
out_free_opts:
nvmf_free_options(opts);
return ERR_PTR(ret);
}
static struct class *nvmf_class;
static struct device *nvmf_device;
static DEFINE_MUTEX(nvmf_dev_mutex);
static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *pos)
{
struct seq_file *seq_file = file->private_data;
struct nvme_ctrl *ctrl;
const char *buf;
int ret = 0;
if (count > PAGE_SIZE)
return -ENOMEM;
buf = memdup_user_nul(ubuf, count);
if (IS_ERR(buf))
return PTR_ERR(buf);
mutex_lock(&nvmf_dev_mutex);
if (seq_file->private) {
ret = -EINVAL;
goto out_unlock;
}
ctrl = nvmf_create_ctrl(nvmf_device, buf);
if (IS_ERR(ctrl)) {
ret = PTR_ERR(ctrl);
goto out_unlock;
}
seq_file->private = ctrl;
out_unlock:
mutex_unlock(&nvmf_dev_mutex);
kfree(buf);
return ret ? ret : count;
}
static void __nvmf_concat_opt_tokens(struct seq_file *seq_file)
{
const struct match_token *tok;
int idx;
/*
* Add dummy entries for instance and cntlid to
* signal an invalid/non-existing controller
*/
seq_puts(seq_file, "instance=-1,cntlid=-1");
for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) {
tok = &opt_tokens[idx];
if (tok->token == NVMF_OPT_ERR)
continue;
seq_puts(seq_file, ",");
seq_puts(seq_file, tok->pattern);
}
seq_puts(seq_file, "\n");
}
static int nvmf_dev_show(struct seq_file *seq_file, void *private)
{
struct nvme_ctrl *ctrl;
mutex_lock(&nvmf_dev_mutex);
ctrl = seq_file->private;
if (!ctrl) {
__nvmf_concat_opt_tokens(seq_file);
goto out_unlock;
}
seq_printf(seq_file, "instance=%d,cntlid=%d\n",
ctrl->instance, ctrl->cntlid);
out_unlock:
mutex_unlock(&nvmf_dev_mutex);
return 0;
}
static int nvmf_dev_open(struct inode *inode, struct file *file)
{
/*
* The miscdevice code initializes file->private_data, but doesn't
* make use of it later.
*/
file->private_data = NULL;
return single_open(file, nvmf_dev_show, NULL);
}
static int nvmf_dev_release(struct inode *inode, struct file *file)
{
struct seq_file *seq_file = file->private_data;
struct nvme_ctrl *ctrl = seq_file->private;
if (ctrl)
nvme_put_ctrl(ctrl);
return single_release(inode, file);
}
static const struct file_operations nvmf_dev_fops = {
.owner = THIS_MODULE,
.write = nvmf_dev_write,
.read = seq_read,
.open = nvmf_dev_open,
.release = nvmf_dev_release,
};
static struct miscdevice nvmf_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "nvme-fabrics",
.fops = &nvmf_dev_fops,
};
static int __init nvmf_init(void)
{
int ret;
nvmf_default_host = nvmf_host_default();
if (!nvmf_default_host)
return -ENOMEM;
nvmf_class = class_create("nvme-fabrics");
if (IS_ERR(nvmf_class)) {
pr_err("couldn't register class nvme-fabrics\n");
ret = PTR_ERR(nvmf_class);
goto out_free_host;
}
nvmf_device =
device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl");
if (IS_ERR(nvmf_device)) {
pr_err("couldn't create nvme-fabrics device!\n");
ret = PTR_ERR(nvmf_device);
goto out_destroy_class;
}
ret = misc_register(&nvmf_misc);
if (ret) {
pr_err("couldn't register misc device: %d\n", ret);
goto out_destroy_device;
}
return 0;
out_destroy_device:
device_destroy(nvmf_class, MKDEV(0, 0));
out_destroy_class:
class_destroy(nvmf_class);
out_free_host:
nvmf_host_put(nvmf_default_host);
return ret;
}
static void __exit nvmf_exit(void)
{
misc_deregister(&nvmf_misc);
device_destroy(nvmf_class, MKDEV(0, 0));
class_destroy(nvmf_class);
nvmf_host_put(nvmf_default_host);
BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64);
BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64);
BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64);
BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64);
BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64);
BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64);
BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024);
BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8);
BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16);
BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16);
BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16);
BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16);
}
MODULE_LICENSE("GPL v2");
module_init(nvmf_init);
module_exit(nvmf_exit);